RU2780845C1 - Способ переработки подстилочного помёта цыплят-бройлеров - Google Patents
Способ переработки подстилочного помёта цыплят-бройлеров Download PDFInfo
- Publication number
- RU2780845C1 RU2780845C1 RU2021129367A RU2021129367A RU2780845C1 RU 2780845 C1 RU2780845 C1 RU 2780845C1 RU 2021129367 A RU2021129367 A RU 2021129367A RU 2021129367 A RU2021129367 A RU 2021129367A RU 2780845 C1 RU2780845 C1 RU 2780845C1
- Authority
- RU
- Russia
- Prior art keywords
- litter
- broiler chickens
- droppings
- cultures
- azotobacter
- Prior art date
Links
- 239000010807 litter Substances 0.000 title claims abstract description 78
- 241000287828 Gallus gallus Species 0.000 title claims abstract description 45
- 210000003608 Feces Anatomy 0.000 title claims abstract description 44
- 238000004064 recycling Methods 0.000 title abstract 3
- 238000009629 microbiological culture Methods 0.000 claims abstract description 28
- 241000589152 Azotobacter chroococcum Species 0.000 claims abstract description 18
- 241000589776 Pseudomonas putida Species 0.000 claims abstract description 15
- 241000589151 Azotobacter Species 0.000 claims abstract description 7
- 241000589516 Pseudomonas Species 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010871 livestock manure Substances 0.000 claims description 18
- 239000003337 fertilizer Substances 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 3
- 238000007493 shaping process Methods 0.000 abstract 1
- 235000013399 edible fruits Nutrition 0.000 description 15
- 241000196324 Embryophyta Species 0.000 description 12
- 244000005700 microbiome Species 0.000 description 12
- 240000008067 Cucumis sativus Species 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 9
- 244000144977 poultry Species 0.000 description 9
- -1 ammonium nitrogen Chemical compound 0.000 description 8
- 210000004027 cells Anatomy 0.000 description 8
- 230000002797 proteolythic Effects 0.000 description 8
- CVTZKFWZDBJAHE-UHFFFAOYSA-N [N].N Chemical compound [N].N CVTZKFWZDBJAHE-UHFFFAOYSA-N 0.000 description 7
- 230000000813 microbial Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- 241000194106 Bacillus mycoides Species 0.000 description 4
- 210000004544 DC2 Anatomy 0.000 description 4
- 241000589774 Pseudomonas sp. Species 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 230000002530 ischemic preconditioning Effects 0.000 description 4
- 239000003895 organic fertilizer Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 241000194020 Streptococcus thermophilus Species 0.000 description 3
- 238000006065 biodegradation reaction Methods 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000000056 organs Anatomy 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 240000008371 Bacillus subtilis Species 0.000 description 2
- 229940075615 Bacillus subtilis Drugs 0.000 description 2
- 235000014469 Bacillus subtilis Nutrition 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 2
- 241000222178 Candida tropicalis Species 0.000 description 2
- 241000235646 Cyberlindnera jadinii Species 0.000 description 2
- 241000186869 Lactobacillus salivarius Species 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000003247 decreasing Effects 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000002906 microbiologic Effects 0.000 description 2
- 244000005706 microflora Species 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- 150000003700 vitamin C derivatives Chemical class 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 241000224483 Coccidia Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 240000006669 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 240000001046 Lactobacillus acidophilus Species 0.000 description 1
- 229940039695 Lactobacillus acidophilus Drugs 0.000 description 1
- 235000013956 Lactobacillus acidophilus Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102000035443 Peptidases Human genes 0.000 description 1
- 108091005771 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 206010039447 Salmonellosis Diseases 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000194049 Streptococcus equinus Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000010564 aerobic fermentation Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 244000052616 bacterial pathogens Species 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000002255 enzymatic Effects 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000005087 leaf formation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000877 morphologic Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 238000009374 poultry farming Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory Effects 0.000 description 1
- 230000001850 reproductive Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 230000035943 smell Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Abstract
Изобретение относится к сельскому хозяйству. Способ переработки подстилочного помета цыплят-бройлеров включает внесение микробных культур рода Pseudomonas и Azotobacter, предварительно каждая разбавленная с водой в соотношении 1:2 и выдержанная в помете в течение 15 дней, причем в качестве микробных культур используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492, и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148 с начальным титром не менее 1,0×109 КОЕ/мл, и взятые в объемном соотношении 1:1 из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров, и смешивают их с пометом, а затем формируют в бурты. Изобретение позволяет получить высокоэффективное органическое удобрение, обеспечить экологическую безопасность окружающей среды за счет применения более активных микробных культур рода Azotobacter и Pseudomonas, а также упростить процесс переработки помета. 9 табл., 2 пр.
Description
Изобретение относится к сельскому хозяйству и может быть использовано при переработке побочных отходов птицеводческих хозяйств для получения органического удобрения.
Птицефабрики являются значительным источником загрязнений окружающей среды, мухи и неприятные запахи, распространяющиеся на большие расстояния от пометохранилища, ухудшают социально-экологические условия жизни и труда сотрудников птицефабрик, а также здоровья животных, вынужденных дышать парами аммиака и другими вредными испарениями из отстойников и сборных ям. Птицефабрики вынуждены платить большие штрафы за нарушение экологии. Проблема утилизации отходов птицефабрик актуальна и потому, что для хранения их занято большое количество пахотных земель.
Известен способ микробной переработки птичьего помета (патент РФ №2055823, МПК(6) C05F 11/08, С12Р 39/00, 1993 г), включающий внесение в птичий помет влажностью 80-90% консорциума бактерий Streptococcus thermophilus, Streptococcus bovis, Lactobacillus salivarius var salicinicus, Lactobacillus salivarius var. salivarius, Lactobacillus acidophilus, депонированный в ВКПМ под N В-5972, в количестве 0,01-4,0%. Смесь ферментируют при естественных условиях, затем в ферментируемую смесь вносят влагопоглощающий материал, в качестве которого может быть использован торф или твердофазный помет. Затем смесь ферментируют при 60-80°C, при аэрации и перемешивании в присутствии личинок синантропных мух до естественного снижения температуры до 25-30°C, потом дополнительно вносят вышеуказанный консорциум в количестве 0,01-8,0% и вновь ферментируют при температуре окружающей среды. В результате получают продукт, который может быть использован как в качестве удобрения, так и в качестве кормовой добавки.
Также известен способ биологической переработки птичьего помета, предусматривающий смешение птичьего помета с влагопоглощающим материалом с последующей аэробной ферментацией смеси в присутствии микроорганизмов при перемешивании до естественного снижения температуры ферментационной смеси до 25-30°C. Причем в качестве микроорганизмов используют консорциум штаммов Bacillus subtilis В-168, Bacillus mycoides В-691, Bacillus mycoides B-46, Streptococcus thermophilus B-907, Candida tropicalis Y-1520, Candida utilis Y-2441 (патент РФ №2322427, МПК (2006.01) C05F11/08, (2006.01) C12N1/20, 2006 г). Преимущественное выполнение способа биологической переработки птичьего помета, когда в качестве консорциума микроорганизмов используют консорциум штаммов Bacillus subtilis В-168, Bacillus mycoides В-691, Bacillus mycoides B-46, Streptococcus thermophilus B-907, Candida tropicalis Y-1520, Candida utilis Y-2441 в равных соотношениях и в количестве 1×108 - 1×109 клеток в 1 мл на 1 т птичьего помета.
Из уровня техники также известен способ получения биоудобрения (патент РФ №2542115, МПК C05F3/00, 2015 г), включающий получение биосмеси путем внесения микробных культур Pseudomonas sp. 114, депонированной в ВКПМ под № В-5060, и Azotobacter chroococcum В 35, депонированной в ВКПМ под № В-6010, с титром 10 кл./мл в соотношении 2:1 на сухой комбинированный носитель из расчета 60 мл на 1 кг и перемешивание, отличающийся тем, что в качестве носителя используют целлюлозосодержащее вещество, например лузгу подсолнечника или риса, и минеральносодержащий компонент, например перлит, взятые в соотношении 1:3 по массе, далее биосмесь наносят на пол птицеводческих помещений в дозе 30-70 г на 1 м2 при влажности носителя 15-20%, затем биосмесь с отходами птицеводческих помещений по мере накопления собирают и складируют в бурты.
Недостатком всех вышеперечисленных способов является многокомпонентность и сложность технологического процесса переработки птичьего помета.
Наиболее близким прототипом к заявляемому техническому решению является способ микробиологической переработки птичьего помета (патент РФ №2437864, МПК (2009.01) C05F 3/00, (2006.01) C05F 11/08, 2011 г), заключающийся во внесении микробной культуры Pseudomonas sp. 114, депонированной в ВКПМ под № В-5060, в птичий помет с последующим перемешиванием, а затем через 5 суток вносят микробную культуру Azotobacter chroococcum В 35, депонированную в ВКПМ под № В-6010, и вновь перемешивают. Титр вносимых микробных культур составлял для Pseudomonas sp. 114 - 108 кл./мл и для Azotobacter chroococcum В 35 - 108 кл./мл. Объемное соотношение вносимых культур 2:1 соответственно из расчета 45 мл на 1 кг птичьего помета при бесподстилочном содержании птицы. При подстилочном содержании птицы Pseudomonas sp. 114 и Azotobacter chroococcum В 35, взятые в отношении 2:1, вносят в количестве 15 мл на 1 кг помета. Перед внесением микробных культур каждую из них разбавляют водой в соотношении 1:2 соответственно и выдерживают в течении 15 дней.
К недостаткам прототипа относится поэтапное внесение культур микроорганизмов и перемешивание бурта с птичьим пометом, и, как следствие, большая трудоемкость и материалоемкость данного способа микробиологической переработки птичьего помета, а также более низкая работоспособность и активность культур, что влияет на экологическую безопасность окружающей среды и на качество получаемого удобрения.
Техническим результатом является получение высокоэффективного органического удобрения, обеспечение экологической безопасности окружающей среды за счет применения более активных микробных культур рода Azotobacter и Pseudomonas, а также упрощение процесса переработки помета.
Технический результат достигается тем, что в способе переработки подстилочного помета цыплят-бройлеров, включающий внесение микробных культур рода Pseudomonas и Azotobacter предварительно каждая разбавленная с водой в соотношении 1:2 и выдержанные в помете в течении 15 дней, согласно изобретению в качестве микробных культур используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492 и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148 с начальным титром не менее 1,0×109 КОЕ/мл и взятых в объемном соотношении 1: 1 из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров и смешивают их с пометом, а затем формируют в бурты.
Новизна заявляемого технического решения обусловлена тем, что при внесении микробных культур рода Pseudomonas и Azotobacter в подстилочный помет цыплят-бройлеров в качестве микроорганизмов используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492 и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148.
Признаки, отличающие заявляемое техническое решение от прототипа, направлены на достижение технического результата и не выявлены при изучении данной и смежной областей науки и техники и, следовательно, соответствуют критерию «изобретательский уровень».
Эти отличия позволяют сделать вывод о соответствии заявляемых технических решений критерию «новизна».
Соответствие заявляемого решения критерию патентоспособности «промышленная применимость» обусловлено тем, что предлагаемое техническое решение работоспособно и возможно его использование при переработке подстилочного помета цыплят-бройлеров для получения высокоэффективного органического удобрения.
Способ переработки подстилочного помета цыплят-бройлеров осуществляется следующим образом.
Для переработки подстилочного помета цыплят-бройлеров используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492 и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148 с начальным титром не менее 1,0×109 КОЕ/мл, взятых в объемном соотношении 1:1 из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров. Культуры были подобраны в результате экспериментальных исследований.
В ходе экспериментальных исследований на первом этапе проводили изучение протеолитической активности взятых для опытов культур микроорганизмов. Протеолитическую способность штаммов-продуцентов изучали согласно ГОСТ 20264.2-88. Результаты исследований представлены в таблице 1.
Результаты изучения ферментативной активности показали, что все штаммы обладают протеолитическими свойствами, так как в той или иной степени продуцировали протеазы. Однако, наибольшую протеолитическую активность продемонстрировал штамм Pseudomonas putida 90 биовар А (171), которая составила 74,6 ед/г., что было выше, чем у Bacillus licheniformis Л-34 на 12,9 ед/г., а по сравнению с Pseudomonas putida АТСС 12633 на 16,4 ед/г.
Далее проводилось изучение действия культур исследуемых микроорганизмов на биоразложение подстилочного помета цыплят-бройлеров в течении 30 дней, при этом в качестве анализируемых показателей регистрировались общее микробное число (ОМЧ) и содержание аммонийного азота, каждые пять дней. Для исследований использовали активную микробную культуру взятых для экспериментов штаммов с титром клеток не менее 109 КОЕ/мл. При внесении культур в титре менее 109 КОЕ/мл не будет обеспечиваться повышения в помете значения ОМЧ и снижения уровня аммонийного азота. При внесении культур в титре более 109 КОЕ/мл будет обеспечиваться аналогичное повышение в помете значения ОМЧ и снижение уровня аммонийного азота, поэтому нет смысла брать больше. Зависимость биоконверсии подстилочного помета цыплят-бройлеров от времени обработки и используемой культуры микроорганизма представлена в таблице 2.
По результатам исследований (таблица 2) установлено, что наибольшее количество микробных клеток в подстилочном помете цыплят-бройлеров достигнуто при использовании микробной культуры Pseudomonas putida 90 биовар А (171), которое от начало исследований было 104 КОЕ/мл, а к 15-м суткам составило 1011 КОЕ/мл, а далее титр микрофлоры во всех случаях перестал повышаться, что скорее всего обусловлено прекращением действия ферментного комплекса протеолитических микроорганизмов, обеспечивающего активное питание как аборигенной, так и исследуемой микробной культуры.
При анализе содержания аммонийного азота в подстилочном помете цыплят-бройлеров выявлено максимальное уменьшение исследуемого показателя к 15-20-м суткам от начала обработки, что коррелирует с динамикой увеличения общего числа микроорганизмов. Наименьший уровень аммонийного азота был зафиксирован при обработке подстилочного помета цыплят-бройлеров микробной культурой Pseudomonas putida 90 биовар А (171), данный показатель с 319 мг/л от начало обработки снизился до 113 мг/л.
Анализируемые показатели подстилочного помета цыплят-бройлеров не обработанного микробной культурой в течении эксперимента существенно не изменились.
Таким образом, результаты исследований показали, что наиболее перспективной культурой для биоконверсии подстилочного помета цыплят-бройлеров из исследуемых коллекционных штаммов является протеолитический штамм-продуцент Pseudomonas putida 90 биовар А (171), при этом, установлено, что оптимальное время выдерживания побочной продукции птицеводства, обработанной данной культурой составляет 15 дней.
Затем проводился подбор дозы внесения протеолитической культуры Pseudomonas putida 90 биовар А (171) в подстилочный помет цыплят-бройлеров. Доза внесения культуры варьировала от 1,0 до 10,0%. Установлено, что при внесении микробной культуры Pseudomonas putida 90 биовар А (171) в дозе менее 4,0% от массы подстилочного помета цыплят-бройлеров не будет обеспечиваться повышения в помете значения ОМЧ и снижения уровня аммонийного азота. При внесении культур в дозе более 4,0% будет обеспечиваться аналогичное повышение в помете значения ОМЧ и снижение уровня аммонийного азота, поэтому нет смысла брать больше.
На следующем этапе исследований проводили скрининг бактерий рода Azotobacter коллекционных штаммов по анализу содержания аммиачного азота в окружающей среде над опытными партиями подстилочного помета цыплят-бройлеров обработанного активными экспериментальными микробными культурами с титром клеток не менее 109 КОЕ/мл. При внесении культур в титре менее 109 КОЕ/мл не будет обеспечиваться снижения уровня аммиака в окружающей среде над пометом. При внесении культур в титре более 109 КОЕ/мл будет обеспечиваться аналогичное снижение уровня аммиака в окружающей среде над пометом, поэтому не смысла брать больше. Для анализа аммиачного азота в окружающей среде использовали универсальный газоанализатор УГ-2. Результаты исследований представлены в таблице 3.
При изучении уровня аммиака, выделяющегося из подстилочного помета цыплят-бройлеров установлено, что на первый день эксперимента содержание газа над побочным продуктов птицеводства составляло 73 мг/м3, что является выше уровня предела допустимой концентрации. Наилучшую фиксирующую способность атмосферного азота продемонстрировал лишь один штамм - Azotobacter chroococcum 31/8 R. Установлено, что на 15-й день эксперимента уровень аммиака над обработанным подстилочным пометом цыплят-бройлеров микробной культурой Azotobacter chroococcum 31/8 R снизился до 10 мг/м3, что является ниже уровня предела допустимой концентрации (ПДК) для данного соединения в окружающей среде. На 20, 25 и 30 сутки исследований содержание аммиачного азота в данной группе оставалось ниже уровня ПДК, но изменения по сравнению с 15-и сутками были незначительны. В остальных исследуемых вариантах, изменения наблюдались, однако ни в одной из экспериментальной партии не было зафиксировано содержание аммиачного азота ниже значения предела допустимой концентрации (20 мг/м).
Таким образом, результаты исследований продемонстрировали, что из исследуемых коллекционных микроорганизмов наилучшую азотфиксирующую способность проявила микробная культура Azotobacter chroococcum 31/8 R.
Далее проводился подбор дозы внесения азотфиксирующей культуры Azotobacter chroococcum 31/8 R в подстилочный помет цыплят-бройлеров. Доза внесения культуры варьировала от 1,0 до 10,0%. Установлено, что при внесении микробной культуры Azotobacter chroococcum 31/8 R дозе менее 4,0% от массы подстилочного помета цыплят-бройлеров не будет обеспечиваться снижения уровня аммиака в окружающей среде над пометом. При внесении культур в дозе более 4,0% будет обеспечиваться аналогичное снижение уровня аммиака в окружающей среде над пометом, поэтому не смысла брать больше.
На следующем этапе исследований проводился поиск оптимального соотношения протеолитической микробной культуры Pseudomonas putida 90 биовар А (171) и азотфиксирующего штамма Azotobacter chroococcum 31/8 R при обработке подстилочного помета цыплят-бройлеров. Эксперимент длился в течении 15-и суток с изучением ряда показателей, характеризующих процесс биотрансформации подстилочного помета цыплят-бройлеров.
Обработку помета осуществляли активными формами микробных культур Pseudomonas putida 90 биовар А (171) и Azotobacter chroococcum 31/8 R предварительно разбавленные с водой 1:2 с начальным титром не менее 1,0×109 КОЕ/мл из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров и смешивали их с пометом, а затем формировали в бурты. Результаты исследований представлены в таблице 4.
Данные влияния совместного использования микробных штаммов Pseudomonas putida 90 биовар А (171) и Azotobacter chroococcum 31/8 R на эффективность биодеструкции подстилочного помета цыплят-бройлеров и его санитарно-биологические показатели (таблица 4) продемонстрировали, что более оптимальный и стабильный результат был выявлен при обработке помета культурами микроорганизмов в соотношением 1:1. Предлагаемый технологический прием позволяет в течении 15-и суток снизить уровень аммонийного азота в помете с 312 мг/л до 103 мг/л, содержание аммиака в окружающей среде с 75 мг/м3 до 13 мг/м3, индекс бактерий группы кишечных палочек с 3 до 1 ед, индекс энтерококков с 2 до 0 ед, индекс патогенных микроорганизмов (Salmonella, Staphylococcus) с 3 до 0 ед, количество яйц и личинок гельминтов, преимущественно кокцидий, с 3 до 0 экземпляров, количество личинок синантропных мух с 4 до 0 экземпляров при одновременном повышение общего микробного числа до значения не менее 1011 кл/г.
Подстилочный помет цыплят-бройлеров не обработанный исследуемыми микробными культурами существенных изменений в течении срока эксперимента по изучаемым показателям не приобрел.
Пример конкретного осуществления способа переработки подстилочного помета цыплят-бройлеров.
Пример 1. Для изучения эффективности применения заявленного способа проводился хозяйственный эксперимент, предусматривающий обработку культурами подстилочного помета цыплят-бройлеров, содержащихся в фермерских хозяйствах Краснодарского края.
Для постановки экспериментов на изолированных площадках фермерских хозяйств оборудованных под пометохранилище была организована и проведена обработка 1 тонны подстилочного помета цыплят-бройлеров. Перед формированием опытных буртов помет птиц обрабатывался микробными культурам Pseudomonas putida 90 биовар А (171) и Azotobacter chroococcum 31/8 R предварительно каждые разбавленные с водой 1:2 с начальным титром не менее 1,0×109 КОЕ/мл в объемном соотношении 1:1 из расчета не менее 4,0% или 40 л каждой культуры на 1 т подстилочного помета цыплят-бройлеров и смешивали их с пометом, а затем формировали в бурты. В течении исследований проводился физико-химический и санитарно-бактериологический контроль исходного птичьего помета и конечного продукта согласно ГОСТ 31461-2012, а также изучался уровень аммиачного азота над опытными буртами и общее микробное число.
Результаты исследований представлены в таблице 5. При проведении исследований помет обработанный согласно заявленному способу при визуальном наблюдении постепенно менял свой цвет, а также агрегатное состояние. Даже без применения универсального газоанализатора чувствовалось снижение в окружающей внешней среде запаха аммиака. Опытные партии помета, обработанные согласно способу соответствовали требованиям ГОСТ 31461-2012.
Из данных таблицы 5 видно, что не обработанный подстилочный помет цыплят-бройлеров за время исследований не показал результатов, которые бы соответствовали требованиям нормативного документа. При этом содержание аммиачного азота во внешней среде было в 4 раза выше, чем в опытной партии и находилось выше уровня предела допустимой концентрации. Общее микробное число в не обработанном помете на 15-е сутки оставалось как и в исходном побочном продукте.
В целом помет птиц, не обработанный в соответствии с предлагаемым способом, не претерпел явных изменений, оставался в том же фазовом состоянии как и в начале исследований, а также издавал зловонный, неприятный аммиачный запах, что наносит негативное влияние на окружающую среду.
Дополнительно в конце исследований (на 15-е сутки) расчетным методом проводилось изучение класса опасности обработанного и не обработанного помета птиц. Установлено, что показатель степени опасности не обработанного подстилочного помета, полученного от цыплят-бройлеров составил 21,74, что относится к IV классу опасности. Однако, принимая во внимание нормативно-утвержденный наиболее высокий класс опасности, данный вид отхода подлежит отнесению к III классу опасности (умеренно опасные).
Показатель степени опасности обработанного подстилочного помета, полученного от цыплят-бройлеров составил 8,97, что относится к V классу опасности, однако, так же, принимая во внимание нормативно-утвержденный наиболее высокий класс опасности, данный вид отхода подлежит отнесению к IV классу опасности (малоопасные).
Таким образом, обработка подстилочного помета цыплят-бройлеров согласно заявленному способу, способствует улучшению физико-химических и санитарно-бактериологических характеристик конечного продукта, стимулирует рост специфической аборигенной микрофлоры помета, обеспечивающей его биодеструкцию, снижает уровень аммиачного азота в окружающей среде, а также снижает класс опасности, что в совокупности дает возможность использовать данный побочный продукт птицеводства в качестве органического сырья, используемого при производстве удобрений.
Пример 2. Изучалось применение переработанного подстилочного помета цыплят-бройлеров согласно заявленному способу в качестве органического биоудобрения для огурца.
Схема проведенного научно-хозяйственного опыта представлена ниже:
- контрольная группа - без применения испытуемых органических удобрений;
- переработанный подстилочный помет цыплят-бройлеров согласно заявленному способу - внесение в почву, доза - 1,0 кг/м2, 1-я опытная группа;
- переработанный подстилочный помет цыплят-бройлеров согласно заявленному способу - внесение в почву, доза - 2,0 кг/м2, 2-я опытная группа;
- переработанный подстилочный помет цыплят-бройлеров согласно заявленному способу - внесение в почву, доза - 3,0 кг/м2, 3-я опытная группа.
Учетная площадь делянок - 10 м2, повторность - четырехкратная.
Согласно схемы опыта, испытуемое органическое удобрение разбрасывали по поверхности почвы и сразу заделывали в нее мелкой перепашкой на глубину 10-15 см неделю до высадки рассады. Выравненную рассаду, имеющую 2-3 настоящих листа и зеленые семядольные листья, с хорошо развитой корневой системой, высаживали рядковым способом с междурядьем 1 м и в ряду 3-х растения на 1 погонный метр. Все мероприятия по уходу за растениями (рыхление междурядий, полив, борьба с сорной растительностью, сбор урожая) проводились вручную. Влажность почвы поддерживали на уровне 85% от наименьшей влагоемкости.
Растительные образцы для определения количества и длины побегов, числа и площади листьев, биомассы и сухой массы надземных органов отбирали в начале плодоношения. Сбор плодов проводили через каждые два дня при достижении ими стандартного размера и определения при этом диаметра, длины и массы каждого плода. В массовый сбор плодов в них определяли содержание сахара и витамина С (Иванов, Н.Н. Методы физиологии и биохимии растений. 4-е изд., исправ. и доп. - М. - Л.: Сельхозгиз, 1946. - 493 с.). Урожайность определяли по сумме сборов плодов с учетной площади.
Из данных таблицы 6 видно, что внесение в почву испытуемых органических удобрений - птичьего помета за неделю до высадки рассады огурца в грунт, обеспечив растения необходимыми и доступными для них элементами питания, стимулировало побегообразование (общее число побегов - 7,3-8,8 шт., в контроле - 5,9 шт./растение, в т.ч. 1-го порядка - 5,8-6,7 и 4,8 шт., 2-го порядка - 1,5-2,1 и 1,1 шт.), их рост в длину (длина главного побега - 109,5-124,4 см, в контроле - 101,1 см). Существенное увеличение значений морфологических параметров обусловило повышение сырой и сухой массы надземных органов (биомасса - 378,82-443,74 г, в контроле - 311,32 г, сухая масса - 59,47-68,34 и 48,57 г/растение соответственно).
Важное место в получении высокого урожая отводится нарастанию листового аппарата, накоплению в них ассимилятов и рациональному перераспределению последних в репродуктивные органы - плоды огурца (таблица 7).
Результаты исследований (таблица 7) показали, что во всех опытных вариантах процесс листообразования протекал более активно. Под действием испытуемых удобрений формировалось большее число листьев (24,2-28,7 шт., в контроле - 20,9 шт./растение), более крупных по размеру, что проявилось в увеличении листовой поверхности (35,18-38,92 дм2/растение, в контроле - 30,16 дм2/растение). Наибольший прирост числа и площади листьев отмечен в варианте с применением в технологии возделывания огурца переработанного помета цыплят-бройлеров в дозе 2,0 кг/м2.
Формирование в указанном варианте наиболее мощных растений связано с созданием в них оптимального режима питания, что положительно сказывается на плодообразовании. Результаты влияния исследуемых удобрений на плодообразование растений огурца представлены в таблице 8.
Использование в технологии возделывания огурца испытуемых органических удобрений в качестве основного удобрения, оптимизировав режим минерального питания, способствовало формированию большего числа плодов на кусте (16,7-18,8 шт., в контроле - 14,9 шт.), более крупных по размеру (диаметр - 2,8-3,1 см, в контроле - 2,6 см, длина - 12,4-13,5 и 11,8 см) и массе (82,01-84,46 г, в контроле - 78,82 г). И как видно из данных таблицы 8, максимальный сбор плодов с куста отмечен в варианте с применением переработанного помета птицы - 1,588 кг, против - 1,174 кг в контроле (без применения).
Увеличение числа и сбора плодов с куста обусловило получение высокого урожая и повышение качества плодов (таблица 9).
Анализ данных таблицы 9 показывает, что применение в качестве основного удобрения птичьего помета, усилив ростовые и продукционные процессы существенно повысило урожайность плодов огурца и их качество. Прибавка урожая в опытных вариантах составила 16,7-28,4%, при урожайности в контроле - 3,522 кг/м. В плодах огурца возросло содержание сахара (2,2-2,4%, в контроле - 2,0%) и витамина С (11,0-11,5, в контроле - 10,4 мг %).
Таким образом, проведенные агротехнологические приемы продемонстрировали, что высокая биологическая эффективность испытуемых органических удобрений (переработанного подстилочного помета цыплят-бройлеров) на исследуемой культуре обусловлена получением высокого урожая качественных плодов огурца. При урожайности в контроле огурца - 3,522 кг/м2, максимальная прибавка 28,4% отмечена в варианте с применением испытуемого удобрения в дозе 2,0 кг/м2. В указанном варианте получены плоды высокого качества.
Claims (1)
- Способ переработки подстилочного помета цыплят-бройлеров, включающий внесение микробных культур рода Pseudomonas и Azotobacter, предварительно каждая разбавленная с водой в соотношении 1:2 и выдержанная в помете в течение 15 дней, отличающийся тем, что в качестве микробных культур используют Pseudomonas putida 90 биовар А (171), депонированная в ВКПМ под № В-4492, и Azotobacter chroococcum 31/8 R, депонированная в ВКПМ под № В-4148 с начальным титром не менее 1,0×109 КОЕ/мл, и взятых в объемном соотношении 1:1 из расчета не менее 4,0% каждой культуры на массу подстилочного помета цыплят-бройлеров, и смешивают их с пометом, а затем формируют в бурты.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2780845C1 true RU2780845C1 (ru) | 2022-10-04 |
Family
ID=
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4900348A (en) * | 1983-08-02 | 1990-02-13 | The Ohio State University Research Foundation | Production of disease suppresive compost and container media, and microorganism culture for use therein |
RU2437864C1 (ru) * | 2010-08-05 | 2011-12-27 | Общество с ограниченной ответственностью "Микробиотех" (ООО "Микробиотех") | Способ микробиологической переработки птичьего помета |
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4900348A (en) * | 1983-08-02 | 1990-02-13 | The Ohio State University Research Foundation | Production of disease suppresive compost and container media, and microorganism culture for use therein |
RU2437864C1 (ru) * | 2010-08-05 | 2011-12-27 | Общество с ограниченной ответственностью "Микробиотех" (ООО "Микробиотех") | Способ микробиологической переработки птичьего помета |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107098739B (zh) | 利用有效微生物的恶臭及重金属含量得到减少的家畜粪尿发酵液肥的制备方法 | |
CN102491802A (zh) | 茶粕生物有机肥及其生产方法 | |
CN109679860A (zh) | 一种用于园林绿色废弃物处理的复合菌剂及其制备方法与应用 | |
CN107840762A (zh) | 一种利用牛粪制作生物有机肥的方法 | |
KR102021771B1 (ko) | 유용미생물을 이용한 토양환경개선용 제제 또는 이를 포함하는 숯 담채 및 그 제조방법 | |
RU2437864C1 (ru) | Способ микробиологической переработки птичьего помета | |
CN104744131B (zh) | 一种荔枝专用生物活性有机肥及其应用 | |
CN104710202A (zh) | 芽孢杆菌属细菌向循环型农业循环的使用 | |
CN105859338A (zh) | 一种功能性微生物土壤改良剂及其制备方法 | |
CN108863658A (zh) | 一种生物炭基有机肥及制备方法 | |
CN110627537A (zh) | 一种多功能微生物肥料及其制备方法 | |
CN108264401A (zh) | 一种生物有机肥及制备工艺与施用方法 | |
CN111875422A (zh) | 一种利用蔬菜尾菜、秸秆和菌渣制备有机肥的方法 | |
CN1699298A (zh) | Pgpr生长促进剂和使用它来培养农作物的方法 | |
CN104692970B (zh) | 一种油菜专用生物活性有机肥及其应用 | |
CN104744129A (zh) | 一种香蕉专用生物活性有机肥及其应用 | |
EP0223661A1 (fr) | Inoculum microbien et procédé de préparation d'une poudre stable de bacteries, agent fertilisant et son application, procédé pour l'amélioration des sols | |
CN1052711C (zh) | 一种生物有机复合肥及其制备方法 | |
EP4219433A1 (en) | Bio-stimulant and method of producing same | |
CN1706880A (zh) | 生化黄腐酸的高效制取方法 | |
RU2780845C1 (ru) | Способ переработки подстилочного помёта цыплят-бройлеров | |
JPH0569801B2 (ru) | ||
RU2522523C1 (ru) | Способ микробиологической переработки птичьего помета | |
RU2777469C1 (ru) | Способ переработки подстилочного перепелиного помёта | |
RU2780846C1 (ru) | Способ переработки нативного помёта цыплят-бройлеров |