RU2781651C1 - Визуальная система посадки летательных аппаратов на необорудованные аэродромы в сложных метеорологических условиях - Google Patents

Визуальная система посадки летательных аппаратов на необорудованные аэродромы в сложных метеорологических условиях Download PDF

Info

Publication number
RU2781651C1
RU2781651C1 RU2021127044A RU2021127044A RU2781651C1 RU 2781651 C1 RU2781651 C1 RU 2781651C1 RU 2021127044 A RU2021127044 A RU 2021127044A RU 2021127044 A RU2021127044 A RU 2021127044A RU 2781651 C1 RU2781651 C1 RU 2781651C1
Authority
RU
Russia
Prior art keywords
landing
visual
runway
aircraft
searchlights
Prior art date
Application number
RU2021127044A
Other languages
English (en)
Inventor
Олег Владимирович Базарский
Игорь Олегович Бакланов
Илья Евгеньевич Кузнецов
Дмитрий Анатольевич Минаков
Иван Мстиславович Семилетов
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации
Application granted granted Critical
Publication of RU2781651C1 publication Critical patent/RU2781651C1/ru

Links

Images

Abstract

Изобретение относится к области оптики и касается визуальной системы посадки летательных аппаратов на необорудованные аэродромы в сложных метеорологических условиях. Система содержит навигационную систему, высотомер и систему визуальной посадки. Система визуальной посадки включает в себя расположенный на аэродроме излучательный блок и расположенные на летательном аппарате приемный блок, включающий в себя канал наведения и измерительный канал, а также вычислительный блок. Излучательный блок выполнен в виде двух прожекторов, расположенных на краях взлетно-посадочной полосы и излучающих модулированный видимый свет. Канал наведения выполнен в виде цифрового фотоаппарата, фокусирующего излучение прожекторов в виде двух точек на матрице, визуализированных на экране фотоаппарата, на котором в виде перекрестья нанесен прицел. Измерительный канал содержит селективный усилитель и устройство измерения дальности до взлетно-посадочной полосы. Технический результат заключается в упрощении визуальной системы посадки. 1 ил.

Description

Изобретение относится к области оптики и может быть использовано для визуальной посадки летательных аппаратов (ЛА) в сложных метеорологических условиях (СМУ) и ночью на необорудованные аэродромы.
В экстренных ситуациях при невозможности посадки на аэродромы, оборудованные радиотехническими и оптическими системами посадки, возникает необходимость садиться на запасные аэродромы, на которых этих дорогостоящих систем нет. В условиях хорошей видимости пилот может осуществить посадку на такие аэродромы. Но в сложных метеоусловиях при плохой видимости ориентиров и взлетно-посадочной полосы (ВПП) визуальная посадка становится проблематичной, даже при том условии, что система навигации ЛА вывела его на аэродром, а высота ЛА, измеряемая его высотомерами, известна.
Сложность визуальной посадки заключается в том, что пилот не знает, в какой момент он должен увидеть Землю, и сколько времени у него остается на принятие решения: садиться или уходить на второй круг.
Для построения посадочной глиссады в СМУ необходимо:
1. Наличие на аэродроме модулированных оптических маяков, обеспечивающих построение глиссады посадки в отсутствие видимости ВПП.
2. Наличие оперативной информации о дальности до ВПП, а также о наклонной метеорологической дальности видимости.
Известна «Система посадки летательных аппаратов», патент RU 2386176 С2, опубликован 10.04.2010 Бюл. №10 - аналог. По бокам ВПП размещаются радиомаяки, а на борту ЛА устанавливают инерциальную систему навигации, бортовой приемник, блок дальности, измеритель высоты, блок обработки, траекторный блок и систему управления. Эта радиотехничеекая система обеспечивает повышение точности и безопасности посадки в СМУ.
Недостатком аналога является сложность и высокая стоимость системы, и такой аэродром нельзя считать необорудованным.
Визуальная посадка ночью и в СМУ осуществляется с использованием специальной системы огней высокой интенсивности (оптических маяков), Аронов О.Н., Ломанцов Б.Н. «Светотехническое оборудование аэродромов», Ульяновск, УВЛГУ ГА, 2002, 105 с. - прототип.
Система также очень сложная, дорогая и энергозатратная, т.к. в среднем состоит из 16 огней приближения, 60 посадочных огней, 12 входных ограничительных огней, шести огней знаков приземления и четырех глиссадных огней. Аэродром, оборудованный такой системой посадки, также нельзя считать необорудованным.
Технический результат изобретения - упрощение и снижение стоимости системы визуальной посадки на необорудованных аэродромах ночью и в сложных метеорологических условиях.
Принципиальная схема системы для визуальной посадки ЛА ночью и в СМУ приведена на чертеже.
Система визуальной посадки содержит:
1. Излучательный блок (ИБ), включающий два прожектора, излучающих световые импульсы пачками с некоторой частотой, например 3 Гц, расположенных на расстоянии L друг от друга на краях ВПП перпендикулярно ее оси. Прожектор включает в себя источники видимого света 1, расположенные в фокальной плоскости объектива (зеркала) 2, создающего коллимированный пучок света. Направление пучков света под углом α0 к горизонту определяет глиссаду снижения летательного аппарата. Расположен на аэродроме.
2. Приемный блок (ПБ), стабилизированный под углом α0 к горизонту, включает в себя канал наведения и измерительный канал, которые совмещены по оптической оси. Расположен на борту ЛА.
Канал наведения выполнен в виде широкоугольного объектива 3, фокусирующего коллимированное излучение прожекторов в виде двух точек на матрице 4 цифрового фотоаппарата, расположенной в фокальной плоскости объектива фотоаппарата. На экран фотоаппарата нанесен прицел в виде перекрестья, относительно которого пилот добивается такого расположения точек, чтобы они размещались на горизонтальной линии прицела. В этом случае ЛА выдерживает глиссаду снижения по тангажу (углу α). Две точки, соответствующие изображениям прожекторов, должны размещаться симметрично относительно вертикальной линии прицела. В этом случае пилот выдерживает глиссаду посадки по азимуту относительно оси ВПП.
Измерительный канал содержит селективный усилитель 5, вычислитель 6, фокусирующий объектив 7, а также фотодетектор 8. Сигнал, снятый с матрицы, усиливается селективным усилителем и подается на вычислитель, который по измеренному расстоянию λ между изображениями двух точек на матрице вычисляет расстояние до взлетно-посадочной полосы по формуле
Figure 00000001
где F - фокусное расстояние объектива фотоаппарата. Снижение по глиссаде может осуществляться автоматически по равносигнальной зоне [В.А. Шпенст Радиолокационные системы и комплексы: учебник. СПб.: Санкт-Петербургский горный университет, 2016, с. 188-189] сигнала по четырем квадрантам матрицы. Когда снижение происходит по глиссаде, сигналы этих квадрантов равны между собой.
Объектив 7 фокусирует излучение с экрана фотоаппарата на фотодетекторе 8, измеряющем интенсивность шума атмосферы Фш, когда прожектора еще не включены, и интенсивность сигнала приемника Фпр, состоящую из суммы двух сигналов Ф+Фш, где Ф - интенсивность излучения каждого прожектора, ослабленная слоем атмосферы толщиной r. Интенсивность сигналов прожекторов Ф0 измеряется на Земле.
3. Измеренные величины Ф0, Фпр, Фш и r оперативно подаются в вычислительный блок (ВБ), и по модернизированной формуле Кошмидера вычисляется наклонная метеорологическая дальность видимости (НМДВ) [И.Я. Рацимор. Наклонная видимость. Л.: Гидрометеоиздат, 1987, с. 6-8, 82-84; 67-71].
Figure 00000002
Система визуальной посадки работает следующим образом.
1. На земле измеряется интенсивность модулированного излучения прожекторов Ф0 и запоминается в вычислительном блоке. Модуляция сигнала необходима для исключения ложного обнаружения посторонних огней в СМУ. Излучение прожекторов направляется под фиксированным глиссадным углом α0 к горизонту.
2. Навигационная система выводит ЛА на запасной аэродром.
3. На расстоянии порядка 5 км до аэродрома измеряется шум атмосферы Фш, и эта величина запоминается в вычислительном блоке. После чего подается сигнал на включение посадочных прожекторов.
4. Приемный блок сканирует область посадки по посадочному углу α и азимутальному углу β относительно оси ВПП. После симметричного расположения изображений двух прожекторов относительно прицела (равносигнальная зона) начинается снижение ЛА по глиссаде. В это время измеряется ослабленный слоем атмосферы сигнал Фпр и расстояние r до ВПП. По сигналам Ф0, Фпр, Фш и r вычисляется НМДВ.
5. Пилот продолжает снижение по глиссаде в облачности, каждую секунду получая информацию о высоте ЛА, дальности до ВПП и наклонной МДВ.
6. При условии r=НМДВ пилот должен увидеть ВПП и осуществить визуальную посадку. В противном случае он должен уходить на второй круг.

Claims (5)

  1. Визуальная система посадки летательных аппаратов на необорудованные аэродромы в сложных метеорологических условиях, содержащая: навигационную систему, высотомер и систему визуальной посадки, включающую в себя излучательный блок, расположенный на аэродроме; приемный блок, включающий в себя канал наведения и измерительный канал, а также вычислительный блок, которые расположены на летательном аппарате, отличающаяся тем, что излучательный блок выполнен в виде двух прожекторов, расположенных на краях взлетно-посадочной полосы на расстоянии L друг от друга, излучающих модулированный видимый свет с интенсивностью Ф0; канал наведения выполнен в виде цифрового фотоаппарата, фокусирующего излучение прожекторов в виде двух точек на матрице, визуализированных на экране фотоаппарата, на котором в виде перекрестья нанесен прицел; измерительный канал содержит селективный усилитель и устройство измерения дальности до взлетно-посадочной полосы, вычисляемой по формуле:
  2. Figure 00000003
  3. где F - фокусное расстояние объектива фотоаппарата, а λ - измеренное расстояние между изображениями двух точек на матрице, а также фокусирующий объектив и фотодетектор, измеряющие интенсивность шума атмосферы Фш и интенсивность излучения приемника Фпр, ослабленного слоем атмосферы толщиной r, величина Ф0 измеряется на Земле, а наклонная дальность видимости вычисляется по формуле:
  4. Figure 00000004
  5. и при r≤НМДВ осуществляется визуальная посадка.
RU2021127044A 2021-09-13 Визуальная система посадки летательных аппаратов на необорудованные аэродромы в сложных метеорологических условиях RU2781651C1 (ru)

Publications (1)

Publication Number Publication Date
RU2781651C1 true RU2781651C1 (ru) 2022-10-17

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94011515A (ru) * 1994-04-04 1996-09-27 Л.Е. Николаев Способ автоматической посадки самолетов на необорудованные радиотехническими средствами посадки впп и временные площадки
US8000867B2 (en) * 2008-09-03 2011-08-16 Korea Aerospace Research Institute System for automatically landing aircraft using image signals and method of controlling the same
US9260180B2 (en) * 2013-07-24 2016-02-16 Airbus Operations (S.A.S.) Autonomous and automatic landing method and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94011515A (ru) * 1994-04-04 1996-09-27 Л.Е. Николаев Способ автоматической посадки самолетов на необорудованные радиотехническими средствами посадки впп и временные площадки
US8000867B2 (en) * 2008-09-03 2011-08-16 Korea Aerospace Research Institute System for automatically landing aircraft using image signals and method of controlling the same
US9260180B2 (en) * 2013-07-24 2016-02-16 Airbus Operations (S.A.S.) Autonomous and automatic landing method and system

Similar Documents

Publication Publication Date Title
EP0880769B1 (en) System for enhancing navigation and surveillance in low visibility conditions
US6836285B1 (en) Lidar with streak-tube imaging,including hazard detection in marine applications; related optics
US4940986A (en) Millimeter wave locating
JP6517453B1 (ja) 航空機ドッキングシステムのレンジの最適化
US4868567A (en) Landing approach aid for aircraft
TWI579811B (zh) 飛機著陸導引系統及方法
EP1515162B1 (en) Device for detecting optical and optoelectronic objects
EP0597715A1 (en) Automatic aircraft landing system calibration
RU2781651C1 (ru) Визуальная система посадки летательных аппаратов на необорудованные аэродромы в сложных метеорологических условиях
US20230054256A1 (en) Method and System for Locating a Light Source
RU2671926C1 (ru) Система огней глиссады, обеспечивающая визуальную и оптическую посадку в очках ночного видения вертолета на корабль в темное время суток
RU2548366C1 (ru) Способ определения местоположения и углов ориентации летательного аппарата относительно взлетно-посадочной полосы
RU148255U1 (ru) Лазерная оптико-локационная станция
RU2326348C2 (ru) Визуальный способ определения наклонной дальности движущимся наблюдателем
RU140658U1 (ru) Система посадки воздушных судов
RU2564934C1 (ru) Оптическая система определения координат летательного аппарата, основанная на монофотонной уф-с технологии для навигационного обеспечения захода на посадку воздушного судна
JP2606609B2 (ja) 航空機の進入検出装置
RU2766924C1 (ru) Способ обнаружения объектов на земной поверхности
RU2055785C1 (ru) Способ посадки самолета
RU2234440C1 (ru) Оптическая система посадки
RU2695044C2 (ru) Способ построения визуальной взлетно-посадочной системы с помощью вихревых лазерных пучков
Golovenskyy Extending the range of detection of aerodrome beam signals in adverse meteorological conditions
Bloudíček et al. The use of airport lighting systems in an instrument part of approaching manoeuvre
Ward Flight checking in the Royal Air Force
Ensminger et al. June I960 Index Number NS 7U-100