RU2781796C1 - Центробежно-пневматическая форсунка - Google Patents

Центробежно-пневматическая форсунка Download PDF

Info

Publication number
RU2781796C1
RU2781796C1 RU2022102256A RU2022102256A RU2781796C1 RU 2781796 C1 RU2781796 C1 RU 2781796C1 RU 2022102256 A RU2022102256 A RU 2022102256A RU 2022102256 A RU2022102256 A RU 2022102256A RU 2781796 C1 RU2781796 C1 RU 2781796C1
Authority
RU
Russia
Prior art keywords
fuel
piston
air flow
nozzle
annular cavity
Prior art date
Application number
RU2022102256A
Other languages
English (en)
Inventor
Вадим Сергеевич Шереметов
Виктор Иванович Усольцев
Андрей Александрович Пахольченко
Тарас Васильевич Грасько
Тимерхан Мусагитович Хакимов
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Application granted granted Critical
Publication of RU2781796C1 publication Critical patent/RU2781796C1/ru

Links

Images

Abstract

Изобретение относится к устройствам для непосредственного впрыскивания жидкого углеводородного топлива в капельном состоянии в камеры сгорания наземных газотурбинных установок (ГТУ) и авиационных турбореактивных двигателей (ТРД). Сущность изобретения заключается в том, что коаксиально воздушному каналу установлен дополнительный корпус, образующий с ним кольцевую полость, в которой со стороны камеры сгорания установлены дополнительно шарнирно закрепленные лопатки закручивания воздушного потока с возможностью поворота перпендикулярно продольной оси форсунки, а также последовательно упругий элемент, поршень и стержни, при этом поршень состоит из двух поясов, соединенных между собой штоком, разделяющим кольцевую полость на две части, и имеющий в поясе, расположенном со стороны камеры сгорания, кольцевую проточку, в которую установлены стержни, взаимодействующие с лопатками закручивания воздушного потока через дугообразные прорези, выполненные в наружном корпусе воздушного канала форсунки, со стороны компрессора в области межпоясного пространства поршня на внутреннем корпусе кольцевой полости выполнены три ряда отверстий, направленных под углом в сторону, противоположную набегающему потоку. Техническим результатом является повышение эффективности распыления и смешения топлива за счет управления расходом воздуха на всех режимах работы двигателя, тем самым - повышение коэффициента полноты сгорания в широком диапазоне режимов работы двигателя. 1 ил.

Description

Изобретение относится к устройствам для непосредственного впрыскивания жидкого углеводородного топлива в капельном состоянии в камеры сгорания наземных газотурбинных установок (ГТУ) и авиационных турбореактивных двигателей (ТРД).
Известна двухканальная центробежная топливная форсунка [см. С.А. Вьюнов, Ю.И. Гусев, А.В. Карпов и др. «Конструкция и проектирование авиационных газотурбинных двигателей», М. Машиностроение, 1989, с. 411-412, рис. 8.19], которая содержит корпус со штуцером и каналами основного и дополнительного контуров, фильтры, разделительную втулку, дополнительное и основное сопла, уплотнительные шайбы, гайку с противонагарным экраном. Подача топлива при запуске двигателя осуществляется через дополнительный контур форсунки. На всех остальных режимах работают оба контура.
Недостатком такой форсунки является низкая эффективность распыла и смешения топлива на различных режимах работы двигателя из-за реализации только механического способа распыла топлива и отсутствия элементов предварительной подготовки топливовоздушной смеси до ее подачи в камеру сгорания.
Известна топливная форсунка с аэрацией топливного факела [см. А.А. Пахольченко, А.Н. Черкасов, А.А. Алексеев, Г.П. Корень, В.А. Москаев «Теория авиационных двигателей: функциональные элементы серийных силовых установок: учебное пособие», Воронеж: ВУНЦ ВВС "ВВА", 2015, с. 116-117, рис. 3.6]. Аналогично вышесказанной форсунке в камере сгорания двигателя применяются двухканальные форсунки центробежного типа. Также к ним устанавливаются внутренние завихрители. После предварительной подготовки топлива в выходном сечении внутреннего завихрителя имеется сильно закрученный поток обедненной топливовоздушной смеси. Топливный факел, генерируемый форсункой, дополнительно омывается потоком первичного воздуха, получившим закрутку при его прохождении через внутренний завихритель. Взаимодействуя с топливным факелом первого и второго контуров форсунки, закрученный поток обеспечивает интенсификацию дробления и испарения капель топлива.
Недостатком является низкая эффективность распыла и смешения топлива на различных режимах работы двигателя из-за реализации только механического способа распыла топлива и отсутствия регулирования расхода воздуха, проходящего через фронтовое устройство камеры сгорания.
Наиболее близким аналогом того же назначения, что и заявляемое техническое решение, является двухконтурная центробежно-пневматическая форсунка [см. патент RU 99113, U1, МПК F23D 11/10, опубл. 10.11.2010 г.]., содержащая систему подачи жидкого топлива, состоящую из вспомогательного и основного контуров и сопряженных с ними воздушных каналов, где вспомогательный контур включает аксиальный топливный канал с коллектором подвода топлива на входе, шнековым завихрителем топлива с винтовыми канавками на его наружной поверхности на входе в вихревую камеру внутри канала и соплом на выходе, при этом стенка вихревой камеры со стороны сопла выполнена конусной, а относительно аксиального топливного канала коаксиально размещен сопряженный с ним через стенку с коническим соплом на выходе воздушный внутренний канал с лопаточным завихрителем внутри, причем основной контур включает коаксиально расположенный над воздушным внутренним каналом, сопряженный с ним через стенку топливный внешний канал с коллектором подвода топлива на входе, шнековым завихрителем, вихревой камерой внутри и соплом с конической стенкой на выходе, кроме того, над топливным внешним каналом коаксиально расположен сопряженный с ним через стенку с коническим соплом на выходе воздушный внешний канал с лопаточным завихрителем внутри, ограниченный наружной стенкой с конической суживающимся соплом на выходе, причем закрутка завихрителей воздушных каналов и завихрителей топливных каналов направлена в одну сторону, отличающаяся тем, что вихревая камера аксиального топливного канала через равномерно расположенные по окружности сквозные наклонные к оси отверстия перепуска топлива в шнеке и магистраль, в которой установлен перепускной клапан с корпусом, соединена с коллектором подвода топлива канала основного контура, а конусные стенки вихревых камер аксиального и внешнего топливных каналов со стороны сопл имеют соответственно равномерно расположенные по окружности наклонные к осям форсунок сквозные отверстия, перепускной клапан содержит полый плунжер со сквозными отверстиями в боковой стенке, установленный внутри корпуса, который поджат пружиной до упора в торцевую кромку корпуса, входы в отверстия перепуска топлива в шнеке аксиального топливного канала расположены на середине радиуса вихревой камеры, пружина в корпусе поджата резьбовой пробкой.
Недостатками прототипа является низкая эффективность распыления и смешения топлива на различных режимах работы двигателя, то есть низкие значения коэффициента полноты сгорания на нерасчетных режимах работы двигателя, из-за:
- отсутствия возможности регулирования расхода воздуха через пневматическую часть и управления интенсивностью закручивания потока;
- линейного закона управления расходом топлива вспомогательного канала механической части и пневматической части форсунки;
- малой длины зоны предварительного смешения топлива с воздухом в пневматическом контуре.
Техническим результатом является повышение эффективности распыления и смешения топлива за счет управления расходом воздуха на всех режимах работы двигателя, тем самым - повышение коэффициента полноты сгорания в широком диапазоне режимов работы двигателя.
Указанный технический результат достигается тем, что в центробежно-пневматической форсунке, содержащей систему подачи жидкого топлива, состоящую из основного и вспомогательного контуров центробежной части, пневматической части и соосно сопряженного с ней воздушного канала с лопаточным завихрителем, согласно изобретению, установлен коаксиально воздушному каналу дополнительный корпус, образующий с ним кольцевую полость, в которой со стороны камеры сгорания установлены дополнительно шарнирно закрепленные лопатки закручивания воздушного потока с возможностью поворота перпендикулярно продольной оси форсунки, а также последовательно упругий элемент, поршень и стержни, при этом поршень состоит, из двух поясов, соединенных между собой штоком, разделяющим кольцевую полость на две части, и имеющий в поясе, расположенном со стороны камеры сгорания, кольцевую проточку, в которую установлены стержни, взаимодействующие с лопатками закручивания воздушного потока через дугообразные прорези, выполненные в наружном корпусе воздушного канала форсунки, со стороны компрессора в области межпоясного пространства поршня на внутреннем корпусе кольцевой полости выполнены три ряда отверстий, направленных под углом в сторону, противоположную набегающему потоку.
Сущность изобретения заключается в том, что коаксиально воздушному каналу установлен дополнительный корпус, образующий с ним кольцевую полость, в которой со стороны камеры сгорания установлены дополнительно шарнирно закрепленные лопатки закручивания воздушного потока с возможностью поворота перпендикулярно продольной оси форсунки, а также последовательно упругий элемент, поршень и стержни, при этом поршень состоит из двух поясов, соединенных между собой штоком, разделяющим кольцевую полость на две части, и имеющий в поясе, расположенном со стороны камеры сгорания, кольцевую проточку, в которую установлены стержни, взаимодействующие с лопатками закручивания воздушного потока через дугообразные прорези, выполненные в наружном корпусе воздушного канала форсунки, со стороны компрессора в области меж поясного пространства поршня на внутреннем корпусе кольцевой полости выполнены три ряда отверстий, направленных под углом в сторону, противоположную набегающему потоку.
В известной форсунке расход воздуха и интенсивность закрутки воздушного потока не регулируются. Это сказывается на теплоте, выделяемой при сгорании, на различных режимах работы двигателя.
Как показано в [см. Лефевр А. «Процессы в камерах сгорания ГТД»: Пер. с англ. - М.: Мир, 1986. - 566 с., с. 142-146, 154-156], расход воздуха через лопаточный завихритель и интенсивность закрутки потока определяются площадью его проходного сечения и утлом установки лопаток завихрителя.
Поэтому, согласно изобретению, коаксиально воздушному каналу установлен дополнительный корпус, образующий с ним кольцевую полость, в которой со стороны камеры сгорания установлены дополнительно шарнирно закрепленные лопатки закручивания воздушного потока с возможностью поворота перпендикулярно продольной оси форсунки, а также последовательно упругий элемент, поршень и стержни, при этом поршень состоит из двух поясов, соединенных между собой штоком, разделяющим кольцевую полость на две части, и имеющий в поясе, расположенном со стороны камеры сгорания, кольцевую проточку, в которую установлены стержни, взаимодействующие с лопатками закручивания воздушного потока через дугообразные прорези, выполненные в наружном корпусе воздушного канала форсунки. Топливо поступает в кольцевую полость. Под давлением поступающего топлива поршень начинает перемещаться и воздействует через кольцевую проточку на стержни, которые, в свою очередь, двигаются по дугообразным прорезям. Благодаря шарнирному соединению стержней с лопатками закручивания воздушного потока происходит преобразование поступательного движения поршня в вращательное движение лопаток закручивания воздушного потока. При уменьшении давления топлива упругий элемент своим воздействием обеспечивает поршню равновесное состояние.
Известно [см. Лефевр А. «Процессы в камерах сгорания ГТД»: Пер. с англ. - М.: Мир, 1986. - 566 с., с. 446, 463], эффективность распыления и смешения топлива зависят от размеров капель топлива, которые изменяются в зависимости от скорости воздуха, который обдувает их.
Со стороны компрессора в области межпоясного пространства поршня на внутреннем корпусе кольцевой полости выполнены три ряда отверстий, направленных под углом в сторону, противоположную набегающему потоку. Поршень своим движением последовательно открывает ряды отверстий. При каждом открытии следующего ряда отверстий расход топлива перераспределяется в пользу пневматической части. В пневматической части форсунки кинетическая энергия потока воздуха тратится на дробление струи с образованием мелких капель для увеличения площади соприкосновения капель топлива с воздухом, а также топливо до попадания в камеру сгорания начинает испаряться и смешиваться с воздухом, что приводит к повышению эффективности этих физических процессов [см. Лефевр А. «Процессы в камерах сгорания ГТД»: Пер. с англ. - М.: Мир, 1986. - 566 с., с. 431-432]. Центробежная часть форсунки создает крупные капли для поддержания оптимального диапазона горения топлива. На входе в камеру сгорания воздушный поток, проходящий через пневматическую часть форсунки, набегает на поток воздушного канала, тем самым увеличивает скорость обдува капель топлива, сформированных центробежной частью форсунки и неиспарившихся в пневматической части форсунки. Перераспределение топлива между центробежной и пневматической частями позволяет увеличить коэффициент полноты сгорания не только на расчетных, но и на нерасчетных режимах работы камеры сгорания, в том числе на переходных режимах при том же количестве топлива, подаваемого двухканальной центробежной форсункой [см. С.А. Вьюнов, Ю.И. Гусев, А.В. Карпов и др. «Конструкция и проектирование авиационных газотурбинных двигателей», М. Машиностроителей, 1989, с. 411-412, рис. 8.19].
Этим достигается указанный в изобретении технический результат.
Двухконтурная центробежно-пневматическая форсунка схематично показана на фигуре, где обозначено: 1 - механическая часть форсунки; 2 - пневматическая часть форсунки; 3 - лопаточный завихритель; 4 - лопатки закручивания воздушного потока; 5 - ряд отверстий; 6 - основной канал центробежной части форсунки; 7 - вспомогательный канал центробежной форсунки; 8 - поршень; 9 - упругий элемент; 10 - кольцевая проточка; 11 - стержень; 12 - кольцевая полость; 13 - ось поворота лопаток; 14 - шарнир; 15 - дугообразные прорези в кольцевой полости пневматической части.
Лопатки закручивания воздушного потока 4 пневматической части форсунки 2 предназначены для его закрутки с целью интенсификации процесса образования топливовоздушной смеси. Изменение угла установки лопаток закручивания 4 позволяет управлять интенсивностью закрутки потока и расходом воздуха через пневматическую часть форсунки 2. Направление закрутки потока в пневматической части форсунки 2 противоположно направлению закрутки основного воздушного потока, что обеспечивает увеличение скорости обдува капель топлива при их попадании внутрь жаровой трубы камеры сгорания [см. А.А. Пахольченко, А.Н. Черкасов, А.А. Алексеев, Г.П. Корень, В.А. Москаев «Теория авиационных двигателей: функциональные элементы серийных силовых установок: учебное пособие», Воронеж: ВУНЦ ВВС "ВВА", 2015, с. 54-55].
Поршень 8 предназначен для совершения возвратно-поступательное движение за счет преобразования давления топлива в механическую работу для перемещения лопаток закручивания воздушного потока 4 пневматической части 2 и открытия рядов отверстий 5 подвода топлива.
Упругий элемент 9 предназначен для реализации заданного закона изменения продольной координаты положения поршня 8 и возвращения системы «поршень 8 - лопатки закручивания воздушного потока 4 - ряды отверстий для подвода топлива 5 в пневматическую часть 2» в исходное положение при снижении режима работы двигателя. Жесткость упругого элемент 9 может быть переменной при его деформации, что позволяет реализовать нелинейные законы изменения продольной координаты поршня 8. Это может быть реализовано, например, использованием двух пружин с разными коэффициентами упругости. [см., например, URL: http://cnit.ssau.ru/virt_lab/su/sul_63.htm. Дата обращения 23.11.2021 г.].
Шарнирное соединение 14 стержней 11, перемещаемых по кольцевой проточке 10 под воздействием поршня 8, с лопатками закручивания 4 обеспечивает управление расходом воздуха на всех режимах работы двигателя, что приводит к повышению коэффициента полноты сгорания топлива за счет оптимизации коэффициента избытка воздуха. Такая система может быть реализована, например, с использованием технического решения, описанного в патенте SU 1730483, А1, МПК F16C 11/06, опубл. 30.04.1992 г.
Перемещение по дугообразным прорезям 15 стержней 11 преобразует поступательное движение поршня 8 в вращательное движение лопаток закручивания воздушного потока 4. Стержни 11 при движении поршня 8 действуют на стенки дугообразных прорезей 15. Согласно закону равенства действия и противодействия, вектор силы сопротивления жестких стенок изменяет вектор силы, действующий на стержни 11. В крайнем положении дугообразные прорези 15 зажимают стержни 11 и предотвращают дальнейшее движение поршня 8.
Устройство работает следующим образом. Его работа аналогична работе устройству, описанном в прототипе с некоторыми отличиями. Отличия заключаются в следующем. Одновременно, с началом подачи топлива через вспомогательный канал механической части форсунки 7 начинается подача топлива с тем же давлением в кольцевую полость 12 пневматической части форсунки 2. При этом поршень под действием упругого элемента находится в крайнем левом «исходном» положении, а лопатки закручивания воздушного потока 4 пневматической части 2 установлены на максимальный угол (60…70 град.), обеспечивая максимальный уровень закрутки воздушного потока и минимальный расход воздуха через пневматическую часть 2.
При увеличении режима работы двигателя давление вспомогательного топлива начинает возрастать, расход топлива через вспомогательный канал механической части форсунки 7 увеличивается, а поршень 8 пневматической части форсунки 2, преодолевая усилие упругого элемента 9, начинает перемещаться в сторону упругого элемента 9. При этом одновременно осуществляется открытие рядов отверстий 5 подвода топлива в пневматическую часть форсунки 2 и уменьшение угла установки лопаток закручивания воздушного потока 4. Тем самым, расход топлива начинает постепенно перераспределяться в пользу топлива, подаваемого в пневматическую часть форсунки 2, с одновременным увеличением расхода воздуха через нее благодаря уменьшению угла установки лопаток закручивания воздушного потока 4. Интенсивность закрутки воздушного потока при этом снижается незначительно, поскольку уменьшение угла установки лопаток закручивания 4 компенсируется увеличением расхода воздуха через пневматическую часть форсунки 2.
Топливо в пневматическую часть форсунки 2 через открытые поршнем 8 ряды отверстий 5 подается под углом к сносящему воздушному потоку. На максимальном режиме работы двигателя поршень 8 устанавливается в крайнее правое положение. При этом расход топлива максимально (до 50% от расхода топлива подаваемого через вспомогательный канал механической части форсунки 7) перераспределяется в пользу топлива, подаваемого через пневматическую часть форсунки 2 за счет открытия поршнем 8 всех рядов отверстий 5 для подвода топлива, а лопатки закручивания воздушного потока 4 устанавливаются на минимальный угол (20…30 град.), обеспечивая максимальный расход воздуха через пневматическую часть 2.
Лопатки закручивания воздушного потока 4 в пневматической части форсунки 2 обеспечивают закрутку потока в направлении противоположном направлению закрутки основного воздушного потока, подаваемого через лопаточный завихритель 3.
При уменьшении режима работы двигателя давление топлива в вспомогательном канале механической части 7 снижается и все элементы пневматической части форсунки 2 под действием упругого элемента 9 возвращаются в исходное положение.
При этой подготовке топливовоздушной смеси приводит к обеспечению более высоких скоростей обдува капель топлива в пневматической части 2, их лучшее дробление и увеличение времени пребывания топливовоздушной смеси в пневматической части форсунки 2 за счет удлинения траекторий движения капель топлива, все это приводит к указанному в изобретении техническому результату.

Claims (1)

  1. Центробежно-пневматическая форсунка, содержащая систему подачи жидкого топлива, состоящую из основного и вспомогательного контуров центробежной части, пневматической части и соосно сопряженного с ней воздушного канала с лопаточным завихрителем, отличающаяся тем, что коаксиально воздушному каналу установлен дополнительный корпус, образующий с ним кольцевую полость, в которой со стороны камеры сгорания установлены дополнительно шарнирно закрепленные лопатки закручивания воздушного потока с возможностью поворота перпендикулярно продольной оси форсунки, а также последовательно упругий элемент, поршень и стержни, при этом поршень состоит из двух поясов, соединенных между собой штоком, разделяющим кольцевую полость на две части, и имеющий в поясе, расположенном со стороны камеры сгорания, кольцевую проточку, в которую установлены стержни, взаимодействующие с лопатками закручивания воздушного потока через дугообразные прорези, выполненные в наружном корпусе воздушного канала форсунки, со стороны компрессора в области межпоясного пространства поршня на внутреннем корпусе кольцевой полости выполнены три ряда отверстий, направленных под углом в сторону, противоположную набегающему потоку.
RU2022102256A 2022-01-31 Центробежно-пневматическая форсунка RU2781796C1 (ru)

Publications (1)

Publication Number Publication Date
RU2781796C1 true RU2781796C1 (ru) 2022-10-18

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2816344C1 (ru) * 2023-04-27 2024-03-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Центробежно-пневматическая форсунка

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534166A (en) * 1980-10-01 1985-08-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flow modifying device
RU2030688C1 (ru) * 1990-11-05 1995-03-10 Ставропольское высшее авиационное инженерное училище ПВО им.В.А.Судца Регулятор поворота лопаток завихрителя фронтового устройства
RU92715U1 (ru) * 2009-12-08 2010-03-27 Министерство промышленности и торговли Российской Федерации (Минпромторг России) Горелка для сжигания топлив в камере сгорания газотурбинного двигателя
RU99113U1 (ru) * 2010-05-24 2010-11-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг РФ) Двухконтурная центробежно-пневматическая форсунка
RU170790U1 (ru) * 2016-03-22 2017-05-11 Акционерное общество "Климов" Топливная форсунка основной камеры сгорания

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4534166A (en) * 1980-10-01 1985-08-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flow modifying device
RU2030688C1 (ru) * 1990-11-05 1995-03-10 Ставропольское высшее авиационное инженерное училище ПВО им.В.А.Судца Регулятор поворота лопаток завихрителя фронтового устройства
RU92715U1 (ru) * 2009-12-08 2010-03-27 Министерство промышленности и торговли Российской Федерации (Минпромторг России) Горелка для сжигания топлив в камере сгорания газотурбинного двигателя
RU99113U1 (ru) * 2010-05-24 2010-11-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг РФ) Двухконтурная центробежно-пневматическая форсунка
RU170790U1 (ru) * 2016-03-22 2017-05-11 Акционерное общество "Климов" Топливная форсунка основной камеры сгорания

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2816344C1 (ru) * 2023-04-27 2024-03-28 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Центробежно-пневматическая форсунка

Similar Documents

Publication Publication Date Title
US8511091B2 (en) Swirler for a fuel injector
RU2781796C1 (ru) Центробежно-пневматическая форсунка
US20170284678A1 (en) Turbine engine fuel injection system and methods of assembling the same
CN110410822B (zh) 可变喷口面积的离心式喷嘴
RU2005132597A (ru) Форсунка для распыления находящейся под давлением жидкости
US5146741A (en) Gaseous fuel injector
CN113374600A (zh) 针栓喷注装置、变推力火箭发动机及火箭
US6095791A (en) Fuel injector arrangement; method of operating a fuel injector arrangement
US3003755A (en) Adjustable devices for metering and emulsifying gaseous and liquid substances
RU2374561C1 (ru) Центробежно-пневматическая форсунка
RU189000U1 (ru) Центробежная форсунка
RU99113U1 (ru) Двухконтурная центробежно-пневматическая форсунка
RU2816344C1 (ru) Центробежно-пневматическая форсунка
CN101537397B (zh) 燃油预成膜空气雾化喷嘴
RU199571U1 (ru) Центробежная форсунка
PL115851B1 (en) Method of and apparatus for preparing and controlling the ratio of an air-fuel mixture
US2716863A (en) Continuous flow and internal combustion engines, and in particular turbojets or turbo-props
CN214997951U (zh) 针栓喷注装置、变推力火箭发动机及火箭
US2791468A (en) Fuel supply control
RU169896U1 (ru) Устройство для диспергирования жидкого топлива
RU2300052C1 (ru) Форсунка с кислородной подпиткой
RU2187752C2 (ru) Горелка
RU2412398C2 (ru) Низконапорная прямоточно-вихревая горелка
RU2746593C2 (ru) Способ организации рабочего процесса жидкостного ракетного двигателя малой тяги
RU208240U1 (ru) Форсунка для распыливания топливовоздушной смеси