RU2776377C1 - Способ получения стабильного микрокапсулированного огнетушащего агента на основе перфторкетона - Google Patents
Способ получения стабильного микрокапсулированного огнетушащего агента на основе перфторкетона Download PDFInfo
- Publication number
- RU2776377C1 RU2776377C1 RU2021107301A RU2021107301A RU2776377C1 RU 2776377 C1 RU2776377 C1 RU 2776377C1 RU 2021107301 A RU2021107301 A RU 2021107301A RU 2021107301 A RU2021107301 A RU 2021107301A RU 2776377 C1 RU2776377 C1 RU 2776377C1
- Authority
- RU
- Russia
- Prior art keywords
- fire extinguishing
- extinguishing agent
- microencapsulated
- oligomer
- ethyl
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical compound FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 title abstract description 18
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 54
- 239000000725 suspension Substances 0.000 claims abstract description 19
- HYTRYEXINDDXJK-UHFFFAOYSA-N Ethyl isopropyl ketone Chemical compound CCC(=O)C(C)C HYTRYEXINDDXJK-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000000839 emulsion Substances 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims abstract description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 4
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- DOSFBUSIKDEAGI-UHFFFAOYSA-N benzene-1,3-diol;oxaldehyde Chemical compound O=CC=O.OC1=CC=CC(O)=C1 DOSFBUSIKDEAGI-UHFFFAOYSA-N 0.000 claims description 18
- 238000012423 maintenance Methods 0.000 claims 1
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 7
- 238000001035 drying Methods 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 4
- 238000009835 boiling Methods 0.000 abstract description 3
- 230000007774 longterm Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 238000001914 filtration Methods 0.000 abstract description 2
- 231100000614 poison Toxicity 0.000 abstract description 2
- 239000003440 toxic substance Substances 0.000 abstract description 2
- 238000005406 washing Methods 0.000 abstract 1
- 239000003094 microcapsule Substances 0.000 description 20
- 239000011257 shell material Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 229940015043 glyoxal Drugs 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- DGXAGETVRDOQFP-UHFFFAOYSA-N 2,6-dihydroxybenzaldehyde Chemical compound OC1=CC=CC(O)=C1C=O DGXAGETVRDOQFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- DUZWNKDFSDMOHT-UHFFFAOYSA-N benzene-1,3-diol;formaldehyde;urea Chemical compound O=C.NC(N)=O.OC1=CC=CC(O)=C1 DUZWNKDFSDMOHT-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010616 electrical installation Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000162 poly(ureaurethane) Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Abstract
Изобретение относится к первичным средствам пожаротушения, в частности, к способу получения микрокапсулированного огнетушащего агента на основе перфтор(этил-изопропилкетона) (перфторкетона). Способ получения стабильного микрокапсулированного огнетушащего агента на основе перфтор(этил-изопропилкетона) включает стадии приготовления эмульсии путем диспергирования перфтор(этил-изопропилкетона) в водном растворе поливинилового спирта, синтеза резорцино-глиоксалевого олигомера в отдельном реакторе с постоянным поддержанием рН в интервале значений 7-10 в течение 1 часа при комнатной температуре, добавления полученного резорцино-глиоксалевого олигомера в эмульсию перфтор(этил-изопропилкетона) при постоянном перемешивании на скорости 500 об/мин, выдержки полученной суспензии микрокапсулированного огнетушащего агента в течение часа, изотермической выдержки при температуре 30-60°С в течение 20 часов, по истечении которых останавливают перемешивание, полученную суспензию промывают, фильтруют и высушивают. Изобретение позволяет получать стабильный микрокапсулированный огнетушащий агент на основе перфторкетона, пригодный для длительного хранения, транспортировки и эксплуатации при температурах, значительно превышающих температуру кипения огнетушащего агента, без использования токсичных веществ 1 и 2 класса опасности. 2 табл., 9 пр.
Description
Область техники, к которой относится изобретение
Изобретение относится к первичным средствам пожаротушения, в частности, к способу получения микрокапсулированного огнетушащего агента на основе перфтор(этил-изопропилкетона) (перфторкетона). Изобретение позволяет получать стабильный микрокапсулированный огнетушащий агент на основе перфторкетона, пригодный для длительного хранения, транспортировки и эксплуатации при температурах, значительно превышающих температуру кипения огнетушащего агента, без использования токсичных веществ 1 и 2 класса опасности.
Изобретение может быть востребовано в различных отраслях промышленности: в электроэнергетике для автоматического подавления распространения огня в системах накопления энергии большой емкости, в узлах и агрегатах электроустановок и электрооборудования, в электронной промышленности для защиты от аварийного возгорания электронных приборов и электрических машин.
Уровень техники
Известны способы получения огнегасящих микрокапсул, содержащих огнетушащий агент и полимерную оболочку, основанные на эмульгировании огнетушащего агента в растворе поверхностно-активного вещества и добавлении реактивной меламиноформальдегидной смолы (RU 2631866 С1, опубл. 27.09.2017) или мочевиноформальдегидной смолы или резорцино-формальдегидной смолы (KR 102123554 B1, опубл. 19.03.2019). Недостатком данных изобретений является использование в качестве компонента оболочки микрокапсул формальдегида, который в соответствии с ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест» является веществом первого класса опасности. Использование в производстве веществ первого и второго класса опасности значительно увеличивает затраты на организацию мероприятий по охране труда, утилизации отходов производства.
Известен способ получения огнегасящего состава (RU 2403934 C1, опубл. 20.11.2010), содержащего микрокапсулы размером от 2,0-100,0 мкм с ядром из огнегасящего агента и материалом оболочки из полимочевины и/или полиуретана на основе полиизоцианата. Недостатком данного изобретения также является использование вещества первого класса опасности (изоционата) для получения оболочки микрокапсул. Кроме того, микрокапсулы, полученные по способу, описанному в изобретении, характеризуются высокой потерей огнетушащего агента (около 10%) при хранении и эксплуатации, что влечет потерю огнетушащих свойств.
В другом изобретении (RU 2469761 С1, опубл. 20.12.2012) предложены способы микрокапсулирования жидких огнетушащих агентов в оболочку на основе сшитого желатина или комплекса поливинилового спирта с мочевино-резорцино-формальдегидной смолой, наполненного наночастицами минерального наполнителя в форме пластинок, имеющих толщину 1-5 нм. Недостатком предложенных способов получения является использование наночастиц монтмориллонита для повышения физической стабильности оболочки. Это влечет за собой необходимость его эксфолиации на стадии получения суспензии, равномерного распределения в материале на стадии образования оболочки, что значительно усложняет процесс получения микрокапсул (Герасин В.А., Бахов Ф.Н., Мерекалова Н.Д., Королев Ю.М., Зубова Т.Л., Антипов Е.М. Влияние структуры слоя модификатора на совместимость полимеров с модифицированным монтмориллонитом // Инженерно-физический журнал, том 78, № 5, 2005, с. 35). Кроме того, описанный способ получения не обеспечивает высокой температуры срабатывания микрокапсул, что значительно ограничивает области их применения.
В патенте (RU 2731599С1, опубл. 04.09.2020) описан способ получения микрокапсулированного термоактивируемого огнегасящего агента, содержащего микрокапсулы, имеющие ядро из огнегасящего агента и сферическую полимерную оболочку, обладающую способностью взрывоподобного разрушения в диапазоне температур 90-150°С, в котором микрокапсулы формируют инжекционно-капельным впрыском под давлением нагретого огнегасящего агента в среду охлажденного пленкообразователя. Недостатком данного изобретения является необходимость использования сложного нестандартного технологического оборудования.
Наиболее близким к заявленному изобретению по технической сущности и достигаемому результату является изобретение, описанное в патенте (RU 2702566 С1, опубл. 08.10.2019) (прототип). В нем описан способ получения микрокапсулированного огнегасящего агента, с ядром из огнегасящей жидкости перфторкетона, размещенного внутри сферической полимерной оболочки, выполненной из резорцино-мочевино-формальдегидной смолы.
Недостатком данного изобретения является использование формальдегида при производстве микрокапсул, что, как отмечалось выше, значительно увеличивает затраты на организацию производства, а также мероприятий по охране труда и утилизации отходов. Другим недостатком данного изобретения является получение микрокапсул со средним размером менее 100 мкм (40-60% от общей массы). Как отмечали авторы в работе (А.Д. Вилесов, Н.Н. Сапрыкина, Р.В. Степанов, О.М. Суворова, М.С. Босенко, М.С. Вилесова, Р.П. Станкевич. Микрокапсулированные огнегасящие жидкости и реактивные композиционные огнегасящие материалы на их основе // Высокомолекулярные соединения, Серия А, том 54, № 6, 2012, с. 900-906) размер микрокапсул значительно влияет на эффективность тушения, а оптимальным является диапазон размеров от 100 до 400 мкм.
Раскрытие сущности изобретения
Техническим результатом предлагаемого изобретения является способ получения микрокапсулированного огнетушащего агента на основе перфторкетона, который позволяет получать стабильный микрокапсулированный огнетушащий агент на основе перфторкетона, пригодный для длительного хранения, транспортировки и эксплуатации при температурах, значительно превышающих температуру кипения огнетушащего агента, с высоким выходом по целевому продукту, без использования веществ первого и второго класса опасности.
Для достижения указанного технического результата в настоящем изобретении предложен способ получения стабильного микрокапсулированного огнетушащего агента с ядром на основе перфторкетона, оболочкой на основе резорцино-глиоксалевого олигомера, в котором последовательно осуществляют:
а) приготовление эмульсии перфторкетона с использованием неионогенного поверхностно-активного вещества;
б) приготовление раствора резорцин-глиоксалевого олигомера;
в) добавление растовора резорцин-глиоксалевого олигомера к эмульсии перфторкетона и формирование оболочки за счет поликонденсации олигомера на поверхности капель эмульсии;
г) выдержка суспензии микрокапсулированного огнетушащего агента при заданных контролируемых условиях для увеличения степени поликонденсации и отверждения оболочки;
д) фильтрация и сушка микрокапсулированного огнетушащего агента.
Согласно изобретению, настоящий способ получения микрокапсулированного огнетушащего агента позволяет получать микрокапсулы с оболочкой на основе резорцин-глиоксалевого олигомера без использования веществ первого и второго класса опасности, что значительно снижает затраты на организацию производства, мероприятия по охране труда и утилизации отходов.
Согласно изобретению, выдержку суспензии микрокапсулированного огнетушащего агента проводят в интервале температур от 30 до 60°C. Выдержка суспензии в температурном интервале от 30 до 60°C влияет на степень отверждения резорцин-глиоксалевого полимера и позволяет увеличить стабильность микрокапсул (снизить показатели утечки).
Согласно изобретению, приготовление раствора резорцин-глиоксалевого олигомера производится предварительно в отдельном реакционном объеме. Раздельное приготовление резорцин-глиоксалевого олигомера позволяет изменять и удерживать pH среды синтеза в интервалах значений от 7-10. Варьирование величины pH влияет на скорость и молекулярную массу образующегося олигомера. Постоянство pH дает возможность получать олигомер с постоянным молекулярно-массовым распределением, концентрацией и механическими свойствами, что, в свою очередь, обеспечивает воспроизводимость результатов синтеза микрокапсулированного огнетушащего агента и повышает стабильность микрокапсул на основе перфторкетона.
Осуществление изобретения
Примеры реализации способа получения стабильного микрокапсулированного огнетушащего агента на основе перфторкетона приведены ниже.
Ширину температурного интервала декапсулирования огнетушащего агента определяют по результатам синхронного термического анализа (скорость нагрева 10К/мин). Утечку огнетушащего агента определяют выдержкой его в климатическом шкафу в течение 100 дней при температуре 60°С, влажности 0% и при ускоренных климатических испытаниях в течение 30 дней при температуре 100°С, влажности 60%. Выход целевого продукта определяли по формуле:
где m(ПФК) - масса исходного перфторкетона, а m(МОА) - масса микрокапсулированного огнетушащего агента после сушки с поправкой на массовую долю оболочки.
Экспериментально установлено, что приготовление раствора резорцин-глиоксалевого олигомера в интервале pH 7-10 и последующая выдержка суспензии микрокапсулированного огнетушащего агента, проводимая в интервале температур 30-60°С, позволяет получать микрокапсулированый огнетушащий агент с выходом по целевому веществу не менее 90%.
Пример 1. Процесс поучения микрокапсулированого огнетушащего агента может быть реализован на стандартном химическом оборудовании. Для этого в 1000 мл 5% водного раствора поливинилового спирта со степенью гидролиза 80-85% добавляют 500 мл перфторкетона. Смесь диспергируют на скорости 1000 об/мин в течение 10 минут для получения эмульсии перфторкетона. После этого в отдельный реактор для синтеза резорцино-глиоксалевого олигомера заливают 250 мл раствора резорцина, при постоянном перемешивании добавляют 2% раствора карбоната натрия для поддержания значения pH равного 7. По истечении 10 минут добавляют 200 мл водного 40% раствора глиоксаля. Синтез олигомера продолжают в течение 1 часа при комнатной температуре.
Полученный раствор резрцино-глиоксалевого олигомера добавляют в эмульсию перфторкетона при постоянном перемешивании на скорости 500 об/мин. Реакционную смесь (суспензию микрокапсулированного огнетушащего агента) выдерживают в течение часа, после чего осуществляют изотермическую выдержку при температуре 45°С в течение 20 часов. По истечении выдержки останавливают перемешивание, суспензию промывают, фильтруют и высушивают. Характеристики образцов микрокапсулированного огнетушащего агента, полученных при различных температурах выдержки суспензии, приведены в таблице 1.
Таблица 1. Характеристики образцов микрокапсулированного огнетушащего агента, полученных при разных температурах выдержки | ||||||
№ | Температура выдержки суспензии, °С | Время выдержки суспензии, ч |
Утечка при 60°C, % | Утечка при 100°C, % | Температурный интервал декапсулирования, °C | Выход микрокапсул, % |
Пример 1 | 45 | 20 | 0,5 | 0,7 | 4 | 94±1 |
Пример 2 | 30 | 20 | 1,2 | 1,6 | 6 | 92±2 |
Пример 3 | 60 | 20 | 0,4 | 0,6 | 5 | 91±1 |
Пример 4 | 65 | 20 | 0,35 | 0,6 | 8 | <40±2 |
Пример 5 | 25 | 20 | <20 | - | - | <5 |
Пример 2. Отличие Примера 2 от Примера 1 заключается в том, что изотермическую выдержку суспензии микрокапсулированного огнетушащего агента осуществляют при температуре 30°С в течение 20 часов. Характеристики микрокапсулированного огнетушащего агента приведены в таблице 1.
Пример 3. Отличие Примера 3 от Примера 1 заключается в том, что изотермическую выдержку суспензии микрокапсулированного огнетушащего агента осуществляют при температуре 60°С в течение 20 часов. Характеристики микрокапсулированного огнетушащего агента приведены в таблице 1.
Пример 4. Отличие Примера 4 от Примера 1 заключается в том, что изотермическую выдержку суспензии микрокапсулированного огнетушащего агента осуществляют при температуре 65°С в течение 20 часов. Характеристики микрокапсулированного огнетушащего агента приведены в таблице 1.
Пример 5. Отличие Примера 5 от Примера 1 заключается в том, что изотермическую выдержку суспензии микрокапсулированного огнетушащего агента осуществляют при температуре 25°С в течение 20 часов. Характеристики микрокапсулированного огнетушащего агента приведены в таблице 1.
Представленные в таблице 1 данные свидетельствуют о том, что с ростом температуры выдержки суспензии микрокапсулированного огнетушащего агента увеличивается стабильность микрокапсул с 1,2% до 0,35% по данным, полученным при 60°C, но снижается выход целевого продукта. Причем, выдержка при температуре 65°C приводила к значительному снижению выхода синтеза (менее 40%), что можно объяснить сильным перегревом пожаротушащего вещества в процессе синтеза, а выдержка при 25°C приводила к разрушению оболочки микрокапсул сразу же после извлечения их из раствора, что можно объяснить недостаточным отверждением резорцин-глиоксалевого полимера.
Пример 6. Отличие Примера 6 от Примера 1 заключается в использовании смеси гидроксида аммония (15% масс.) и натрий-фосфатного буфера (1М) для поддержания значения pH равного 8,5 в реакторе для синтеза резорцино-глиоксалевого олигомера. Характеристики микрокапсулированного огнетушащего агента приведены в таблице 2.
Таблица 2. Характеристики образцов микрокапсулированного огнетушащего агента, полученных при разных значениях pH резорцин-глиоксалевого олигомера* | |||||
Номер примера | pH среды олигомера | Утечка при 60°C, % | Утечка при 100°C, % | Температурный интервал декапсулирования, °C | Выход микрокапсул, % |
Пример 1 | 7 | 0,5 | 0,7 | 4 | 94±2 |
Пример 6 | 8,5 | 0,6 | 1,0 | 5 | 95±2 |
Пример 7 | 10 | 0,8 | 1,5 | 7 | 92±2 |
Пример 8 | 6 | <20 | - | - | <5 |
Пример 9 | 11 | 1,5 | 2,0 | 10 | 50±5 |
*изотермическую выдержку проводили при температуре 45°С в течение 20 часов
Пример 7. Отличие Примера 7 от Примера 1 заключается в использовании смеси мочевины и раствора гидроксида натрия (1М) для поддержания значения pH равного 10 в реакторе для синтеза резорцино-глиоксалевого олигомера. Характеристики микрокапсулированного огнетушащего агента приведены в таблице 2.
Пример 8. Отличие Примера 8 от Примера 1 заключается в использовании натрий-ацетатного буфера для поддержания значения pH равного 6 в реакторе для синтеза резорцино-глиоксалевого олигомера. Характеристики микрокапсулированного огнетушащего агента приведены в таблице 2.
Пример 9. Отличие Примера 9 от Примера 1 заключается в использовании смеси раствора гидроксида натрия (1М) для поддержания значения pH равного 11 в реакторе для синтеза резорцино-глиоксалевого олигомера. Характеристики микрокапсулированного огнетушащего агента приведены в таблице 2.
Представленные в таблице 2 данные свидетельствуют о том, что поддержка постоянного значения pH в интервале от 7 до 10 при синтезе резрцино-глиоксалевого олигомера позволяет получать стабильные микрокапсулы с выходом более 90%. Более высокое значение pH приводит к тому, что процесс образование оболочки из синтезированного резрцино-глиоксалевого олигомера проходит в объеме, а не на поверхности капель эмульсии перфторкетона. Более низкое значение pH приводит к снижению скорости синтеза резорцино-глиоксалевого олигомера и, как следствие, к формированию тонкой оболочки на поверхности капель эмульсии. Полученные в результате такого синтеза микрокапсулы не выдержали сушки, а их выход составил менее 5%.
Claims (1)
- Способ получения стабильного микрокапсулированного огнетушащего агента на основе перфтор(этил-изопропилкетона), включающий стадии приготовления эмульсии путем диспергирования перфтор(этил-изопропилкетона) в водном растворе поливинилового спирта, синтеза резорцино-глиоксалевого олигомера в отдельном реакторе с постоянным поддержанием рН в интервале значений 7-10 в течение 1 часа при комнатной температуре, добавления полученного резорцино-глиоксалевого олигомера в эмульсию перфтор(этил-изопропилкетона) при постоянном перемешивании на скорости 500 об/мин, выдержки полученной суспензии микрокапсулированного огнетушащего агента в течение часа, изотермической выдержки при температуре 30-60°С в течение 20 часов, по истечении которых останавливают перемешивание, полученную суспензию промывают, фильтруют и высушивают.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2776377C1 true RU2776377C1 (ru) | 2022-07-19 |
Family
ID=
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070191575A1 (en) * | 2006-02-14 | 2007-08-16 | Sumner Charles E Jr | Resol beads, methods of making them and methods of using them |
RU2389525C2 (ru) * | 2006-07-14 | 2010-05-20 | Общество С Ограниченной Ответственностью "Делси" | Микрокапсулированный огнегасящий агент и способ его получения, огнегасящий композиционный материал, огнегасящее покрытие из краски и огнегасящая ткань, содержащие такой агент |
RU2403934C1 (ru) * | 2009-04-14 | 2010-11-20 | Закрытое Акционерное Общество "Пирохимика" | Огнегасящий состав и способ его получения |
RU2413737C2 (ru) * | 2008-04-30 | 2011-03-10 | Лариса Николаевна Курина | Способ получения формальдегидсодержащей смолы с пониженной эмиссией формальдегида и функциональных материалов на ее основе |
EA201171123A1 (ru) * | 2009-03-12 | 2012-02-28 | Фолльманн Унд Ко. Гезелльшафт Фюр Хеми-Веркштоффе Унд-Ферфаренстехник Мбх Унд Ко. Кг | Улучшенные микрокапсулы и их получение |
RU2631866C1 (ru) * | 2017-05-26 | 2017-09-27 | Лившиц Юрий Яковлевич | СПОСОБ ПОЛУЧЕНИЯ ОГНЕГАСЯЩИХ МИКРОКАПСУЛ (варианты) И ОГНЕГАСЯЩАЯ МИКРОКАПСУЛА |
RU2702566C1 (ru) * | 2018-10-12 | 2019-10-08 | Общество С Ограниченной Ответственностью "Делси" | Микрокапсулированный огнегасящий агент и способ получения микрокапсулированного огнегасящего агента |
EP3630049A1 (de) * | 2017-05-24 | 2020-04-08 | Henkel AG & Co. KGaA | Mikrokapselsystem für polysensorische dufteffekte ii |
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070191575A1 (en) * | 2006-02-14 | 2007-08-16 | Sumner Charles E Jr | Resol beads, methods of making them and methods of using them |
RU2389525C2 (ru) * | 2006-07-14 | 2010-05-20 | Общество С Ограниченной Ответственностью "Делси" | Микрокапсулированный огнегасящий агент и способ его получения, огнегасящий композиционный материал, огнегасящее покрытие из краски и огнегасящая ткань, содержащие такой агент |
RU2413737C2 (ru) * | 2008-04-30 | 2011-03-10 | Лариса Николаевна Курина | Способ получения формальдегидсодержащей смолы с пониженной эмиссией формальдегида и функциональных материалов на ее основе |
EA201171123A1 (ru) * | 2009-03-12 | 2012-02-28 | Фолльманн Унд Ко. Гезелльшафт Фюр Хеми-Веркштоффе Унд-Ферфаренстехник Мбх Унд Ко. Кг | Улучшенные микрокапсулы и их получение |
RU2403934C1 (ru) * | 2009-04-14 | 2010-11-20 | Закрытое Акционерное Общество "Пирохимика" | Огнегасящий состав и способ его получения |
EP3630049A1 (de) * | 2017-05-24 | 2020-04-08 | Henkel AG & Co. KGaA | Mikrokapselsystem für polysensorische dufteffekte ii |
RU2631866C1 (ru) * | 2017-05-26 | 2017-09-27 | Лившиц Юрий Яковлевич | СПОСОБ ПОЛУЧЕНИЯ ОГНЕГАСЯЩИХ МИКРОКАПСУЛ (варианты) И ОГНЕГАСЯЩАЯ МИКРОКАПСУЛА |
RU2702566C1 (ru) * | 2018-10-12 | 2019-10-08 | Общество С Ограниченной Ответственностью "Делси" | Микрокапсулированный огнегасящий агент и способ получения микрокапсулированного огнегасящего агента |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9598313B2 (en) | Self-healing material and preparation process thereof | |
EP2258738B1 (de) | Xerogele auf Basis von Polyharnstoff | |
US4409156A (en) | Process for producing microcapsules | |
US20220152439A1 (en) | Fire extinguishing micro-capsule, method for manufacturing same, and fire extinguisher including same | |
CN101316886B (zh) | 由反应性缩聚树脂构成的纳米孔聚合物泡沫 | |
Luo et al. | Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam | |
EP2408834B1 (de) | Verfahren zur herstellung von xerogel-kompositen | |
Alič et al. | Microencapsulation of butyl stearate with melamineformaldehyde resin: Effect of decreasing the pH value on the composition and thermal stability of microcapsules. | |
EP2448986B1 (de) | Poröse gele auf basis von aromatischem polyharnstoff | |
US9725575B2 (en) | Microencapsulated curing agent | |
Wang et al. | Synthesis and characterization of chitosan/urea‐formaldehyde shell microcapsules containing dicyclopentadiene | |
CN113773809A (zh) | 双层脲醛壳相变微胶囊及其制备方法和应用 | |
EP2464676A1 (de) | Poröse gele auf basis von aromatischen und cycloaliphatischen aminen | |
RU2776377C1 (ru) | Способ получения стабильного микрокапсулированного огнетушащего агента на основе перфторкетона | |
WO2019181987A1 (ja) | 中空粒子及びその製造方法、並びに、造孔材、化粧料用粒子及び軽量化材 | |
US20150336066A1 (en) | Method of encapsulation and immobilization | |
WO2025161274A1 (zh) | 一种脲醛微胶囊及其制备方法和应用 | |
WO2019181988A1 (ja) | 中空粒子の製造方法、並びに、造孔材の製造方法、化粧料用粒子の製造方法、及び軽量化材の製造方法 | |
KR20200103645A (ko) | 비 수성 캡슐화 | |
EP0284933A2 (de) | Mikroschaumperlen und Verfahren zu ihrer Herstellung | |
DE102020110905A1 (de) | Kern-Schale Kapseln für die Textilveredelung | |
JPS6151941B2 (ru) | ||
CN115124962B (zh) | 一种无溶剂散香胶水及其制备方法、复合膜及其制备方法 | |
DE3619060A1 (de) | Umhuellte poroese partikel | |
EP3914384B1 (en) | Dialcohol cellulose-based spherical capsules |