RU2768135C1 - Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем - Google Patents

Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем Download PDF

Info

Publication number
RU2768135C1
RU2768135C1 RU2021111334A RU2021111334A RU2768135C1 RU 2768135 C1 RU2768135 C1 RU 2768135C1 RU 2021111334 A RU2021111334 A RU 2021111334A RU 2021111334 A RU2021111334 A RU 2021111334A RU 2768135 C1 RU2768135 C1 RU 2768135C1
Authority
RU
Russia
Prior art keywords
pipeline
pressure
well
cleaning device
deposits
Prior art date
Application number
RU2021111334A
Other languages
English (en)
Inventor
Фанзиль Мавлявиевич Мугаллимов
Ильдар Фанзилевич Мугаллимов
Азат Фанзилевич Мугаллимов
Булат Фанзилевич Мугаллимов
Original Assignee
Фанзиль Мавлявиевич Мугаллимов
Ильдар Фанзилевич Мугаллимов
Азат Фанзилевич Мугаллимов
Булат Фанзилевич Мугаллимов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Фанзиль Мавлявиевич Мугаллимов, Ильдар Фанзилевич Мугаллимов, Азат Фанзилевич Мугаллимов, Булат Фанзилевич Мугаллимов filed Critical Фанзиль Мавлявиевич Мугаллимов
Priority to RU2021111334A priority Critical patent/RU2768135C1/ru
Application granted granted Critical
Publication of RU2768135C1 publication Critical patent/RU2768135C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/003Determining well or borehole volumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Pipeline Systems (AREA)

Abstract

Изобретение относится к области транспортирования по трубопроводам нефти и газа и предназначено для обнаружения и локализации мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем. Техническая задача, решаемая посредством предлагаемого способа, состоит в повышении точности определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем по всей его протяженности с их привязкой к конкретным географическим координатам. Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем заключается в том, что внутри трубопровода перемещают очистное устройство с установленным в нем электронным прибором. Электронный прибор проводит измерения и записи давления перекачиваемого продукта P1 перед очистным устройством и давления Р2 после него (сзади очистного устройства) с заданной дискретностью с привязкой этих значений к конкретным географическим координатам трубопровода. После прогона по трубопроводу и извлечения из него очистного устройства с электронным прибором производят перезапись данных из памяти прибора в персональный компьютер и строят графики давлений перекачиваемого продукта P1 перед очистным устройством, давления Р2 после него, а также дифференциального давления ΔР=Р2-P1. По пиковым изменениям амплитуды давления P1 перед очистным устройством и давления Р2 после него, а также дифференциального давления ΔР=Р2-Р1, а также по одновременному изменению (увеличению) давления P1 перед очистным устройством и давления Р2 после него делают вывод о местах асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем. 2 ил.

Description

Изобретение относится к области транспортирования по трубопроводам нефти, газа и нефтепродуктов и предназначено для обнаружения и локализации мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем.
Определение и локализация мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем является актуальной задачей, так как данные отложения являются одним из факторов, влияющих на режим перекачки нефти и газа, безопасность и эффективность эксплуатации трубопроводов и охрану окружающей среды. В местах значительного сужения проходного сечения из-за асфальтосмолистых и парафиновых отложений возможна закупорка проходного сечения трубопровода вплоть до полной остановки перекачки продукта.
Известен способ измерения проходного сечения трубопроводов, заключающийся в том, что с помощью первого ультразвукового преобразователя, размещенного на внешней поверхности трубопровода, вводят ультразвуковые колебания по нормали к наружной поверхности трубопровода через стенку трубопровода, отложения на внутренней поверхности трубопровода и проходное сечение, заполненное жидкостью, принимают этим же ультразвуковым преобразователем отраженные от границы раздела между жидкостью и противоположной внутренней поверхностью трубы с отложениями ультразвуковые колебания и измеряют время их прохождения, после чего с помощью второго ультразвукового преобразователя, установленного на внешней поверхности трубопровода диаметрально противоположно первому ультразвуковому преобразователю, излучают ультразвуковые колебания в сторону первого ультразвукового преобразователя, принимают отраженные от границы раздела между жидкостью и противоположной внутренней поверхности трубы с отложениями ультразвуковые колебания и измеряют время их прохождения, затем измеряют время прохождения ультразвуковых колебаний от первого до второго ультразвукового преобразователя и определяют проходное сечение трубы. (Патент РФ №2115090, МПК G01В 17/02, опубл. 10.07.1998 г.).
Недостатком известного способа является высокая трудоемкость и стоимость проведения измерения, связанные с необходимостью проведения земляных работ, необходимость неоднократного проведения измерений для определения места минимального проходного сечения трубопровода, так как места проведения измерений назначаются заранее, опираясь на теоретические предположения, а также невозможность применения известного способа на действующих газопроводах.
Известен способ и устройство для измерения толщины любого отложения материала (например, парафина) на внутренней стенке конструкции (трубопровода), заключающийся в том, что нагревают участок конструкции, детектируют колебания на нагретом участке, детектируют колебания на ненагретом участке конструкции, определяют резонансную частоту или частоты конструкции на основании детектированных колебаний и определяют толщину отложения материала на внутренней стенке конструкции на упомянутом ненагретом участке с использованием определенной резонансной частоты или частот. (Патент RU №2521149, МПК G01B 17/02, опубл. 27.06.2014 г.).
Недостатком известного способа для определения толщины отложения в конструкции (в трубопроводе) является высокая трудоемкость и стоимость проведения измерения, связанные с необходимостью проведения земляных работ, сложность аппаратурного исполнения и необходимость неоднократного проведения измерений для определения места с наибольшей толщиной отложения парафина в трубопроводе, так как место проведения измерения назначают заранее, опираясь на теоретические предположения.
Известен способ определения толщины грязепарафиновых отложений в нефтепроводе по интенсивности передачи теплоты (коэффициенту теплопередачи) транспортируемой нефтью внутренней стенке нефтепровода. Для этого, используя тепло нефти в качестве источника тепла, измеряют однонаправленные тепловые потоки в двух теплоотводящих элементах, установленных на наружной поверхности нефтепровода в различных ее точках, измеряют температуры наружной стенки нефтепровода в местах установки теплоотводящих элементов, а также температуру нефти. Поскольку толщина и теплопроводность стенки нефтепровода известны, определяют толщину слоя грязепарафиновых отложений. (Патент №2099632, МПК F17D/00, опубл. 20.12.1997 г.)
Недостатком известного способа является высокая трудоемкость и стоимость определения толщины отложений, связанные с необходимостью проведения земляных работ, необходимость неоднократного проведения измерений для определения места с наибольшей толщиной отложения парафина в трубопроводе, так как место проведения измерений назначается заранее, опираясь на теоретические предположения, ограничение применения известного способа по температуре нефти и температуре окружающей среды. Также недостатком известного способа является то, что его реализация связана с нарушением целостности трубопровода.
Наиболее близким к заявляемому является способ определения загрязнений магистральных трубопроводов путем измерения давления в начале и конце исследуемого участка. Согласно известному способу, с целью определения места загрязнения исследуемый участок делят пополам, измеряют давление в начале и в конце каждой половины, дополнительно измеряют в тех же точках температуру окружающей среды, температуру и плотность теплового потока на наружной поверхности трубопровода, рассчитывают в этих точках температуру на наружной поверхности трубопровода, сопоставляют рассчитанные значения температур с измеренными и определяют загрязненную половину участка, на которой указанные выше операции повторяют до тех пор, пока обе половины не окажутся загрязненными. (Авторское свидетельство SU 1247624, F17D 5/00, 30.07.1986 г.).
Недостатком известного способа является высокая трудоемкость и стоимость проведения измерений, связанные с необходимостью проведения земляных работ и невысокая точность в количественном определении толщины отложений. Также недостатком известного способа является то, что его реализация связана с нарушением целостности трубопровода.
Техническая задача, решаемая посредством предлагаемого способа, состоит в повышении точности определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем по всей его протяженности с их привязкой к конкретным географическим координатам.
Указанный технический результат достигается тем, что в способе определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем путем измерения давления в трубопроводе, согласно изобретению, внутри трубопровода в потоке перекачиваемого продукта перемещают очистное устройство с установленным в нем электронным прибором, выполненным с возможностью измерения и регистрации данных в памяти электронного прибора. Электронный прибор проводит измерения и записи давления перекачиваемого продукта Р1 перед очистным устройством и давления Р2 после него (сзади очистного устройства) с заданной дискретностью с привязкой этих значений к конкретным географическим координатам трубопровода. После прогона по трубопроводу и извлечения из него очистного устройства с электронным прибором производят перезапись данных из памяти прибора в персональный компьютер и строят графики давлений перекачиваемого продукта Р1 перед очистным устройством, давления Р2 после него, а также дифференциального давления ΔР=Р21. По пиковым изменениям амплитуды давления P1 перед очистным устройством и давления Р2 после него, а также дифференциального давления ΔР=Р21, а также по одновременному изменению (увеличению) давления Pi перед очистным устройством и давления Р2 после него делают вывод о местах асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем.
На фиг. 1 и 2 представлены графики давления перекачиваемого продукта P1 перед очистным устройством (график под номером 2) и давления Р2 после него (график под номером 1), а также дифференциального давления ΔР=Р21 (график под номером 3).
Способ осуществляют следующим образом.
Очистное устройство с установленным в нем электронным прибором, выполненным с возможностью измерения и регистрации данных в памяти электронного прибора, под давлением перекачиваемой среды перемещается внутри трубопровода по всему участку от камеры запуска до камеры приема средств очистки и диагностики. При этом электронный прибор производит измерения и запись в реальном времени в электронную твердотельную память давления P1 перед очистным устройством и давления Р2 после очистного устройства (по ходу движения) с заданной дискретностью, например, через каждую секунду.
Для точной привязки измеренных значений давлений к конкретным географическим координатам трубопровода проводится сопровождение очистного устройства, при котором оператором фиксируется реальное (текущее) время включения электронного прибора (начало записи данных), время начала движения очистного устройства в трубопроводе (время его выхода из камеры запуска средств очистки и диагностики), время прохождения очистным устройством заранее выбранных пунктов контроля по трассе трубопровода, время его прихода в камеру приема средств очистки и диагностики, и таким образом, производится привязка записанных значений давлений к конкретным географическим координатам трубопровода.
После пропуска и извлечения очистного устройства с электронным прибором для измерения и регистрации данных информация из памяти прибора переписывается в компьютер, где с помощью программы второго уровня данные измерений представляются в табличном виде и в виде графиков изменения давления Р1 перед очистным устройством и давления Р2 после очистного устройства, а также дифференциального давления ΔР=Р2-P1 с точной привязкой этих значений к конкретным географическим координатам трубопровода.
Привязка регистрированных значений давления P1 перед очистным устройством и давления Р2 после очистного устройства, а также дифференциального давления ΔР=Р2-P1 к конкретным географическим координатам трубопровода после пропуска и извлечения очистного устройства с электронным прибором из трубопровода производится (например, для первой запорной арматуры) путем сопоставления реального времени прохождения очистным устройством первой запорной арматуры по направлению потока продукта (это время регистрируется оператором при его сопровождении) с временем, определяемым, как разница между временем включения электронного устройства и временем, при котором электронным устройством зарегистрирован факт прохождения очистным устройством той же первой запорной арматуры. Для следующей (второй) запорной арматуры - путем сопоставления реального времени прохождения очистным устройством второй запорной арматуры по направлению потока продукта (это время также регистрируется оператором при его сопровождении) с временем, определяемым, как разница между временем включения электронного устройства и временем, при котором электронным устройством зарегистрирован факт прохождения очистным устройством второй запорной арматуры, и так далее по всем географическим точкам сопровождения очистного устройства по трубопроводу.
Пример осуществления способа.
Был проведен пропуск очистного устройства с размещенным в нем электронным прибором для измерения и регистрации давлений в нефтепроводе. Данные о давлении в нефтепроводе Р1 до и давлении Р2 после очистного устройства (по ходу движения), а также дифференциального давления ΔР по всей длине нефтепровода были записаны в электронную память с дискретностью 1 секунда.
После обработки данных из построения графиков давлений P1 и Р2, а также дифференциального давления ΔР (см. фиг. 1) видно несколько значительных изменений амплитуды ΔР (давления преобразованы в значения удельного напора Hi нефти).
Так, на фиг. 1 можно наблюдать несколько значительных (пиковых) изменений амплитуды ΔР: а) 30 м напора на 500 метре нефтепровода по длине (начало нефтепровода); б) 40 м напора на 6000 метре; в) 35 м напора на 10000 метре; г) 32 м напора на 14370 метре; д) 35 м напора на 19817 метре и е) 32 м напора на 23123 метре трубопровода (конец нефтепровода), которые совпадают по времени регистрации со временем прохождения очистного устройства через клиновые линейные задвижки нефтепровода.
Кроме того, на графике (фиг. 2) зарегистрированы значительные изменения давлений P1 и Р2, а также дифференциального давления ΔР, которые указывают на места асфальтосмолистых и парафиновых отложений в нефтепроводе: с 1250 по 1480 метр нефтепровода, с 2100 по 2280 метр и, примерно, начиная с 3200 метра по 5900 метр нефтепровода.
Применение способа позволит определить места скоплений асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем с привязкой к конкретным географическим координатам, определить величину и скорость нарастания отложений на стенках трубопровода при сравнивании результатов нескольких прогонов очистного устройства с электронным прибором в трубопроводе, определить влияние режима транспортировки на возможность и скорость внутритрубных отложений и подобрать оптимальные временные интервалы для очистки трубопровода, влияющие на режим перекачки нефти и газа, что приведет к повышению уровня безопасности и эффективности эксплуатации трубопроводов и охраны окружающей среды.

Claims (1)

  1. Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем путем измерения давления в трубопроводе, отличающийся тем, что внутри трубопровода перемещают очистное устройство с установленным в нем электронным прибором, выполненным с возможностью измерения и регистрации давления перекачиваемого продукта P1 перед очистным устройством и давления Р2 после него, а также дифференциального давления ΔР=Р21 с заданной дискретностью с привязкой этих значений к конкретным географическим координатам трубопровода; из построенных графиков давлений по пиковым изменениям амплитуды давления Р1 перед очистным устройством и давления Р2 после него, а также дифференциального давления ΔР=Р2-P1, а также по одновременному увеличению давления P1 перед очистным устройством и давления Р2 после него делают вывод о местах асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем.
RU2021111334A 2021-04-20 2021-04-20 Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем RU2768135C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021111334A RU2768135C1 (ru) 2021-04-20 2021-04-20 Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021111334A RU2768135C1 (ru) 2021-04-20 2021-04-20 Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем

Publications (1)

Publication Number Publication Date
RU2768135C1 true RU2768135C1 (ru) 2022-03-23

Family

ID=80819266

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021111334A RU2768135C1 (ru) 2021-04-20 2021-04-20 Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем

Country Status (1)

Country Link
RU (1) RU2768135C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062361A (ja) * 1996-08-19 1998-03-06 Toshiba Corp 配管設備の異常検出方法及び異常診断装置
RU2601348C1 (ru) * 2015-10-06 2016-11-10 Ильдар Зафирович Денисламов Способ оценки объема отложений в трубопроводе
CN109642877A (zh) * 2016-08-22 2019-04-16 巴斯夫欧洲公司 用于对设备的管道系统中的沉积物进行识别的方法和装置
RU2728011C1 (ru) * 2019-12-16 2020-07-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Способ количественной диагностики отложений в трубопроводе

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062361A (ja) * 1996-08-19 1998-03-06 Toshiba Corp 配管設備の異常検出方法及び異常診断装置
RU2601348C1 (ru) * 2015-10-06 2016-11-10 Ильдар Зафирович Денисламов Способ оценки объема отложений в трубопроводе
CN109642877A (zh) * 2016-08-22 2019-04-16 巴斯夫欧洲公司 用于对设备的管道系统中的沉积物进行识别的方法和装置
RU2728011C1 (ru) * 2019-12-16 2020-07-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Способ количественной диагностики отложений в трубопроводе

Similar Documents

Publication Publication Date Title
Rui et al. A new model to evaluate two leak points in a gas pipeline
US9011608B2 (en) Method and device for measuring deposit thickness
US6561032B1 (en) Non-destructive measurement of pipe wall thickness
US10634536B2 (en) Method and system for multi-phase flow measurement
US8447532B1 (en) Metallic constructions integrity assessment and maintenance planning method
CA3025158C (en) Method for identifying and measuring volume fraction constituents of a fluid
NO313896B1 (no) FremgangsmÕte og anordning for detektering av avleiringer i et rör
CA3025153C (en) Apparatus for identifying and measuring volume fraction constituents of a fluid
WO2012011831A1 (en) System and method for determination of desposits in multi-phase fluid flow
GB2423562A (en) Determining pipe leak location and size
EP0047032B1 (en) A method for determination of internal pipeline or tubing corrosion
US20170350843A1 (en) Probe for Indentifying and Measuring Volume Fraction Constituents of a Fluid
Zhang et al. Impedance estimation along pipelines by generalized reconstructive method of characteristics for pipeline condition assessment
RU2768135C1 (ru) Способ определения мест асфальтосмолистых, парафиновых и других отложений в трубопроводе, а также вмятин и сужений в нем
GB2305989A (en) Pipeline condition monitoring system and apparatus
RU2445545C1 (ru) Способ определения объема отложений в трубопроводе
RU2694466C1 (ru) Система очистки и электромагнитной диагностики техсостояния стальных трубопроводов
Saifullin et al. Methods of Leak Search from Pipeline for Acoustic Signal Analysis
US11262323B2 (en) Method for identifying and characterizing a condensate entrained within a fluid
Stewart et al. Pipeline blockage location by pressure wave analysis
Pavić Experimental identification of physical parameters of fluid-filled pipes using acoustical signal processing
RU2809174C1 (ru) Способ обнаружения линейной координаты утечки в газопроводе
Chen et al. Monitoring the Cumulative Process of Corrosion Defects at the Elbow of a Welded Pipe Using Magnetostrictive-Based Torsional Guided Waves
Pal et al. Estimation of Deposit Thickness in Single-Phase Liquid Flow Pipeline Using Finite Volume Modelling
EP3850349B1 (en) Method for identifying and characterizing a condensate entrained within a fluid