RU2772503C1 - Подводный реконфигурируемый модульный робот - Google Patents

Подводный реконфигурируемый модульный робот Download PDF

Info

Publication number
RU2772503C1
RU2772503C1 RU2022101615A RU2022101615A RU2772503C1 RU 2772503 C1 RU2772503 C1 RU 2772503C1 RU 2022101615 A RU2022101615 A RU 2022101615A RU 2022101615 A RU2022101615 A RU 2022101615A RU 2772503 C1 RU2772503 C1 RU 2772503C1
Authority
RU
Russia
Prior art keywords
modules
traction
robot
module
underwater
Prior art date
Application number
RU2022101615A
Other languages
English (en)
Inventor
Александр Александрович Иванов
Олег Александрович Шмаков
Алексей Иванович Прядко
Original Assignee
Федеральное государственное автономное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики (ЦНИИ РТК)
Filing date
Publication date
Application filed by Федеральное государственное автономное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики (ЦНИИ РТК) filed Critical Федеральное государственное автономное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики (ЦНИИ РТК)
Application granted granted Critical
Publication of RU2772503C1 publication Critical patent/RU2772503C1/ru

Links

Images

Abstract

Изобретение относится к области мобильной робототехники, а именно к подводным роботам. Предложен подводный реконфигурируемый модульный мобильный робот, который содержит ряд последовательно соединенных между собой модулей, включая тяговые модули, создающие тягу с помощью установленных на них тяговых устройств с регулируемыми силой и направлением тяги, приводные реконфигурирующие модули, а также служебные модули, содержащие бортовую аппаратуру и оборудование, обеспечивающие функционирование робота по назначению. Каждый модуль выполнен с заданной степенью плавучести и остойчивости, так чтобы робот в любой конфигурации в целом обладал прогнозируемой плавучестью, а также каждый модуль имеет на основаниях корпусов механические и электрический интерфейсы, позволяющие соединять модули в произвольном порядке. Изобретение обеспечивает управляемость движения робота в любой конфигурации, повышение энергоэффективности системы тяговых модулей, упрощение конструкции модулей, операций изготовления и сборки робота в различных последовательностях соединения модулей и архитектуры системы управления роботом. 4 з.п. ф-лы, 8 ил.

Description

Изобретение относится к области мобильной робототехники, а именно к подводным роботам.
Известен амфибийный змееподобный робот по патенту CN №101746237, который представляет собой устройство, исполненное в виде змеи и обладающее амфибийными свойствами. Робот состоит из последовательно соединенных модулей с возможностью поворота смежных модулей относительно друг друга в двух плоскостях путем изменения углов рыскания и тангажа. Соединения модулей защищены водонепроницаемой растяжимой оболочкой. Оба концевых модуля робота защищены прозрачной пластиковой купольной крышкой.
Известно многозвенное транспортное средство по патенту RU№130916 ПМ. Полезная модель относится к транспортным средствам, способным передвигаться по поверхности различных сред, внутри труб или под водой. Транспортное средство содержит сочлененные между собой с возможностью углового смещения относительно друг друга звенья в виде полых цилиндров, конструкция которых обеспечивает отклонение их относительно друг друга в горизонтальной и вертикальной плоскостях, а также по отношению к головной части и хвостовой на определенные углы. Соединительные элементы устройства выполнены из двух шарнирно соединенных между собой частей.
Известны змееподобные подводные роботы такие как, например, по патентам CN №204149158, CN №103358305, CN №106346462, CN №105171722, которые используют аналогичные приведенным выше принципы организации движения и обладают рядом похожих особенностей их конструктивного исполнения.
Все приведенные выше подводные змееподобные роботы обладают рядом схожих недостатков. А именно, 1) конструктивная сложность реализации управляемого универсального шарнира в ограниченном объеме обуславливает ограниченность диапазонов угловых перемещений шарниров, особенно это относится к двухстепенным шарнирам, 2) для организации плавного движения, подобного змеевидному необходимо в состав робота включать большое число модулей, согласованное управление которыми для целенаправленного движения робота под водой представляет собой сложную задачу, которая в условиях неопределенности параметров подвижной среды многократно затрудняется, 3) энергозатратность одновременного вращения приводами шарниров для создания волнообразного движения робота отрицательно сказывается на длительности его автономной работы.
В качестве прототипа выбран подводный робот по патенту US №2018021945, который содержит набор модулей-звеньев, соединенных друг с другом соединительными модулями для изменения формы робота с целью реализации изгибного движения робота, и несущих несколько тяговых (упорных) устройств, при этом, одно из тяговых устройств, установленное на одном из концов робота, создает усилие вдоль оси робота для обеспечения продольного движения робота, а другие тяговые устройства размещены в тяговых модулях стационарно попарно и создают перпендикулярные друг другу и оси модуля тяговые усилия, предназначенные для управления направлением движения. Модули-звенья также могут оснащаться разного рода полезной нагрузкой, например, ТВ камерами и/или неким инструментом. Такая структура робота позволяет произвольно изменять форму робота и при необходимости фиксировать ее, т.е. реконфигурировать робот, а с помощью тяговых устройств, установленных на тяговых модулях, которые определенным образом распределены и сориентированы по длине робота, предполагается осуществлять направленное движение робота и управление перемещением и ориентацией рабочего инструмента.
Прототипу присущи недостатки, выявленные у чисто змееподобных подводных роботов, связанные с реализацией волнообразного принципа движения. В тоже время наличие ряда тяговых модулей, на одном из которых жестко установлено одно осевое тяговое устройство, а на других жестко установлены два поперечных тяговых устройства, при фиксированной взаимной ориентации тяговых модулей между собой в осевом направлении, задаваемой конструктивно при изготовлении и сборке робота, приводит, в ряде случаев, к принципиальной невозможности создания тяговыми устройствами требуемого воздействия (главного вектора сил и главного вектора моментов) для выполнения заданной функции по назначению, а именно, управляемого целенаправленного движения. Отмеченное обстоятельство существенно снижает эффективность практического применения данного робота.
Задачей изобретения является обеспечение управляемости движения робота в любой конфигурации, повышение энергоэффективности системы тяговых модулей, упрощение конструкции модулей, операций изготовления и сборки робота в различных последовательностях соединения модулей и архитектуры системы управления роботом.
Задача обеспечения управляемости движения робота в любой конфигурации решается следующим образом:
в состав робота включены тяговые модули, внешние корпуса которых выполнены в форме прямых круговых цилиндров с установленными на них парами тяговых устройств с регулируемой силой тяги, причем каждое тяговое устройство установлено на выходном валу размещенного внутри корпуса тягового модуля полнооборотного сервопривода, причем оси вращения поворотных сервоприводов перпендикулярны оси цилиндра тягового модуля, а направление усилия, создаваемого тяговым устройством, перпендикулярно оси вращения поворотных сервоприводов.
Кроме того, управляемость улучшается путем обеспечения контролируемой плавучести и остойчивости робота за счет конструктивно задаваемой плавучести и остойчивости жестких узлов модулей.
Задача повышения энергоэффективности решается путем снижения гидродинамических сил сопротивления за счет обеспечения замкнутости обтекаемого внешнего корпуса робота в любой конфигурации.
Этой же цели служит оснащение каждого модуля управляющим контроллером, позволяющим обрабатывать сигналы от датчиков модуля и внешних устройств и формировать сигналы для управления приводами модуля.
Задача упрощения конструкции модулей, операций изготовления и сборки робота в различных последовательностях соединения модулей и архитектуры системы управления роботом решается за счет конструкции реконфигурирующих модулей на основе одностепенного цилиндрического шарнира вращения, минимизации номенклатуры модулей, используемых при сборке робота, универсализации модулей за счет универсальности механических и электрических интерфейсов модулей и объединения модулей в сеть путем подсоединения к общей шине данных.
Сущность изобретения поясняется следующими рисунками и чертежами.
На фиг. 1 показан подводный реконфигурируемый модульный робот в конфигурации «торпеда», аксонометрия.
На фиг. 2 показан подводный реконфигурируемый модульный робот в конфигурации «торпеда» без внешних корпусов-обтекателей, аксонометрия.
На фиг. 3 показан тяговый модуль с развернутыми тяговыми устройствами, аксонометрия.
На фиг. 4 показан модуль продольной трансформации, аксонометрия.
На фиг. 5 показан модуль поперечной трансформации в двух конфигурациях.
На фиг. 6 показан подводный реконфигурируемый модульный робот в конфигурации «портал», аксонометрия.
На фиг. 7 показаны три ортогональные проекции эллиптического цилиндра с полуосями а и b образующего эллипса, усеченного плоскостью под углом γ, а) γ<30°, б) γ=45°, с) γ=60°.
На фиг. 8 показан пример последовательности реконфигурации робота из положения «торпеда» в положение «портал».
Подводный реконфигурируемый модульный робот включает в себя тяговые модули 1, реконфигурирующие продольные модули 2, реконфигурирующие поперечные модули 3, а также служебные модули 4, содержащие бортовую аппаратуру и оборудование, обеспечивающие функционирование робота по назначению. Внешние корпуса тяговых модулей 1 выполнены в форме прямых круговых цилиндров с установленными на внутреннем каркасе парами тяговых устройств 5 с регулируемой силой тяги, причем каждое тяговое устройство установлено на выходном валу 6 размещенного внутри корпуса тягового модуля полнооборотного сервопривода.
Реконфигурирующий продольный модуль 2, состоит из двух частей, связанных приводным одностепенным шарниром вращения, при этом продольные модули выполнены из двух частей 7, 8 с внешними корпусами в форме прямых цилиндров, в одной из которых 7 в отсеке внутреннего каркаса установлен полнооборотный сервопривод с осью вращения, совпадающей с осью цилиндра 9. В свою очередь, поперечный реконфигурирующий модуль выполнен из двух частей 10, 11 с внешними корпусами в форме прямых эллиптических цилиндров, усеченных проходящей под углом γ=arcsin(b/a) к их осям через большую ось образующего эллипса с большой а и малой Ь осями плоскостью, в одной из частей модуля 10 в отсеке внутреннего каркаса установлен полнооборотный сервопривод с осью вращения 12 (см фиг. 2), проходящей перпендикулярно плоскости через центр образованного кругового сечения с диаметром равным большой полуоси эллипса а. На фиг. 7 а, б, в схематично показаны примеры исполнения поперечных реконфигурирующих модулей с углами трансформации γ, равными 30°, 45° и 60°, с большой осью а равной 100 условным единицам и с малыми осями, соответственно, равными 50, 70, 71 и 86,6 условных единиц.
Для обеспечения плавности обтекания робота внешний корпус приводной части продольного модуля 7 также имеет эллиптическое сечение с большой а и малой b осями для стыковки с поперечными модулями, а внешний корпус второй части продольного модуля 8 и внешний корпус тягового модуля 1 имеют диаметры равные малой оси эллипса b, при этом на внешнем корпусе 7 установлены согласующие обтекатели 13.
Каждый модуль 1-4 имеет на основаниях корпусов механический и электрический интерфейс, позволяющий соединять модули в произвольном порядке. Герметичность электрических интерфейсов обеспечивается применением разъемов в герметичном исполнении.
Служебные модули 4 для обеспечения функционирования робота могут оснащаться, например, телекамерами, осветителями под прозрачными колпаками-обтекателями, захватными устройствами, гидролокаторами, регистраторами физических полей, устройствами связи, дополнительными источниками питания, устройствами изменения плавучести, манипуляторами и т.д.
Подводный реконфигурируемый модульный робот работает следующим образом.
Из модулей с использованием механических и электрических интерфейсов собирается в выбранном порядке желаемая конфигурация, например, конфигурация «торпеда» с соосным расположением модулей, как показано на Фиг. 2. Далее на внутренние корпуса устанавливаются обтекатели (см. Фиг. 1).
В этой конфигурации подводный робот может выполнять движение по задаваемому заранее или определяемому системой управления робота пространственному маршруту в пункт назначения. Для перемещения по маршруту робот использует винтовые тяговые устройства - импеллеры с управляемой ориентацией тяги за счет поворотов импеллеров сервоприводами тяговых модулей и регулирования силы тяги за счет скорости вращения самих винтов.
Для выполнения операций маневрирования вблизи объектов или в сложном рельефе робот может быть реконфигурирован с помощью модулей реконфигурации в конфигурацию, например, «портал» (см. Фиг. 8). Преимущество конфигурации «портал» состоит в возможности получить большее расстояние между центром давления и центром масс робота. Это обеспечивает лучшую остойчивость, меньшую частоту свободных колебаний. Управление перемещениями робота после перехода в конфигурацию «портал» выполняется с помощью регулирования тяги импеллеров и направления их осей. При необходимости для получения желаемого качества управления перемещением могут быть использованы также и приводы модулей реконфигурации.

Claims (5)

1. Подводный реконфигурируемый модульный робот, содержащий множество модулей, последовательно соединенных между собой, включающий тяговые модули, создающие тягу с помощью установленных на них тяговых устройств, приводные реконфигурирующие модули, а также служебные модули, содержащие бортовую аппаратуру и оборудование, обеспечивающие функционирование робота по назначению, отличающийся тем, что внешние корпуса тяговых модулей выполнены в форме прямых круговых цилиндров с установленными на них парами тяговых устройств с регулируемой силой тяги, причем каждое тяговое устройство установлено на выходном валу размещенного внутри корпуса тягового модуля полнооборотного сервопривода, а оси вращения поворотных сервоприводов перпендикулярны оси цилиндра тягового модуля, при этом направление усилия, создаваемого тяговым устройством, перпендикулярно оси вращения поворотных сервоприводов; реконфигурирующие продольные и/или поперечные модули, состоящие из двух частей, связаны приводным одностепенным шарниром вращения; продольные модули выполнены из двух частей с внешними корпусами в форме прямых цилиндров, в одной из которых установлен полнооборотный сервопривод с осью вращения, совпадающей с осью цилиндра, а поперечные модули выполнены из двух частей с внешними корпусами в форме прямых эллиптических цилиндров, усеченных проходящей под углом γ=arcsin(b/a) к их осям через большую ось образующего эллипса с большой а и малой b осями плоскостью, в одной из которых установлен полнооборотный сервопривод с осью вращения, проходящей перпендикулярно плоскости через центр образованного кругового сечения.
2. Подводный реконфигурируемый модульный робот по п. 1, отличающийся тем, что каждый жесткий узел модуля выполнен с заданной степенью плавучести и остойчивости, так чтобы робот в любой конфигурации в целом обладал прогнозируемой плавучестью.
3. Подводный реконфигурируемый модульный робот по п. 1, отличающийся тем, что каждый модуль имеет на основаниях корпусов механический и электрический интерфейсы, позволяющие соединять модули в произвольном порядке.
4. Подводный реконфигурируемый модульный робот по п. 1, отличающийся тем, что каждый модуль содержит управляющий контроллер, позволяющий обрабатывать сигналы от датчиков модуля и внешних устройств и формировать сигналы для управления приводами модуля.
5. Подводный реконфигурируемый модульный робот по п. 1, отличающийся тем, что контроллеры модулей подключены к общей шине данных и могут обмениваться адресованной информацией между собой.
RU2022101615A 2022-01-24 Подводный реконфигурируемый модульный робот RU2772503C1 (ru)

Publications (1)

Publication Number Publication Date
RU2772503C1 true RU2772503C1 (ru) 2022-05-23

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118144963A (zh) * 2024-05-07 2024-06-07 青岛哈尔滨工程大学创新发展中心 一种具有双重锁紧功能的对接锁紧模块及分离式水下对接机器人

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201342916Y (zh) * 2008-12-19 2009-11-11 中国科学院沈阳自动化研究所 水陆两栖蛇形机器人
RU130916U1 (ru) * 2013-05-23 2013-08-10 Федеральное государственное бюджетное учреждение науки Институт проблем механики им. А.Ю. Ишлинского Российской академии наук (ИПМех РАН) Многозвенное транспортное средство
CN103358305A (zh) * 2013-06-17 2013-10-23 西安电子科技大学 可闭环控制的多功能水中蛇形机器人
CN105171722A (zh) * 2015-10-26 2015-12-23 冯亿坤 仿鳗鱼水下多自由度机器人
CN105313110A (zh) * 2014-07-16 2016-02-10 中国科学院沈阳自动化研究所 一种水下滑翔蛇形机器人
WO2016120071A1 (en) * 2015-01-29 2016-08-04 Norwegian University Of Science And Technology (Ntnu) Underwater manipulator arm robot
CN106346462A (zh) * 2016-09-19 2017-01-25 哈尔滨工业大学深圳研究生院 一种模块化关节的蛇形两栖机器人
WO2021170855A1 (de) * 2020-02-28 2021-09-02 Rosen Swiss Ag Modulares unterwasserfahrzeug mit zueinander ausrichtbaren modulen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201342916Y (zh) * 2008-12-19 2009-11-11 中国科学院沈阳自动化研究所 水陆两栖蛇形机器人
RU130916U1 (ru) * 2013-05-23 2013-08-10 Федеральное государственное бюджетное учреждение науки Институт проблем механики им. А.Ю. Ишлинского Российской академии наук (ИПМех РАН) Многозвенное транспортное средство
CN103358305A (zh) * 2013-06-17 2013-10-23 西安电子科技大学 可闭环控制的多功能水中蛇形机器人
CN105313110A (zh) * 2014-07-16 2016-02-10 中国科学院沈阳自动化研究所 一种水下滑翔蛇形机器人
WO2016120071A1 (en) * 2015-01-29 2016-08-04 Norwegian University Of Science And Technology (Ntnu) Underwater manipulator arm robot
CN105171722A (zh) * 2015-10-26 2015-12-23 冯亿坤 仿鳗鱼水下多自由度机器人
CN106346462A (zh) * 2016-09-19 2017-01-25 哈尔滨工业大学深圳研究生院 一种模块化关节的蛇形两栖机器人
WO2021170855A1 (de) * 2020-02-28 2021-09-02 Rosen Swiss Ag Modulares unterwasserfahrzeug mit zueinander ausrichtbaren modulen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118144963A (zh) * 2024-05-07 2024-06-07 青岛哈尔滨工程大学创新发展中心 一种具有双重锁紧功能的对接锁紧模块及分离式水下对接机器人

Similar Documents

Publication Publication Date Title
CN111746764B (zh) 生物启发式水下机器人
Mehling et al. A minimally invasive tendril robot for in-space inspection
CN113232804A (zh) 一种模块化水下蛇形机器人
Guo et al. Development of an amphibious mother spherical robot used as the carrier for underwater microrobots
Zhang et al. Development of a low-cost flexible modular robot GZ-I
CN212605739U (zh) 一种蝠鲼机器人
CN110861454A (zh) 一种可重构空潜两栖机器人
RU2772503C1 (ru) Подводный реконфигурируемый модульный робот
CN111687823A (zh) 一种带有螺旋驱动的水陆三栖蛇形机器人
CN220562927U (zh) 一种模块化水下蛇形机器人
CN113734390A (zh) 一种柔性体波动鳍水下机器人
CN115367085A (zh) 一种多模块水下斡旋龙型机器人
JPS6116192A (ja) 水中作業ロボツト
CN113148079A (zh) 一种水下作业自主航行机械臂
Pagliai et al. Design of a reconfigurable autonomous underwater vehicle for offshore platform monitoring and intervention
US20230158665A1 (en) Modular robotic structure
CN218172558U (zh) 一种仿生墨鱼潜水器
CN110816793A (zh) 一种水下机器人及其工作方法
Koti et al. Development of fin propelled unmanned underwater drone
Lyu et al. A Snake Eel Inspired Multi-joint Underwater Inspection Robot for Undersea Infrastructure Intelligent Maintenance
CN109866902A (zh) 一种单螺旋桨矢量推进装置
US11518552B2 (en) Omni-directional extensible grasp mechanisms
WO2018006145A1 (pt) Aperfeiçoamento em mecanismo de movimentação de robô cobra
CN112660345A (zh) 一种六自由度水下检测机器人
Hu et al. Modular design and motion control of reconfigurable robotic fish