RU2766464C1 - Насосно-компрессорная труба с теплоизоляционным покрытием - Google Patents

Насосно-компрессорная труба с теплоизоляционным покрытием Download PDF

Info

Publication number
RU2766464C1
RU2766464C1 RU2021120247A RU2021120247A RU2766464C1 RU 2766464 C1 RU2766464 C1 RU 2766464C1 RU 2021120247 A RU2021120247 A RU 2021120247A RU 2021120247 A RU2021120247 A RU 2021120247A RU 2766464 C1 RU2766464 C1 RU 2766464C1
Authority
RU
Russia
Prior art keywords
pipe
heat
tubing
hic
insulating coating
Prior art date
Application number
RU2021120247A
Other languages
English (en)
Inventor
Андрей Юрьевич Дубровин
Олег Геннадиевич Харитонов
Александр Николаевич Калушев
Original Assignee
Андрей Юрьевич Дубровин
Дубровина Оксана Викторовна
Дубровин Артём Андреевич
Власов Василий Владимирович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей Юрьевич Дубровин, Дубровина Оксана Викторовна, Дубровин Артём Андреевич, Власов Василий Владимирович filed Critical Андрей Юрьевич Дубровин
Priority to RU2021120247A priority Critical patent/RU2766464C1/ru
Application granted granted Critical
Publication of RU2766464C1 publication Critical patent/RU2766464C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems

Abstract

Изобретение относится к нефтегазовой промышленности, а именно к конструкциям насосно-компрессорных труб (НКТ) с теплоизоляционным покрытием (ТИП), и может быть использовано для строительства из стыкуемых друг с другом НКТ теплоизолированных колонн в нефтегазовой промышленности для нагнетания в углеводородсодержащий пласт рабочего агента воздействия (РАВ), например перегретого до 350 градусов водяного пара. НКТ с ТИП содержит трубу, на наружной поверхности которой размещено ТИП, закрытое сверху защитным кожухом, по торцам которого расположены крышки, а также две теплоизолированные зоны захвата и размещенные на резьбовых частях торцов трубы соединительные элементы. ТИП включает керамический шнур и литьевой композиционный материал из мелкодисперсных полых микросфер, изготовленных из фенолформальдегида или стекла, и полимеризующегося связующего в виде эпоксидной смолы при соотношении компонентов (3-5):1. После отверждения ТИП создает монолитный блок с трубой и кожухом на участке трубы между зонами захвата, которые теплоизолированы полускорлупами, зафиксированными стрип-лентами. Обеспечиваются высокие теплоизолирующие свойства НКТ при простоте и надежности ее конструкции, ремонтопригодности и долговечности при эксплуатации, а также снижение трудоемкости при монтажно-демонтажных операциях сборки/разборки колонны. 4 з.п. ф-лы, 3 ил.

Description

Изобретение относится к нефтегазовой промышленности, а именно к конструкциям насосно-компрессорных труб (НКТ) с теплоизоляционным покрытием (ТИП) и может быть использовано для строительства из стыкуемых друг с другом НКТ теплоизолированных колонн в нефтегазовой промышленности для нагнетания в углеводородсодержащий пласт рабочего агента воздействия (РАВ), например, перегретого до 350 градусов водяного пара.
В настоящее время увеличивается количество скважин с трудно извлекаемой тяжёлой нефтью. В связи с этим практикуется закачка по колонне НКТ в продуктивный пласт РАВ в течение длительного времени для разжижения нефти и увеличения дебита скважин в последующем.
Для реализации таких технологий требуются НКТ, обладающие высокими теплоизолирующими свойствами для снижения тепловых потерь РАВ, простоту эксплуатации и изготовления, а также ремонтопригодность на существующих базах нефтедобывающих предприятий.
Для решения таких проблем используют различные конструкции НКТ, в том числе с многослойными ТИП на наружной поверхности трубы. Однако проблемы остаются: нарушение целостности ТИП в зоне захвата зажимами гидравлического ключа или спайдера при работе с колонной, повреждение ТИП при хранении и перевозке между объектами нефтедобычи, а также при спускоподъемных операциях, невозможность провести ремонт крепёжных элементов НКТ без повреждения ТИП, что требует его полной замены.
Рассмотрим несколько типичных конструкций НКТ с ТИП.
Известна теплоизолированная колонна НКТ [Патент RU № 2129202, МПК Е21В 17\00, опубл 20.04.1999], включающая внутреннюю трубу с расположенной на ней многослойной экранной изоляцией, наружную трубу и муфту. Внутренняя труба выполнена цельной с высаженными профилированными концами, наружная труба перед монтажом сжата вдоль оси на 9-12 мм имеет на концах конусно-упорную резьбу и снабжена герметизированным вакуумно-плотным швом, седлом и клапаном, внутренняя и наружные трубы выполнены из одного материала и по торцам обварены вакуумно-плотными швами, на многослойной экранной изоляции размещены центрирующие кольца, между слоями многослойной экранной изоляции размещён газопоглотитель, а в межтрубном пространстве создан вакуум, при этом муфта навёрнута на наружную трубу, а уплотнительная втулка поджимает профилированные концы внутренней трубы к наружной трубе.
Существенным недостатком известной конструкции является сложность сохранения вакуума в межтрубном пространстве из-за знакопеременных температурных деформаций при работе, требование постоянного контроля величины вакуума через клапан. Наличие сварных швов приводит к изменению структуры металла в зонах нагрева и ослаблению конструкции при осевом нагружении, а наличие наружной трубы утяжеляет колонну в целом.
Известна труба теплоизолированная [Патент RU № 121855, МПК Е21В 17\00, опубл. 2012г.], включающая размещённое на трубе теплоизоляционное покрытие, содержащее теплоотражающий и теплоизолирующий слои, слой базальтового полотна, покрытый теплоотражающим слоем, причём покрытие дополнительно содержит наружный защитный слой и второй теплоотражающий слой, теплоизолирующий слой размещён между теплоотражающими слоями, а на наружном теплоотражающем слое размещён защитный наружный слой, при этом теплоотражающие слои выполнены из алюминиевой фольги, а в качестве теплоизолирующего материала используют мультикремнезёмистый войлок, защитный слой представляет трубу из полипропилена, а между теплоотражающим покрытием и защитным покрытием размещён слой стеклопластика.
В результате анализа известного решения необходимо отметить, что теплоизолирующее покрытие, состоящее из большого количества слоёв, весьма сложно и трудоёмко в изготовлении учитывая длину НКТ до 9 метров. Это способствует браку в виде несплошностей и переменной теплопроводности по длине НКТ в результате. Недостатком также является отсутствие в конструкции специально выполненных зон захвата инструментами при сборке таких НКТ в колонну, что ведёт к повреждению ТИП и сокращению срока службы НКТ.
Известна НКТ с теплоизоляционным покрытием [Патент RU № 2704405, МПК Е21В 17\00, опубл. 2018г.]. В данной конструкции на трубе имеется ТИП, закрытое сверху кожухом. Две теплоизолированные зоны захвата трубы инструментом при монтаже-демонтаже, а также размещённые на торцах трубы соединительные элементы, предназначенные для стыковки труб при сборе их в колонну. При этом зоны захвата образованы дисками, приваренными к трубе и к кольцам с пластинами, причём между кольцами и защитным кожухом имеется гофрированный участок для компенсации температурных деформаций. В качестве ТИП использован материал «microtehrm» из пирогенного диоксида кремния.
Изучение конструкции показывает, что труба НКТ имеет зоны сварки дисков, ослабляющие материал путём изменения его структуры и создания концентраторов напряжений. Оформление зоны захвата многочисленными деталями (проставки, гильзы), в том числе из редкого материала (висмут), ведёт к увеличению трудозатрат при стыковке труб в колонну и снижает эксплуатационную надёжность. Неясным является вопрос о применении в качестве ТИП диоксида кремния, который является порошком. Очевидно, что изготовление из него колец, одеваемых на трубу, возможно при наличии связующего, имеющего высокую термостойкость. Предложенная конструкция сложна в изготовлении и содержит элементы повышенной точности, что ведёт к удорожанию НКТ в целом.
Известна НКТ с ТИП, содержащая трубу из легированной стали с соединительными элементами на её концах в виде резьбовых поверхностей, принятая за прототип [Патент RU № 156386, МПК F16L 59\00, опубл. 2015г.]
На наружной поверхности трубы сформировано многослойное ТИП. На поверхности трубы образованы две имеющие аналогичное конструктивное исполнение зоны захвата, предназначенные для воздействия инструментом при монтаже-демонтаже колонны НКТ. Каждая зона содержит металлический каркас, закреплённый сваркой на наружной поверхности трубы. На каркасе, приваркой к нему продольных и поперечных рёбер, образованы ячейки для ТИП.
В качестве ТИП могут применяться разные материалы, например, базальт.
На каркас с ТИП надет защитный кожух для сохранения ТИП при захвате, например, гидравлическим ключом. На кожух намотаны слои теплоотражающего материала (алюминиевая фольга) и стеклопластиковой оболочки, а на последнюю - тонкая стальная сетка. Сетка на оболочке фиксируется полимерным связующим. Слой сетки предохраняет защитную оболочку от повреждений стальными губками гидравлического ключа или спайдера.
Недостатками данного решения является многоэлементность таких зон в виде закреплённого на наружной поверхности трубы каркаса с обращёнными наружу рёбрами, не позволяет прикладывать к таким зонам высоких нагрузок. Это приводит к разрушению в месте контакта помещённых на каркас теплоизолирующих слоёв и деформированию размещённого в ячейках каркаса ТИП.
Наружная поверхность НКТ при спускоподъёмных операциях из-за непрямолинейности обсадной колонны скважины контактирует с ней, что ведёт к преждевременному износу - центраторы не предусмотрены. Кроме того, НКТ по данному патенту также имеет места сварки, недостатки чего указаны выше.
Соединение труб в колонну проходит через резьбовую муфту. Таким образом, ТИП на ней отсутствует и возникают теплопотери на этом участке.
В процессе эксплуатации НКТ подвержена частой сборке в колонну и обратному демонтажу. В результате коническая резьба изнашивается и требует ремонта. Обсуждаемая конструкция не позволяет провести ремонт удалением дефектной резьбы и создания новой, так как это ведёт к нарушению каркаса, ТИП и защитного кожуха. Восстановление конструкции крайне трудоёмко.
Всё вышеприведённое снижает срок эксплуатации НКТ.
Технический результат - создание НКТ с ТИП, обладающей высокими теплоизолирующими свойствами при простоте и надёжности конструкции, ремонтопригодности и долговечности при эксплуатации, а также снижение трудоёмкости при монтажно-демонтажных операциях сборки/разборки колонны.
Указанный технический результат обеспечивается тем, что насосно-компрессорная труба с теплоизоляционным покрытием содержит трубу, на наружной поверхности которой размещено теплоизоляционное покрытие, закрытое сверху защитным кожухом, по торцам которого расположены крышки, а также две теплоизолированные зоны захвата и размещённые на резьбовых частях торцов трубы, соединительные элементы (муфты). Теплоизоляционное покрытие включает два термобарьерных слоя. Первый термобарьерный слой – это керамический шнур, второй термобарьерный слой – это литьевой композиционный материал. Теплоизоляционное покрытие создает после отверждения монолитный блок с трубой и кожухом на участке трубы между зонами захвата, которые теплоизолируются полускорлупами, зафиксированными на соединительном элементе стрип-лентами.
Особенностями является то, что литьевой композиционный материал выполнен с использованием полых микросфер и связующего материала (эпоксидная смола) при соотношении компонентов 3-5:1. Полускорлупы содержат центраторы, защитный кожух и вкладыш, которые соединены в монолитный блок после отверждения литьевого композиционного материала и стянуты стрип-лентой, не выступающей за наружный габарит цетраторов. Причем керамический шнур имеет преимущественно квадратное сечение и закреплён на трубе с помощью механической смеси, а вкладыш выполнен из пористого керамического материала.
Труба, её ТИП и защитный кожух регулярной части трубы объединены в монолитный блок после отверждения литьевого композиционного материала, нагнетаемого в зазор между кожухом и трубой литьём под давлением. При этом зоны захвата НКТ защищены съёмными полускорлупами, содержащими тот же литьевой композиционный материал, что и регулярная часть, которое монолитно связанно с вкладышем, прилегающим к трубе и соединительному элементу, в качестве которого применяется муфта, а также с центраторами положения НКТ в обсадной колонне и защитным кожухом.
Полускорлупы стянуты стрип-лентами из нержавеющей стали с толщиной, не превышающей выступание центратора над защитным кожухом.
Сущность заявленного изобретения поясняется графическими материалами, на которых:
- на фиг. 1 представлена НКТ с ТИП. Продольный разрез регулярной части;
- на фиг. 2 представлена НКТ в сборе с защитой зоны захвата;
- на фиг. 3 представлен компенсационный зазор.
Основной частью НКТ (фиг.1) является труба 1, изготовленная из легированной стали. На торцах трубы 1 имеется резьбовая часть 5 для установки соединительного элемента 6 при сборе НКТ в колонну. На наружной поверхности трубы 1 сформировано ТИП из двух термобарьерных слоев.
Первый термобарьерный слой изготовлен из керамического шнура 7, предпочтительно квадратного сечения для минимизации захлопывания воздуха в межвитковом пространстве. Шнур 7 наматывается на трубу 1, исключая зоны захвата 4, с помощью механической смеси 18, состоящей из мелкодисперсных полых микросфер и полимеризующегося связующего в виде бромированной эпоксидной смолы.
На концах трубы 1, исключая зоны захвата 4, установлены крышки 3, на которые опирается защитный кожух 2. Крышки 3 изготовлены из металла с антикоррозийным покрытием, или нержавеющей стали, а защитный кожух 2 - из трубы ПНД (полиэтилен низкого давления) или полипропилена. Пространство между защитным кожухом 2 и шнуром 7 заполнено вторым 8 термобарьерным слоем на основе мелкодисперсных полых микросфер и полимеризующегося связующего, например, эпоксидной смолы, при соотношении их друг к другу, например, как (3-5):1. Микросферы могут иметь размерность диаметра от 2 мкм до 500 мкм в зависимости от задаваемых параметров теплопроводности композиции со связующим и быть изготовлены из полимера, например, фенолформальдегида, или стекла.
Для стыковки с защитой зоны захвата 4 трубы 1 и компенсации температурных деформаций в осевом направлении крышки 3 снабжены цилиндрическим выступом 12, где в канавке размещено уплотнение 13.
Защита зоны захвата 4 НКТ и соединительного элемента 6 (стыковочной муфты) (фиг.2) выполнена в виде двух съёмных полускорлуп (на фиг. не обозначены), которые установлены на зоны захвата 4 трубы 1 и соединительный элемент 6 (муфту) вкладышем 11, выполненным из пористой керамики. Он защищает от сдвиговых нагрузок и заменяет первый термобарьерный слой регулярной части трубы 1.
Защитный кожух 2 полускорлуп изготовлен из трубы ПНД или полипропилена и опирается на центраторы 10, ориентирующие НКТ в обсадной колонне скважины (на фиг. не показана) при спускоподъёмных операциях.
Полускорлупы после установки на зону захвата 4 НКТ стягиваются двумя или тремя стрип-лентами 9 до достижения минимального зазора в плоскости разъёма 14. При этом конструктивно обеспечено превышение 15 центратора 10 над стрип-лентой 9 для исключения контакта последней с обсадной колонной при движении.
Важным является то, что полускорлупы представляют собой монолитный блок, закреплённый на соединительном элементе 6 (муфте), что исключает их срыв с НКТ при взаимодействии центраторов 10 с обсадной колонной при движении во время спускоподъёмных операций.
Компенсация температурных осевых деформаций НКТ и отклонений размеров от номинала при изготовлении (показана на фиг.3) обеспечена наличием зазора 16, который образуется после монтажа полускорлуп, защищающих зоны захвата 4 (фиг.2). При этом уплотнение 13 обжимается выступом (на фиг. не обозначен) центратора 10, что герметизирует полость 17, образованную крышкой 3 и центратором 10. Таким образом исключается перенос флюида (при его наличии) из зазора между НКТ и обсадной колонной в полость 17 и обратно, что снижает теплопотери рабочего агента воздействия.
Как показано на фиг. 1, первый термобарьерный слой выполнен из шнура 7. Шнур 7 выполнен из керамического волокна с рабочей температурой нитей 700°С, плотностью 500 кг/м3, теплопроводность 0,038 Вт/м2 °С. Шнур 3 установлен на трубу 1 с помощью механической смеси 18, состоящей из мелкодисперсных полых микросфер и полимеризующегося связующего в виде бромированной эпоксидной смолы при пределе прочности при сдвиге по клеевому шву 10-11 МПа. Такие параметры шнура 7 гарантированно обеспечивают его термостойкость в составе ТИП для НКТ при температурах РАВ в виде, например, перегретого до 350°С водяного пара, а усилие сдвига всего ТИП с трубы 1 превышает 4100 кг/см2. Что находится на уровне прочности резьбовой части НКТ. Кроме того, шнур 7 дополнительно служит амортизационным слоем для ТИП при эксплуатации. Известно, что между скважинами НКТ перевозятся автотранспортом по пересечённой местности, сопровождаемой тряской. Также возможны и технические вибрации при работе в скважине. Слой из шнура 7 позволяет сохранить ТИП на длительное время. Одновременно, введение в конструкцию заявляемой НКТ шнура 7 из керамических волокон снижает напряжения в ТИП от температурного удлинения НКТ при работе в скважине. Шнур 7, как конструкция из многих волокон, являясь прослойкой между металлической НКТ и полимерным ТИП, резко снижает напряжения в адгезионном шве между ТИП и шнуром 7, шнуром 7 и НКТ. Этим достигается долговечность целостности конструкции, заявляемой авторами.
В качестве второго 8 термобарьерного слоя ТИПа применен материал, представляющий механическую смесь эпоксидной смолы и полых микросфер из полимера или стекла. Плотность упаковки микросфер варьируется в зависимости от требуемых параметров ТИП на НКТ. Авторами проведены исследования для соотношения микросфер - смола как 3-5:1 при среднем фракционном составе микросфер, который изменяется в диапазоне диаметров 2-500 мкм. Получены результаты: адгезия к стали 10 МПа, Теплопроводность 0,052-0.07 Вт/м °С, прочность при сжатии 28-50 МПа, при растяжении 20-30 МПа, диапазон температур -70 +150°С и модуль упругости 400-2000 МПа. Полученные результаты позволили применить это ТИП для изоляции НКТ и создания монолитного блока из ряда элементов конструкций, представленных на фиг. 1 и 2.
Проведённые расчёты для скважины глубиной 1300 м, температуре пара на входе 300°С и его производительности 0,94 Гкал/ч, параметре Шухова 0.091996 показали, что при размере шнура 7 10*10 мм температура пара на входе в пласт составит 276°С (при расходе пара 0,019290123 кг/с). Температура на поверхности защитного кожуха 2 составила 109,14°С. Это можно считать приемлемым результатом, который может быть улучшен изменением параметров подачи пара.
Расчётные параметры проверены экспериментом, где на НКТ диаметром 73 мм нанесено ТИП по предлагаемой заявке. При подаче в НКТ горячего воздуха 350°С и расходе 300 л/мин через 80 мин на наружной поверхности защитного кожуха 2 зафиксирована стабилизация температуры на уровне 70°С. Данный результат лучше расчётного, что позволяет рекомендовать предлагаемую конструкцию НКТ к применению.
НКТ с ТИП изготавливают следующим образом.
На трубу 1 на механической смеси 18 наматывают шнур 7, исключая зоны захвата 4, которые расположены перед резьбовой частью 5. На трубу 1 устанавливают крышки 3 (с обоих сторон трубы 1) и защитный кожух 2. Через технологические отверстия одной из крышек 3 нагнетают второй 8 термобарьерный слой теплоизоляционного покрытия, при этом воздух вытесняется через отверстия (на фиг. не обозначены) в крышке 3 в направлении А (фиг.1). Нагнетание заканчивают при появлении второго 8 термобарьерного слоя в данных отверстиях. После отверждения второго 8 термобарьерного слоя регулярная часть НКТ считается готовой.
Для изготовления полускорлуп защиты соединительного элемента 6 (муфты) (фиг. 2), соединяющей трубы 1 в колонне, применяют имитатор, дублирующий защищаемое соединение (не показан). На него последовательно устанавливают вкладыш 11, центраторы 10 и защитный кожух 2. Половинки вкладыша 11 стягивают монтажной тонкой проволокой (не показана), а защитный кожух 2 и центраторы 10 - стрип-лентой 9. После сборки полость заполняют вторым 8 термобарьерным слоем. После его отверждения полускорлупы разъединяют дисковой фрезой по плоскости разъёма, обозначенной защитным кожухом 2. Процесс изготовления полускорлуп закончен. При нанесении на плоскости разъёма 14 вкладыша 11 и защитного кожуха 2 антиадгезива, например, силикона, применение фрезы не требуется.
Далее на резьбовые части 5 устанавливают соединительные элементы 6, устанавливают на них и зоны захвата 4 полускорлупы и соединяют их стрип-лентами 9.
Для использования НКТ с ТИП доставляют к скважине.
На месте стыковки НКТ в колонну стрип-ленты 9 удаляют, производят стыковку НКТ при помощи соединительных элементов 6, затем устанавливают обратно две полускорлупы, центрируя их по соединительному элементу 6 и стягивают их стрип-лентами 9. Уплотнения 13 устанавливают в канавки крышек 3 при нахождении НКТ в горизонтальном положение на стеллаже перед сборкой в колонну.
Предлагаемое конструктивное исполнение НКТ и ТИП исключает повреждение ТИП.
Преимущество предлагаемой конструкции НКТ также в том, что при повреждении теплоизоляционного покрытия зоны захвата 4, то есть полускорлуп, при эксплуатации оно может быть немедленно заменено из резерва, а регулярная часть НКТ продолжает применяться далее. Кроме того, при выходе из строя резьбовой части 5 трубы 1, возможно её удаление, отрезанием на токарном станке со срезанием части ТИП регулярной части, которая монолитна. После восстановления резьбы крышка 3 возвращается на своё место с помощью клея на основе эпоксидной смолы. Это позволяет увеличить срок службы НКТ и сократить затраты на ремонт, поскольку от него не страдает ТИП.

Claims (5)

1. Насосно-компрессорная труба с теплоизоляционным покрытием, содержащая трубу, на наружной поверхности которой размещено теплоизоляционное покрытие, закрытое сверху защитным кожухом, по торцам которого расположены крышки, а также две теплоизолированные зоны захвата и размещенные на резьбовых частях торцов трубы соединительные элементы, отличающаяся тем, что теплоизоляционное покрытие включает керамический шнур и литьевой композиционный материал из мелкодисперсных полых микросфер, изготовленных из фенолформальдегида или стекла, и полимеризующегося связующего в виде эпоксидной смолы при соотношении компонентов (3-5):1 и создает после отверждения монолитный блок с трубой и кожухом на участке трубы между зонами захвата, которые теплоизолируются полускорлупами, зафиксированными стрип-лентами.
2. Насосно-компрессорная труба по п. 1, отличающаяся тем, что полускорлупы содержат центраторы, защитный кожух и вкладыш, которые соединены в монолитный блок после отверждения литьевого композиционного материала.
3. Насосно-компрессорная труба по п. 1, отличающаяся тем, что полускорлупы стянуты стрип-лентой, не выступающей за наружный габарит цетраторов.
4. Насосно-компрессорная труба по п. 1, отличающаяся тем, что керамический шнур имеет квадратное сечение и закреплён на трубе с помощью механической смеси, состоящей из мелкодисперсных полых микросфер и полимеризующегося связующего в виде бромированной эпоксидной смолы.
5. Насосно-компрессорная труба по п. 3, отличающаяся тем, что вкладыш выполнен из пористого керамического материала.
RU2021120247A 2021-07-09 2021-07-09 Насосно-компрессорная труба с теплоизоляционным покрытием RU2766464C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021120247A RU2766464C1 (ru) 2021-07-09 2021-07-09 Насосно-компрессорная труба с теплоизоляционным покрытием

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021120247A RU2766464C1 (ru) 2021-07-09 2021-07-09 Насосно-компрессорная труба с теплоизоляционным покрытием

Publications (1)

Publication Number Publication Date
RU2766464C1 true RU2766464C1 (ru) 2022-03-15

Family

ID=80736745

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021120247A RU2766464C1 (ru) 2021-07-09 2021-07-09 Насосно-компрессорная труба с теплоизоляционным покрытием

Country Status (1)

Country Link
RU (1) RU2766464C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780036C1 (ru) * 2022-06-10 2022-09-19 Андрей Юрьевич Дубровин Насосно-компрессорная труба с теплоизоляционным покрытием

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1305999A (ru) * 1970-10-21 1973-02-07
US4415184A (en) * 1981-04-27 1983-11-15 General Electric Company High temperature insulated casing
RU93052300A (ru) * 1993-11-18 1996-07-20 И.Б. Дубин Вещество для теплоизоляционного покрытия трубопроводов
RU2187433C2 (ru) * 1999-10-21 2002-08-20 Закрытое акционерное общество "Научно-производственное предприятие "Аквасинт" им. академика В.А.Телегина Способ получения теплоизоляционного материала на основе синтактной пены, теплоизолированная труба и способ нанесения теплоизоляционного покрытия на внешнюю поверхность трубы
GB2419171A (en) * 2004-10-14 2006-04-19 Crp Group Ltd Insulated pipe assembly
RU62643U1 (ru) * 2006-11-08 2007-04-27 Государственное образовательное учреждение высшего профессионального образования "Ухтинский государственный технический университет" (УГТУ) Теплоизолированная труба
RU2422716C1 (ru) * 2010-02-12 2011-06-27 Анатолий Афанасьевич Игнатов Высокотемпературное теплоизоляционное покрытие для стальных трубных элементов
CN101903696B (zh) * 2007-12-21 2015-04-22 超科有限公司 用于管道的苯乙烯类绝热材料
CN204511322U (zh) * 2015-02-02 2015-07-29 中国海洋石油总公司 一种填充无机发泡材料的隔热油管
RU156386U1 (ru) * 2015-05-28 2015-11-10 Закрытое акционерное общество "Компомаш - ТЭК" Труба насосно-компрессорная, теплоизолированная

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1305999A (ru) * 1970-10-21 1973-02-07
US4415184A (en) * 1981-04-27 1983-11-15 General Electric Company High temperature insulated casing
RU93052300A (ru) * 1993-11-18 1996-07-20 И.Б. Дубин Вещество для теплоизоляционного покрытия трубопроводов
RU2187433C2 (ru) * 1999-10-21 2002-08-20 Закрытое акционерное общество "Научно-производственное предприятие "Аквасинт" им. академика В.А.Телегина Способ получения теплоизоляционного материала на основе синтактной пены, теплоизолированная труба и способ нанесения теплоизоляционного покрытия на внешнюю поверхность трубы
GB2419171A (en) * 2004-10-14 2006-04-19 Crp Group Ltd Insulated pipe assembly
RU62643U1 (ru) * 2006-11-08 2007-04-27 Государственное образовательное учреждение высшего профессионального образования "Ухтинский государственный технический университет" (УГТУ) Теплоизолированная труба
CN101903696B (zh) * 2007-12-21 2015-04-22 超科有限公司 用于管道的苯乙烯类绝热材料
RU2422716C1 (ru) * 2010-02-12 2011-06-27 Анатолий Афанасьевич Игнатов Высокотемпературное теплоизоляционное покрытие для стальных трубных элементов
CN204511322U (zh) * 2015-02-02 2015-07-29 中国海洋石油总公司 一种填充无机发泡材料的隔热油管
RU156386U1 (ru) * 2015-05-28 2015-11-10 Закрытое акционерное общество "Компомаш - ТЭК" Труба насосно-компрессорная, теплоизолированная

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780036C1 (ru) * 2022-06-10 2022-09-19 Андрей Юрьевич Дубровин Насосно-компрессорная труба с теплоизоляционным покрытием

Similar Documents

Publication Publication Date Title
US7207603B2 (en) Insulated tubular assembly
RU2144975C1 (ru) Способ установки двухстенной изолированной колонны труб и двухстенная изолированная эксплуатационная колонна
US9267637B2 (en) Coaxial pipe assembly including a thermally insulating sleeve
JPS6116837B2 (ru)
AU2013249208B2 (en) A system and method for reinforcing composite pipes
US6719058B2 (en) Multiple seal design for composite risers and tubing for offshore applications
JP2002539398A (ja) 高圧搬送用強化熱可塑性樹脂パイプ(rtp)の結合技術
US6863279B2 (en) Redundant seal design for composite risers with metal liners
US10415739B2 (en) Joint assembly for forming a duct
RU2766464C1 (ru) Насосно-компрессорная труба с теплоизоляционным покрытием
RU2129202C1 (ru) Теплоизолированная колонна
CN114233941A (zh) 无补口钢塑复合钢塑连接集输管道及加工方法
RU2780036C1 (ru) Насосно-компрессорная труба с теплоизоляционным покрытием
RU2487228C1 (ru) Секция теплоизолированной колонны
GB2099049A (en) Insulating tubular well conduits
RU2704405C1 (ru) Насосно-компрессорная труба с теплоизоляционным покрытием
CN100378392C (zh) 特种陶瓷双衬套管及其生产方法
CA3085287A1 (en) Gas insulated tubing
RU2197594C2 (ru) Термоизолированная колонна
RU2090736C1 (ru) Термоизолированная колонна
US20230095131A1 (en) Method for manufacturing a reinforced composite pipe using compression techniques
SU1696677A1 (ru) Теплоизолированна колонна
RU2244093C2 (ru) Теплоизолированная труба (варианты)
CN213393931U (zh) 一种导热系数低的多层预制保温管
RU2242667C2 (ru) Теплоизолированная труба