RU2780743C1 - Способ получения пресной воды - Google Patents

Способ получения пресной воды Download PDF

Info

Publication number
RU2780743C1
RU2780743C1 RU2021120715A RU2021120715A RU2780743C1 RU 2780743 C1 RU2780743 C1 RU 2780743C1 RU 2021120715 A RU2021120715 A RU 2021120715A RU 2021120715 A RU2021120715 A RU 2021120715A RU 2780743 C1 RU2780743 C1 RU 2780743C1
Authority
RU
Russia
Prior art keywords
air
water
vapor
energy
evaporation
Prior art date
Application number
RU2021120715A
Other languages
English (en)
Inventor
Виктор Владимирович Миронов
Михаил Николаевич Чекардовский
Юрий Андреевич Иванюшин
Игорь Юрьевич Шалагин
Лев Игоревич Максимов
Павел Анатольевич Калиновский
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ)
Application granted granted Critical
Publication of RU2780743C1 publication Critical patent/RU2780743C1/ru

Links

Images

Abstract

Изобретение относится к способам автономного получения пресной воды, и может быть использовано для питьевого водоснабжения, а также для бытовых и хозяйственных нужд. Способ получения пресной воды включает насыщение воздуха водяными парами, формирование паровоздушного потока нагнетателями, конденсацию и отбор влаги, сброс обезвоженного воздуха в атмосферу. Влагу конденсируют охлаждением паровоздушной смеси в вихревых трубках или путем дросселирования паровоздушного потока с отделением капель воды в гидроциклонах. Подачу свежей морской воды в испарительные камеры для формирования паровоздушной смеси осуществляют струйными насосами, работающими на энергии всасываемого нагнетателями атмосферного воздуха. Паровоздушную смесь в нагнетателях, работающих от энергии морских волн, для повышения температурного напора, увеличивающего интенсивность испарения морской воды, сжимают при давлении выше гидростатического давления на глубине установки нагнетателей. Предлагаемый способ получения пресной воды обеспечивает повышение производительности пресной воды за счет принудительного насыщения воздуха влагой путем предварительного подогрева морской воды и ее испарения с использованием тепловой энергии сжатого воздуха, генерируемой энергией морской волны, 1 пр., 1 ил.

Description

Изобретение относится к способам автономного получения пресной воды. Изобретение может быть использовано для питьевого водоснабжения, а также для бытовых и хозяйственных нужд.
Известен способ извлечения воды из паровоздушной смеси, заключающийся в том, что формируют поток воздуха, содержащего пары воды, осуществляют искусственное охлаждение потока воздуха, конденсируют пары воды и получаемую при этом пресную воду-конденсат подают в емкость для сбора воды (патент РФ №2081256, МПК Е03В 3/28, опубл. 10.06.1997). Недостатком способа является необходимость использования внешней подводимой энергии для формирования потока паровоздушной смеси, направляемой в конденсатор для осаждения влаги, которая не является возобновляемой.
Наиболее близким техническим решением к заявленному способу по совокупности признаков является способ получения пресной воды, заключающийся в том, что формируют поток воздуха, содержащего водяные пары, охлаждают его до температуры ниже точки росы, конденсируют водяные пары в воду, а обезвоженный воздух выбрасывают в атмосферу (патент США №5203989, МПК Е03В 3/28, опубл. 20.04.1987). При прокачке потока атмосферного воздуха, содержащего пары воды, происходит их конденсация на охлаждающем элементе холодильной машины и одновременное охлаждение потока воздуха, который выбрасывается в атмосферу. Для прокачки потока атмосферного воздуха необходим нагнетатель, требующий затрат внешней не возобновляемой энергии. Известный способ, предполагающий также использование внешней подводимой энергии для работы холодильной машины, характеризуется низкой экономичностью использования холодопроизводительности машины, так как только незначительная часть потребляемой холодильной машиной энергии используется для конденсации паров воды. При этом большая часть холодопроизводительности расходуется на охлаждение обезвоженного воздуха, выбрасываемого в атмосферу.
Технической задачей, стоящей перед изобретением, является создание несложного способа получения пресной воды с использованием возобновляемой энергии морской волны, позволяющего с низкой себестоимостью получать пресную воду из влагонасыщенного воздуха.
Техническим результатом заявленного изобретения является повышение производительности способа по пресной воде за счет принудительного насыщения воздуха влагой при повышенной температуре, путем предварительного подогрева морской воды и ее испарения, с использованием тепловой энергии сжатого воздуха, генерируемой энергией морской волны.
Согласно изобретению, техническая задача решается, а технический результат достигается следующим образом. Способ получения пресной воды включает всасывание атмосферного воздуха нагнетателями, насыщение воздуха водяными парами в камерах с испаряющейся морской водой, сжатие влагонасыщенного воздуха нагнетателями, подогрев морской воды тепловой энергией сжатой паровоздушной смеси. Привод нагнетателей осуществляют энергией морских волн. Конденсацию водяных паров производят путем охлаждения паровоздушной смеси дросселированием потока и направления его в гидроциклоны. Гидравлические циклоны используют для разделения потоков осушенного воздуха, выбрасываемого в атмосферу, и конденсата, стекающего в емкости для отбора влаги. Для конденсации влаги и разделения потоков возможно использование известных вихревых трубок Ранка. Подачу свежей морской воды в емкости с испаряющейся морской водой осуществляют струйными насосами с использованием энергии всасываемого нагнетателями атмосферного воздуха. Для повышения температурного напора, увеличивающего интенсивность испарения морской воды, паровоздушную смесь в нагнетателях, работающих от энергии морских волн, сжимают при давлении выше гидростатического давления глубины погружения нагнетателей.
Изобретение поясняется чертежом (фиг. 1), где представлен общий вид устройства.
Заявляемое техническое решение состоит из следующих основных элементов: испарительных камер (1), размещенных на поверхности водного объекта; теплоизолированных камер для горячей паровоздушной смеси (2) и нагнетателей (3) паровоздушной смеси, предназначенных для забора паровоздушной смеси из испарительных камер (1) и подачи ее в камеры (2) для горячей смеси. Указанные камеры имеют общие не теплоизолированные стенки, через которые осуществляется перенос тепла с целью подогрева свежей поступающей морской воды с ее последующим испарением. Конденсация влаги и ее отбор осуществляется путем охлаждения паровоздушной смеси в камере (2) и дросселированием потока, с последующим отделением капель воды.
Способ получения пресной воды реализуется следующим образом.
Испарительные камеры (1) и теплоизолированные камеры для горячей паровоздушной смеси (2) представляют собой буи с положительной плавучестью. Нагнетатели (3), работающие от энергии морских волн, забирают подогретую паровоздушную смесь по воздуховодам (4) с обратными клапанами (5) из испарительных камер (1). Испарительные камеры (1) соединены тросами (6) с корпусами нагнетателей (3). Поршни нагнетателей (7) жестко фиксируется с эластичными мембранами (8) штоками (9). Эластичные мембраны (8) фиксируется с дном моря (10) тросами (11). Сжатая и, соответственно, нагретая паровоздушная смесь после нагнетателей (3) по трубопроводам (12) с обратными клапанами (13) поступает в теплоизолированные камеры (2), имеющие общие не теплоизолированные стенки с испарительными камерами морской воды (1), через которые осуществляется передача тепла для подогрева в испарительных камерах (1) морской воды и ее испарение. После отдачи тепловой энергии паровоздушная смесь через дроссели (14), где она еще больше охлаждается за счет расширения, поступает в гидроциклоны (15), в которых происходит отделение воды от воздуха. Пресная вода отводится по трубопроводам (16), а осушенный воздух по трубопроводам (17). Вместо дросселей и гидроциклонов возможна установка известных вихревых трубок Ранка для разделения потоков на горячий и холодный потоки. В холодном потоке происходит конденсация влаги с последующим ее отбором. Пополнение свежей морской воды в испарительных камерах (1) осуществляют забором струйными насосами (18) свежей морской воды по трубопроводам (19). Струйные насосы (18) работают на энергии всасываемого нагнетателями (3) атмосферного воздуха. Атмосферный воздух по трубопроводам (20) при всасывании нагнетателями (3) паровоздушной смеси и создании разрежения в испарительных камерах (1) поступает в струйные насосы (18). При прохождении атмосферного воздуха через струйные насосы (18) в них создается разрежение, за счет которого морская вода подсасывается через трубопроводы (19), смешивается с атмосферным воздухом и поступает в испарительные камеры (1). Для повышения температуры сжатой паровоздушной смеси в нагнетателях, работающих от энергии морских волн, устанавливают мультипликаторы давления, которые состоят из эластичных мембран (8), штоков (9) и нагнетательных поршней (7). Площадь поршней нагнетателей (7) жестко связанных с мембранами (8) меньше площади мембран. Это позволяет получить большее давление в нагнетателях, чем гидростатическое давление морской воды в месте установки мембран (8), и повысить температуру сжатой паровоздушной смеси. Полость мультипликаторов давления нагнетателей между мембранами (8) и поршнями нагнетателей (7) сообщается с воздушной атмосферой трубопроводами (21) для обеспечения постоянства давления в полостях мультипликаторов при их работе. Всасывание паровоздушной смеси осуществляется за счет выталкивающей силы, действующей на буи с положительной плавучестью, при движении их вверх на гребень морской волны. Нагнетание паровоздушной смеси осуществляется за счет гидростатического давления морской воды в месте установки мембран, при движении буев с положительной плавучестью к впадине морской волны. Для предотвращения солеотложения в испарительных камерах (1) обеспечивается циркуляция морской воды (22) в испарительных камерах (1) с поддержкой постоянного уровня воды в них, используя сливные трубопроводы (23) для отвода лишней воды.
Заявленное техническое решение позволяет преобразовывать даровую энергию морской волны в тепловую энергию сжатой паровоздушной смеси, для принудительного насыщения атмосферного воздуха испаряющейся влагой при повышенной температуре. Конденсация влаги и ее отбор осуществляется путем охлаждения паровоздушной смеси дросселированием потока, с последующим отделением капель воды в гидроциклонах, что позволяет не использовать массивные и крупногабаритные конденсаторы с большой поверхностью теплоотдачи. Использование энергии всасываемого атмосферного воздуха в струйных насосах для подачи свежей морской воды в камеры для ее испарения позволяет поддерживать постоянную концентрацию соли в камерах для испарения подогретой морской воды, предотвратить отложение солей в камерах и увеличить период времени между техническими обслуживаниями агрегатов для получения чистой пресной воды. Заявленное техническое решение позволяет снизить затраты на получение пресной воды из воздуха при использовании возобновляемой энергии морской волны.
Обозначения:
1 - испарительная камера;
2 - теплоизолированная камера для горячей паровоздушной смеси;
3 - нагнетатель;
4 - всасывающий трубопровод паровоздушной смеси
5 - всасывающий обратный клапан;
6 - соединительный трос;
7 - поршень нагнетателя;
8 - эластичная мембрана нагнетателя;
9 - шток;
10 - дно моря;
11 - трос, соединяющий мембрану с дном моря;
12 - нагнетательный трубопровод паровоздушной смеси;
13 - нагнетательный обратный клапан;
14 - дроссель;
15 - гидроциклон;
16 - трубопровод для отвода пресной воды;
17 - трубопровод для отвода осушенного воздуха;
18 - струйный насос;
19 - трубопровод для забора окружающей морской воды;
20 - трубопровод для забора атмосферного воздуха;
21 - трубопровод, сообщающийся с воздушной атмосферой;
22 - морская вода в испарительной камере;
23 - сливной трубопровод для поддержания постоянного уровня морской воды в испарительной камере.

Claims (1)

  1. Способ получения пресной воды, включающий насыщение воздуха водяными парами, формирование паровоздушного потока нагнетателями, конденсацию и отбор влаги, сброс обезвоженного воздуха в атмосферу, отличающийся тем, что влагу конденсируют охлаждением паровоздушной смеси в вихревых трубках или путем дросселирования паровоздушного потока с отделением капель воды в гидроциклонах, подачу свежей морской воды в испарительные камеры осуществляют струйными насосами, работающими на энергии всасываемого нагнетателями атмосферного воздуха, паровоздушную смесь в нагнетателях, работающих от энергии морских волн, для повышения температурного напора, увеличивающего интенсивность испарения морской воды, сжимают при давлении выше гидростатического давления на глубине установки нагнетателей.
RU2021120715A 2021-07-12 Способ получения пресной воды RU2780743C1 (ru)

Publications (1)

Publication Number Publication Date
RU2780743C1 true RU2780743C1 (ru) 2022-09-30

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203989A (en) * 1991-01-30 1993-04-20 Reidy James J Portable air-water generator
RU2081256C1 (ru) * 1996-04-12 1997-06-10 Владимир Федорович Романовский Способ извлечения воды из воздуха и устройство для его осуществления
DE102012103475A1 (de) * 2012-04-20 2013-10-24 Werner Weber Verfahren zur Süßwassergewinnung
RU2631469C1 (ru) * 2016-11-29 2017-09-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Способ получения воды из воздуха
RU2651298C1 (ru) * 2017-02-27 2018-04-19 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Дагестанский Государственный Технический Университет" (Дгту) Устройство для получения пресной воды из атмосферного воздуха
WO2018101852A1 (ru) * 2016-12-02 2018-06-07 Общество С Ограниченной Ответственностью "Электрорам" Способ получения воды из воздуха

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203989A (en) * 1991-01-30 1993-04-20 Reidy James J Portable air-water generator
RU2081256C1 (ru) * 1996-04-12 1997-06-10 Владимир Федорович Романовский Способ извлечения воды из воздуха и устройство для его осуществления
DE102012103475A1 (de) * 2012-04-20 2013-10-24 Werner Weber Verfahren zur Süßwassergewinnung
RU2631469C1 (ru) * 2016-11-29 2017-09-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Способ получения воды из воздуха
WO2018101852A1 (ru) * 2016-12-02 2018-06-07 Общество С Ограниченной Ответственностью "Электрорам" Способ получения воды из воздуха
RU2651298C1 (ru) * 2017-02-27 2018-04-19 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Дагестанский Государственный Технический Университет" (Дгту) Устройство для получения пресной воды из атмосферного воздуха

Similar Documents

Publication Publication Date Title
CN111153543A (zh) 一种节能零排放低温常压蒸发结晶系统及其工作方法
CN108408812B (zh) 一种含盐废水的脱盐淡化方法及装置
CN110422899A (zh) 一种热泵闪蒸蒸发浓缩系统
CN111099809A (zh) 一种真空低温回收能量间接污泥干化装置和方法
US20230415064A1 (en) Combined heat source and vacuum source for low-cost distillation and desalination
US4181577A (en) Refrigeration type water desalinisation units
EP0114830A1 (en) DESALINATION APPARATUS FOR BRINE OR SALT WATER.
CN1161280C (zh) 一种从海水中提取淡水的方法及其设备
RU2780743C1 (ru) Способ получения пресной воды
CN209635926U (zh) 降膜蒸发耦合吸收式制冷高盐污水处理设备
RU2359917C1 (ru) Способ опреснения морской воды путем утилизации низкопотенциального тепла
RU2653875C1 (ru) Способ получения воды из воздуха
WO2018101852A1 (ru) Способ получения воды из воздуха
US2793502A (en) Method and apparatus for utilizing exhaust steam
CN105271458A (zh) 多效真空沸腾式海水淡化装置
RU2365815C2 (ru) Установка для конденсации отработавшего пара паровой турбины и деаэрации конденсата
RU65395U1 (ru) Опреснитель
JPH09126652A (ja) 蒸気再圧縮式真空濃縮乾燥装置
RU2820500C1 (ru) Система опреснения морской воды
RU2660273C1 (ru) Способ получения воды из воздуха
CN220283681U (zh) 低温蒸发全量化处理装置
CN110966788B (zh) 一种基于液力射流的余热提质系统的余热利用方法
US20220015405A1 (en) Condensation system and method
RU2732929C1 (ru) Способ опреснения морской воды
RU2363662C2 (ru) Теплонасосный опреснитель соленый воды (варианты)