RU2781902C1 - Способ лечения аденокарциномы эрлиха методом лучевой терапии - Google Patents

Способ лечения аденокарциномы эрлиха методом лучевой терапии Download PDF

Info

Publication number
RU2781902C1
RU2781902C1 RU2021118574A RU2021118574A RU2781902C1 RU 2781902 C1 RU2781902 C1 RU 2781902C1 RU 2021118574 A RU2021118574 A RU 2021118574A RU 2021118574 A RU2021118574 A RU 2021118574A RU 2781902 C1 RU2781902 C1 RU 2781902C1
Authority
RU
Russia
Prior art keywords
radiation therapy
microparticles
tumor
tantalum oxide
radiation
Prior art date
Application number
RU2021118574A
Other languages
English (en)
Inventor
Ольга Сергеевна Плотникова
Владимир Иосифович Апанасевич
Михаил Азарьевич Медков
Дина Николаевна Грищенко
Игорь Владимирович Панкратов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО ТГМУ Минздрава России)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН), Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО ТГМУ Минздрава России) filed Critical Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)
Application granted granted Critical
Publication of RU2781902C1 publication Critical patent/RU2781902C1/ru

Links

Abstract

Изобретение относится к области медицины, а именно онкологии и лучевой терапии, и может быть использовано для лечения аденокарциномы Эрлиха методом лучевой терапии. Проводят локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным введением непосредственно в опухоль радиомодификатора. В качестве радиомодификатора используют синтезированные микрочастицы фосфатного стекла, легированного 40% оксида тантала. Радиомодификатор вводят в виде 1 % масс. взвеси в физиологическом растворе, при этом размер указанных микрочастиц в взвеси составляет до 100 мкм. Способ обеспечивает улучшение локального контроля над опухолевым ростом, уменьшение объема удаляемых с опухолью тканей, снижение лучевой нагрузки на окружающие зону операции ткани за счет применения в качестве радиомодификатора микрочастиц фосфатного стекла, легированного 40% оксида тантала. 1 табл.

Description

Изобретение относится к области медицины и фармацевтической промышленности, в частности к рентгенологии, онкологии и лучевой терапии. И может быть использовано для лечения злокачественных новообразований.
Злокачественные новообразования находятся в списке лидеров основных причин смерти и инвалидизации населения развитых, а в последние годы и развивающихся стран. Одним из основных клинически используемых методов лечения широкого диапазона опухолей является лучевая терапия. Однако во время применения лучевой терапии только часть энергии ионизирующего излучения поглощается опухолью, остальная часть рассеивается в здоровых тканях, оказывая на них негативное влияние, еще одним фактором, ограничивающим эффективность лучевой терапии является радиорезистентность самого новообразования. Поэтому поиск малоинвазивных и вместе с тем эффективных методов улучшения локализации зоны облучения с уменьшением лучевой нагрузки на окружающие зону ткани, а также преодоление радиорезистентности опухоли, является наиболее актуальным на сегодняшний день.
Одним из таких способов является радиомодификация тканей, которая может проводиться за счет введения различных химических веществ.
Известен способ лечения злокачественных опухолей кожи век [Пат. РФ 2445086, опубл. 20.03.2012], включающий локальную радиомодификацию опухоли путем перитуморального введения метотрексата, преинкубированного в аутоплазме при t=37°C в течение 30 мин, с предварительным введением 1 мл дипроспана суббульбарно. Через час после радиомодификации проводят неоадьювантную лучевую терапию очаговой дозой 20 Гр. Недостатком описанного метода является то, что метотрексат может привести к развитию симптомов острой или хронической гепатотоксичности (в том числе к фиброзу и циррозу печени).
Известен способ фотон захватной терапии опухолей путем введения непосредственно в опухоль средства, включающего йодированное контрастное вещество, дополнительно содержащее наноразмерные частицы золота, с последующим электромагнитным облучением опухоли гамма-излучением 60Со [Пат. РФ 2533267, опубл. 20.11.2014]. Недостатками метода является обширный список противопоказаний к использованию йодсодержащих препаратов.
Известен метод радионуклидной эмболизации стеклянными микросферами с радиоизотопом иттрия-90 для лечения злокачественных опухолей печени и желчевыводящих путей [Bourien Н. et al. «Yttrium-90 glass microspheres radioembolization (RE) for biliary tract cancer: large single-center experience)) // Eur. J. Nucl. Med. Mol. Imaging, 2019, V. 46, pp. 669-676]. Микросферы состоят из стекла диаметром 20-30 мкм, в котором в матрицу встроен изотоп 89Y. Перед процедурой эмболизации иттрий-89 в ядерном реакторе активируется нейтронами до иттрия-90. Микросферы с 90Y вводят точно в артерии, питающие новообразование, и по капиллярам они попадают в ложе опухоли. Радиоизотоп создает внутри опухоли высокую дозу облучения (120-200 Гр) при относительно небольшом облучении здоровой, окружающей опухоль, ткани печени (20-30 Гр). Преимуществом использования стеклянных микросфер является их отличная стабильность, радиационная стойкость и нетоксичность. Существенным недостатком метода является радиоактивность изотопа иттрия, необходимость тщательного контроля радиационный безопасности, т.к. при неправильном введении микросфер существует высокий риск радиоактивного заражения организма. Кроме того, прямое измерение величины дозы внутреннего облучения в патологическом очаге крайне затруднительно, поэтому возрастает вероятность возникновения лучевых осложнений в нормальных тканях.
Наиболее близким к заявляемому изобретению является метод лучевой терапии с использованием в качестве сенсибилизатора эмульсии наночастиц перфторуглерода с оксидом тантала в полиэтиленгликоле [Song G. et al. «ТаОх decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome tumor hypoxia and enhance cancer radiotherapy» / Biomaterials, 2017, V. 112, pp. 257-263].
Согласно описанному методу для лечения in vivo в опухоль 4Т1 перевитую мышам вводили 50 мкл эмульсии перфторуглерода с оксидом тантала в полиэтиленгликоле (6,7 мг / мл ТаОх; 20 об. % ПФУ), через 10 минут после инъекции опухоль облучали рентгеновским излучением мощностью 6 Гр. Данный способ показал ингибирование роста опухоли относительно контроля использования метода лучевой терапии без использования радиомодификатора. Недостатком прототипа является использование только рентгеновского излучения, имеющего низкую проникающую способность, не позволяющего применять метод для глубоко расположенных опухолей. Задачей изобретения является оптимизация лечения злокачественных новообразований методом лучевой терапии и повышение его эффективности независимо от глубины залегания опухоли.
Технический результат заявляемого способа заключается в улучшении локального контроля над опухолевым ростом, уменьшении объема удаляемых с опухолью тканей, а значит и инвалидизации пациентов, снижении лучевой нагрузки на окружающие зону операции ткани, визуализация зоны облучения за счет рентгенконтрастности препарата.
Технический результат достигается способом лечения злокачественных новообразований методом экспериментальной лучевой терапии, заключающемся в непосредственном введении в опухоль синтезированных микрочастиц фосфатного стекла с включением 40% оксида тантала и последующим локальным облучении новообразования ионизирующим излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр.
Способ экспериментальной лучевой терапии с использованием оксида тантала осуществляется следующим образом.
Предварительно для локальной радиомодификации и рентгеноконтрастности опухоли в злокачественное новообразование интратуморальным путем вводят микрочастицы фосфатного стекла, включающего 40% оксида тантала, разведенные до состояния взвеси в физиологическом растворе, после чего проводят сеанс лучевой терапии в области опухоли на аппарате True Beam с применение болюса мощностью 6 МэВ одной фракцией суммарной очаговой дозой 20 Гр.
В качестве радиомодификатора впервые было использовано фосфатное стекло, модифицированное оксидом тантала. Такое сочетание было выбрано в связи с двойственностью свойств препарата, что было ранее показано авторами изобретения [Плотникова О.С. и др. «Возможность применения микрочастиц оксида тантала в фосфатном стекле для лучевой терапии злокачественных новообразований» // PMJ, 2020, №4, с. 85-87]. С одной стороны, он обладает рентгеноконтрастностью, с другой - наличие фосфатного стекла, содержащего 40% оксид тантала, дает прибавку к вторичному излучению 100,1% по сравнению с генерацией в дистиллированной воде, что вдвое превышает генерацию вторичного излучения.
В связи с тем, что микрочастицы фосфатного стекла вводят в виде взвеси, был проведен подбор размера иглы, позволяющего полностью и беспроблемно вводить препарат в область опухоли. Размер частиц биостекла составляет до 100 мкм, поэтому оптимальным калибром является G16.
Экспериментальное подтверждение осуществимости заявляемого способа и его эффективности проводилось in vivo на лабораторных мышах.
Пример 1.
Эксперимент проводят на 28 мышах - самках, весом 20-22 г, разбитых на две аналогичных группы по 14 животных в каждой. Мышам под кожу задней правой лапы перевивают опухоль, 500000 клеток/мышь аденокарцинома Эрлиха в физиологическом растворе. Через 10 дней животным в соответствующих группах проводят сеанс лучевой терапии на аппарате True Beam фирмы Varian с применением болюса мощностью 6 МэВ, одной фракцией, СОД 20 Гр. За 10 минут до облучения в зону опухоли шприцом калибра G16 вводят раствор микрочастиц биостекла в соответствии с программой эксперимента. Для приготовления раствора 150 мг сухого вещества фосфатного стекла, содержащего 40% оксида тантала, разводят до состояния взвеси в 15 мл физиологического раствора, что соответствует 1 масс. %.
Животных разделяют на группы:
Группа 1. Контроль лучевой терапии. Мышам перевивают 5x105 клеток/мышь аденокарциномы Эрлиха в правую заднюю лапу. Через 10 дней локально на область опухоли проводят облучение на аппарате True Beam одной фракцией СОД 20 Гр ионизирующего излучения.
Группа 2. Исследование местного введения фосфатного стекла, содержащего 40% оксида тантала, и лучевой терапии. Мышам перевивают 5×105 клеток/мышь аденокарциномы Эрлиха в правую заднюю лапу. Через 10 дней локально в область опухоли проводят введение 0,3 мл взвеси фосфатного стекла, легированного 40% оксидом тантала, в физиологическом растворе с последующим облучением на аппарате True Beam одной фракцией СОД 20 Гр ионизирующего излучения.
Результативность введения в опухоль радиомодификатора оценивали по продолжительности жизни животных в группах. Данные приведены в таблице 1.
Figure 00000001
Из данных средней продолжительности жизни животных видно, что наилучшие показатели выживаемости животных с перевитой опухолью наблюдаются в группе, где испытуемым было проведено введение в область опухоли 0,3 мл взвеси фосфатного стекла с включенным 40% оксидом тантала в физиологическом растворе + доза ионизирующего излучения одна фракция СОД 20 Гр.

Claims (1)

  1. Способ лечения аденокарциномы Эрлиха методом лучевой терапии, включающий локальное облучение новообразований тормозным излучением мощностью 6 МэВ суммарной очаговой дозой 20 Гр с предварительным введением непосредственно в опухоль радиомодификатора, отличающийся тем, что в качестве радиомодификатора используют синтезированные микрочастицы фосфатного стекла, легированного 40% оксида тантала, радиомодификатор вводят в виде 1 % масс. взвеси в физиологическом растворе, при этом размер указанных микрочастиц в взвеси составляет до 100 мкм.
RU2021118574A 2021-06-24 Способ лечения аденокарциномы эрлиха методом лучевой терапии RU2781902C1 (ru)

Publications (1)

Publication Number Publication Date
RU2781902C1 true RU2781902C1 (ru) 2022-10-19

Family

ID=

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733521C1 (ru) * 2019-12-25 2020-10-02 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Водная дисперсия на основе наночастиц оксида тантала, способ получения и применение ее в качестве контрастного средства для in-vivo диагностики
US11020480B2 (en) * 2013-01-25 2021-06-01 Nanobiotix Inorganic nanoparticles compositions in combination with ionizing radiations for treating cancer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11020480B2 (en) * 2013-01-25 2021-06-01 Nanobiotix Inorganic nanoparticles compositions in combination with ionizing radiations for treating cancer
RU2733521C1 (ru) * 2019-12-25 2020-10-02 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Водная дисперсия на основе наночастиц оксида тантала, способ получения и применение ее в качестве контрастного средства для in-vivo диагностики

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛЫКОВА Е.Н. Исследование потоков вторичных частиц при работе медицинского ускорителя с энергией 18-20 МэВ. Диссертация на соискание ученой степени кандидата физико-математических наук. Москва - 2019. 115 с.. ПЛОТНИКОВА О.С. и др. Возможность применения микрочастиц оксида тантала в фосфатном стекле для лучевой терапии злокачественных новообразований // ТМЖ. 2020. Поступила в редакцию 29.06.2020 г. Принята к печати 05.10.2020 г. N4 (82). с.85-87. LE PECHOUX C. et al. High dose rate brachytherapy for carcinoma of the uterine cervix: comparison of two different fractionation regimens. Int. J. Radiat. Oncol. Biol. Phys. 1995. Vol. 31, N 4.P. 1011—1013. *

Similar Documents

Publication Publication Date Title
RU2199348C2 (ru) Новые радиофармацевтические композиции и матрицы и их использование
CA2660507C (en) Targeted nanoparticles for cancer diagnosis and treatment
Chong et al. Recent advances in radiation therapy and photodynamic therapy
Amato et al. Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels
EP3456359B1 (en) Neutron capture therapy composition formed using ion implantation
Chow Photon and electron interactions with gold nanoparticles: A Monte Carlo study on gold nanoparticle-enhanced radiotherapy
US7486984B2 (en) System and method for monochromatic x-ray beam therapy
Zhang et al. CT-guided radioactive 125I seed implantation treatment of multiple pulmonary metastases of hepatocellular carcinoma
Kulakov et al. Pharmaceuticals for binary radiotherapy and their use for treatment of malignancies (a review)
Torrisi et al. Study of gold nanoparticles for mammography diagnostic and radiotherapy improvements
RU2781902C1 (ru) Способ лечения аденокарциномы эрлиха методом лучевой терапии
Islamian et al. Nanoparticles promise new methods to boost oncology outcomes in breast cancer
Xu et al. Monte Carlo simulation of physical dose enhancement in core-shell magnetic gold nanoparticles with TOPAS
JP6376979B2 (ja) 放射線感受性共重合体を構成成分とするナノキャリアの合成方法
CZ401898A3 (cs) Nové radiofarmaceutické přípravky a matrice a jejich použití
RU2794457C1 (ru) Способ лечения аденокарциномы эрлиха
US6358194B1 (en) Medical use of xenon-133 in radiation therapy of cancer
Sproull et al. The Future of Radioactive Medicine
Ouar et al. Monte Carlo simulation of a new proton therapy technique using bio-nanoparticles and high energy proton beams
Kennedy et al. 90Y microspheres: concepts and principles
Dhakad et al. Review on Radiation Therapy on Cancer
RU2759045C1 (ru) Способ комплексного лечения местнораспространенной протоковой аденокарциномы поджелудочной железы
Pathak Use of Radiation in Therapy
Berrezoug et al. Enhanced X-ray absorption by using gold nanoparticles in a biological tissue
RU2270045C1 (ru) Способ фотон-захватной терапии опухолей