RU2765570C1 - Нерегулярная линза и многолучевая антенная система с двумя ортогональными поляризациями на ее основе - Google Patents

Нерегулярная линза и многолучевая антенная система с двумя ортогональными поляризациями на ее основе Download PDF

Info

Publication number
RU2765570C1
RU2765570C1 RU2021103147A RU2021103147A RU2765570C1 RU 2765570 C1 RU2765570 C1 RU 2765570C1 RU 2021103147 A RU2021103147 A RU 2021103147A RU 2021103147 A RU2021103147 A RU 2021103147A RU 2765570 C1 RU2765570 C1 RU 2765570C1
Authority
RU
Russia
Prior art keywords
lens
truncated
lenses
antenna system
orthogonal polarizations
Prior art date
Application number
RU2021103147A
Other languages
English (en)
Inventor
Юрий Геннадьевич Пастернак
Владимир Андреевич Пендюрин
Руслан Евгеньевич Рогозин
Original Assignee
Акционерное общество НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ СВЯЗИ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ СВЯЗИ" filed Critical Акционерное общество НАУЧНО-ПРОИЗВОДСТВЕННОЕ ПРЕДПРИЯТИЕ "АВТОМАТИЗИРОВАННЫЕ СИСТЕМЫ СВЯЗИ"
Priority to RU2021103147A priority Critical patent/RU2765570C1/ru
Application granted granted Critical
Publication of RU2765570C1 publication Critical patent/RU2765570C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Изобретение относится к области радиотехники, в частности к многолучевым антенным системам для аппаратуры связи мобильного, бортового и стационарного базирования, в том числе к терминалам высокоскоростной спутниковой связи и системам сотовой и подвижной связи. Техническим результатом является снижение уровня боковых лепестков и повышение коэффициента направленного действия многолучевой антенной системы для каждого из формируемых лепестков ее диаграммы направленности. Предложена нерегулярная линза, которая является основой многолучевой антенной системы с двумя ортогональными поляризациями и содержит: усеченные осесимметричные линзы, выполненные из диэлектрика, размещенные на одной оси и объединенные в единый блок, облучаемый линейными массивами излучателей с двумя ортогональными поляризациями, каждый из которых формирует сферическую волну. Каждый массив излучателей выполнен с возможностью облучения усеченной линзы, напротив которой он расположен, и соседних усеченных линз, расположенных в непосредственной близости от нее. Предложена многолучевая антенная система с двумя ортогональными поляризациями на основе указанной нерегулярной линзы, при этом усеченные линзы состоят из электрически малых металлических рассеивателей. 2 н.п. ф-лы, 18 ил.

Description

Изобретение относится к области радиотехники, в частности - к многолучевым антенным системам для аппаратуры связи мобильного, бортового и стационарного базирования, в том числе, - к терминалам высокоскоростной спутниковой связи, а также - к системам сотовой и подвижной связи.
Для повышения коэффициента направленного действия многолучевых антенных систем используются антенные решетки из линз Люнеберга (см. например, патенты US 2017/0040706 A1 «SPHERICAL LENS ARRAY BASED MULT-BEAM ANTENNAE)) от 09.02.2017, US 2019/0081405 Al «LENS ARRAYS CONFIGURATIONS FOR IMPROVED SIGNAL PERFORMANCE)) от 14.03.2019).
Кроме того, для формирования диаграмм направленности специальной формы используются массивы из линз Люнеберга, сферических и гиперболических линз (патент US 2013/0186451 Al «OFF-ANGLE TRACKER» от 25.07.2013). В патенте WO 2017/173208 A1 «LENSED ANTENNAS FOR USE IN WIRELESS COMMUNICATIONS SYSTEMS)) от 05.10.2017 рассмотрены антенные системы, построенные на основе линейных, плоских и конформных подрешеток, состоящих из линзовых антенн.
Однако, несмотря на многие безусловные преимущества вышеупомянутых технических решений - возможность повышения коэффициента направленного действия в каждом из формируемых лучей, возможность получения диаграмм направленности специальной формы, им присущ и существенный недостаток - решетки из антенных элементов, размеры которых существенно, в 10 и более раз, превышают длину волны в свободном пространстве, характеризуются достаточно высоким уровнем боковых лепестков, причем уровень боковых лепестков может существенно превышать величину - 13.2 дБ, характеризующую синфазный и равноамплитудный раскрыв, что является неизбежным следствием использования прореженных антенных решеток.
Повышение уровня боковых лепестков, присущее разреженным антенным решеткам, и, в частности, антенным решеткам, состоящим из линз Люнеберга, или линз другого типа, приводит к повышению шумовой температуры антенных систем в режиме приема, что ограничивает применение подобных решений в системах связи, которые характеризуются очень слабыми принимаемыми сигналами, и, в частности, - в мобильных терминалах спутниковой связи.
Наиболее близким техническим решением является изобретение по патенту US 2019/0081405 A1 «LENS ARRAYS CONFIGURATIONS FOR IMPROVED SIGNAL PERFORMANCE» от 14.03.2019, принятое за прототип.
В вышеуказанном прототипе рассмотрены технические решения, позволяющие облучить, как минимум, две сферические линзы таким образом, чтобы электромагнитная энергия, фокусируемая первой линзой, не пересекала второй линзы, или большего числа сферических линз, формирующих антенную решетку. Подобный подход дает возможность формировать секторные диаграммы направленности с различной шириной главного лепестка с целью наиболее равномерного распределения излучаемой мощности в пространственно-угловой зоне действия радиотехнической системе связи, в частности - в базовой станции сотовой связи. Выбором оптимального положения облучателей можно добиться минимизации дифракционных лепестков антенной решетки, а также - добиться минимальных провалов диаграммы направленности в пределах сформированного главного лепестка антенной системы, состоящей из массива сферических линз.
Недостатком данного технического решения является сложность существенного снижения уровня боковых лепестков линейной антенной решетки, состоящей из сферических линз при синфазной запитке ее элементов, т.к. для этого существуют три основные возможности, и все они оказываются малоэффективными: - уменьшение шага антенной решетки невозможно в принципе, т.к. ее элементы являются линзовыми антеннами и имеют размеры, существенно большие, чем длина волны в свободном пространстве; - снижение уровня боковых лепестков линзовых элементов может быть достигнуто за счет увеличения числа слоев линзы, а, следовательно - за счет существенного усложнения технологии их производства и увеличения их стоимости; - использование неэквидистантных антенных решеток, во- первых, - малоэффективно, а во-вторых - приводит к увеличению габаритных размеров антенной системы, что ограничивает возможности ее использования в аппаратуре связи бортового и мобильного базирования.
Задачей изобретения является устранение указанных недостатков, а также снижение уровня боковых лепестков и повышение коэффициента направленного действия многолучевой антенной системы для каждого из формируемых лепестков ее диаграммы направленности.
Решение указанной задачи достигается тем, что, в предложенной нерегулярной линзе, являющейся основой многолучевой антенной системы с двумя ортогональными поляризациями, содержащей осесимметричные линзы, облучаемые линейными массивами облучателей с двумя ортогональными поляризациями, каждый из которых формирует сферическую волну, согласно изобретению, упомянутые линзы выполнены усеченными, размещены на одной оси и объединены в единый блок, при этом каждый массив облучателей выполнен с возможностью облучения усеченной линзы, напротив которой он расположен, и соседних усеченных линз, расположенных в непосредственной близости от нее.
На основе созданной нерегулярной линзы предложена многолучевая антенная система с двумя ортогональными поляризациями, в которой, согласно изобретению, усеченные линзы состоят из электрически малых металлических рассеивателей.
На основе созданной нерегулярной линзы предложена многолучевая антенная система с двумя ортогональными поляризациями, в которой, согласно изобретению, усеченные линзы выполнены из диэлектрика.
Настоящее техническое решение основано на том, что, для снижения уровня боковых лепестков линейной антенной решетки, состоящей из линзовых антенн, распределение электромагнитного поля в направлении вдоль решетки должно быть близким к непрерывному, для чего антенная решетка формируется из пересекающихся между собою соседних линзовых элементов с целью образования в ней пространственных областей, в которых электромагнитное поле формируется не только собственными облучателями каждой из линз, но и - облучателями соседних линз.
Изобретательский уровень предложенного технического решения определяется тем, что антенная решетка формируется из линзовых элементов измененной формы, а именно - из усеченных сферических линз, с постоянным, или же - зависящем от значения координаты значением эффективного коэффициента преломления материала (или -метаматериала) линзы, что является неочевидным для специалиста в данной области техники.
Для достижения уровня боковых лепестков антенной решетки из линзовых элементов, меньшего, чем у синфазного и равноамплитудного излучателя (значения -13.2 дБ), используется спадающее, к краям антенной решетки, амплитудное распределение при питании облучателей линз, составляющих многолучевую антенную систему. Нерегулярная линза может состоять из двух или большего количества усеченных линз, соединенных между собой.
Для реализации возможности формирования каждого из лучей диаграммы направленности многолучевой антенной системы на двух ортогональных поляризациях (линейной - вертикальной и горизонтальной, или ±45°, или круговой - правого и левого направления вращения) нерегулярная линза, состоящая из усеченных линз, должна характеризоваться близкими значениями эффективного коэффициента преломления в различных направлениях (быть практически изотропной) и облучаться антенными элементами с соответствующими видами поляризации. В качестве облучателей могут быть использованы вибраторные элементы с ортогональной поляризацией с рефлекторами и директорами, а также - с соответствующей схемой их питания, для формирования излучения с необходимым видом поляризации. Для более узкой рабочей полосы частот могут использоваться облучатели в виде патч-антенн, щелевые антенны, а также - облучатели волноводного типа.
Нерегулярная линза может быть изготовлена различными способами: 1) - из сплошного диэлектрика. В этом случае она состоит из усеченных сферических линз; 2) - напечатана на 3D-принтере (линза Люнеберга); 3) - состоять из металлических рассеивателей малых электрических размеров, размещенных во вспененном диэлектрике; 4) - состоять из электрически малых металлических рассеивателей, выполненных по технологии производства печатных плат, к которым могут припаиваться поперечные металлические рассеиватели малой электрической длины.
Сопоставительный анализ предложенного устройства с прототипом показал, что предложенное техническое решение существенно отличается от прототипа, так как в прототипе многолучевые антенные системы составлены из целых линз сферической формы, не соприкасающихся друг с другом, а в предлагаемом изобретении нерегулярная линза состоит из объединенных друг с другом усеченных линз, расположенных на одной оси.
Другое отличие состоит в том, что в выбранном прототипе каждый облучатель облучает только свою линзу, а в предлагаемом изобретении каждый облучатель облучает, как свою линзу, напротив которой он расположен, так и соседние линзы, что позволяет реализовать амплитудное распределение, близкое к равномерному, и существенно уменьшить уровень боковых лепестков, по сравнению с прототипом, в котором антенная решетка состоит из отдельных линз, являющихся излучателями больших электрических размеров, что приводит к увеличению уровня боковых лепестков антенной системы.
Сущность изобретения иллюстрируется следующими чертежами, где на фиг. 1 показана нерегулярная линза из сплошного диэлектрика, вид спереди, на фиг. 2 показана нерегулярная линза из сплошного диэлектрика, вид сбоку, на фиг. 3 показана нерегулярная линза из сплошного диэлектрика, разрез в плоскости, проходящей через ось симметрии, на фиг. 4 показана нерегулярная линза, состоящая из усеченных линз, каждая из которых составлена из нескольких слоев диэлектрика с различными значениями диэлектрической проницаемости. Каждая из линз представляет собой линзу Люнеберга с оболочкой. На фиг. 5-7 показана нерегулярная неоднородная линза, составленная из усеченных линз Люнеберга, и ее фрагменты, технология изготовления - 3D-печать. На фиг. 8-9 показана реализация усеченной метаматериальной линзы из параллельных печатных плат с иерусалимскими крестами и поперечными металлическими штырями; метаматериальная линза состоит из электрически малых трехмерных рассеивателей. На фиг. 10-11 показан вариант конструкции многолучевой антенной системы, построенной на основе нерегулярной линзы из сплошного диэлектрика и патч-облучателей с двумя ортогональными поляризациями. На фиг. 12-13 показаны варианты размещения нерегулярной линзы на опорно-поворотной платформе, на фиг. 14 показана диаграмма направленности одного из лепестков антенной системы на основе нерегулярной линзы. В данном варианте конструкции нерегулярная линза и опорные пилоны являются единой диэлектрической деталью; опорные пилоны могут быть также металлическими. На фиг. 15 показана диаграмма направленности одного из лепестков антенной системы на основе нерегулярной линзы, составленной из усеченных линз Люнеберга, каждая из которых составлена из нескольких слоев диэлектрика с различными значениями диэлектрической проницаемости, на фиг. 16 показана диаграмма направленности одного из лепестков антенной системы на основе нерегулярной линзы, составленной из усеченных линз Люнеберга, технология изготовления - 3D-печать, на фиг. 17 показан облучатель на две ортогональные поляризации в виде четырех монополей с рефлектором, на фиг. 18 показан пример диаграммы направленности облучателя в виде четырех монополей с рефлектором, левая круговая поляризация
Нерегулярная линза является основой многолучевой антенной системы с двумя ортогональными поляризациями, и содержит осесимметричные линзы 1, облучаемые линейными массивами облучателей 2 (или патч-облучателей 2) с двумя ортогональными поляризациями, каждый из которых формирует сферическую волну. Линзы 1 выполнены усеченными, размещены на одной оси и объединены в единый блок 3. Каждый массив облучателей 4 выполнен с возможностью облучения усеченной линзы, напротив которой он расположен, и соседних усеченных линз, расположенных в непосредственной близости от нее.
На основе нерегулярной линзы предложена многолучевая антенная система с двумя ортогональными поляризациями, в которой усеченные линзы состоят из электрически малых металлических рассеивателей.
На основе нерегулярной линзы предложена многолучевая антенная система с двумя ортогональными поляризациями, в которой усеченные линзы выполнены из диэлектрика.
Нерегулярная линза, являющаяся основой многолучевой антенной системы с двумя ортогональными поляризациями, может использоваться следующим образом.
Каждый облучатель 2 создает сферическую волну, большая часть энергии которой проходит через усеченную линзу 1, напротив которой он расположен, а оставшаяся доля энергии его излучения приходится на соседние усеченные линзы, благодаря чему амплитудное распределение поля в раскрыве нерегулярной линзы, составленной из двух и более усеченных линз, выравнивается, и практически компенсируются дифракционные лепестки диаграммы направленности антенной решетки, состоящей из электрически больших излучателей - усеченных линз, составляющих нерегулярную линзу. Подобный способ построения нерегулярной линзы позволяет существенно уменьшить уровень боковых лепестков антенной системы и повысить коэффициент ее направленного действия в каждом из формируемых ее лепестков веерного типа.
На фиг. 4 показан пример реализации усеченной метаматериальной линзы электрически малых трехмерных рассеивателей. Устройство состоит из параллельных печатных плат с металлизацией в виде иерусалимских крестов и системы поперечных металлических штырей, установленных в каждой печатной плате. Нерегулярная линза может быть также реализована путем размещения электрически малых металлических линейных рассеивателей, ориентированных в направлениях х, у, z, во вспененном диэлектрике, либо - путем размещения трехмерных металлических рассеивателей в диэлектрике со значением диэлектрической проницаемости, близким к 1. Достоинством данного подхода является возможность изготовления антенных устройств, функционирующих не только в субмиллиметровом, миллиметровом и сантиметровом диапазонах волн, но и - в более длинноволновых диапазонах (дециметровом и метровом).
Вариант конструкции многолучевой антенной системы, построенной на основе нерегулярной линзы из сплошного диэлектрика 1 и патч-облучателей 2 с двумя ортогональными поляризациями показан на фиг. 10.
Патч-облучатели нерегулярной линзы представляют собой наиболее простую конструкцию облучателей, которые легко реализовать по технологии производства печатных плат; использование патч- облучателей целесообразно при достаточно узкой полосе рабочих частот антенной системы (с коэффициентом частотного перекрытия не более 1.3-1.5). Для реализации более широкой полосы рабочих частот целесообразно использовать более широкополосные облучатели нерегулярной линзы: вибраторного типа; спирального типа; рупорного типа; логопериодические антенны; антенны Вивальди и другие.
Антенная система функционирует следующим образом. В режиме формирования одного из лепестков диаграммы направленности. Патч-облучатели 2, расположенные на одной прямой линии, параллельной оси симметрии нерегулярной линзы 1, запитываются синфазно; при этом могут использоваться различные схемы деления мощности между облучателями, в которых может быть реализовано, как, - равномерное распределение мощности, так и, - спадающее, к крайним усеченным линзам, составляющим нерегулярную линзу 1, с целью уменьшения уровня боковых лепестков диаграммы направленности.
Каждый облучатель создает сферическую волну, большая часть энергии которой проходит через усеченную линзу, напротив которой он расположен, а оставшаяся доля энергии его излучения приходится на соседние усеченные линзы, благодаря чему амплитудное распределение поля в раскрыве нерегулярной линзы, составленной из двух и более усеченных линз, выравнивается, и практически компенсируются дифракционные лепестки диаграммы направленности антенной решетки, состоящей из электрически больших излучателей - усеченных линз, составляющих нерегулярную линзу. Подобный способ построения нерегулярной линзы позволяет существенно уменьшить уровень боковых лепестков антенной системы и повысить коэффициент ее направленного действия в каждом из формируемых ее лепестков веерного типа.
На фиг. 12 показан вариант размещения нерегулярной линзы 5 на металлической опорно-поворотной платформе 6, а на фиг. 13 - вариант размещения нерегулярной линзы 7, опирающейся на диэлектрические пилоны 8 и 9, на металлической опорно-поворотной платформе 10. При этом нерегулярная линза 7 и диэлектрические пилоны 8 и 9 являются единой диэлектрической деталью, что позволяет увеличить механическую прочность конструкции антенной системы.
На фиг. 14-16 приведены примеры диаграммы направленности антенной системы на основе нерегулярной линзы для различных вариантов ее конструкции: линзы из сплошного диэлектрика, интегрированной с опорными пилонами (фиг. 14); линзы, составленной из усеченных линз Люнеберга, каждая из которых составлена из нескольких слоев диэлектрика с различными значениями диэлектрической проницаемости (фиг. 15); линзы, напечатанной на 3D-принтере, состоящей из усеченных линз Люнеберга (фиг. 16).
Пример конструкции облучателя на две ортогональные поляризации в виде четырех монополей с рефлектором показана на фиг. 17, а пример диаграммы направленности данного облучателя - на фиг. 18.
Использование предложенного технического решения позволит реализовать различные варианты построения многолучевой антенной системы с двумя ортогональными поляризациями, характеризующейся диаграммой направленности веерного типа для каждого из формируемых главных лепестков. Благодаря предложенной конструкции формирования нерегулярной линзы, являющейся основой антенной решетки, состоящей из пересекающихся между собою соседних линзовых элементов, электромагнитное поле в каждом из которых формируется, не только собственными облучателями каждой из линз, но и - облучателями соседних линз, появится возможность существенно снизить уровень боковых лепестков и повысить коэффициент направленного действия многолучевой антенной системы для каждого из формируемых лепестков ее диаграммы направленности,

Claims (2)

1. Нерегулярная линза, являющаяся основой многолучевой антенной системы с двумя ортогональными поляризациями, содержащая осесимметричные диэлектрические линзы, облучаемые линейными массивами облучателей с двумя ортогональными поляризациями, каждый из которых формирует сферическую волну, отличающаяся тем, что упомянутые линзы выполнены усеченными, размещены на одной оси, перпендикулярной оси симметрии каждой линзы, и объединены в единый блок, при этом каждый облучатель выполнен с возможностью облучения усеченной линзы, напротив которой он расположен, и пересекающихся между собой соседних линз, объединенных в единый блок.
2. Многолучевая антенная система с двумя ортогональными поляризациями на основе нерегулярной линзы по п. 1, отличающаяся тем, что усеченные линзы состоят из электрически малых металлических рассеивателей.
RU2021103147A 2021-02-09 2021-02-09 Нерегулярная линза и многолучевая антенная система с двумя ортогональными поляризациями на ее основе RU2765570C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021103147A RU2765570C1 (ru) 2021-02-09 2021-02-09 Нерегулярная линза и многолучевая антенная система с двумя ортогональными поляризациями на ее основе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021103147A RU2765570C1 (ru) 2021-02-09 2021-02-09 Нерегулярная линза и многолучевая антенная система с двумя ортогональными поляризациями на ее основе

Publications (1)

Publication Number Publication Date
RU2765570C1 true RU2765570C1 (ru) 2022-02-01

Family

ID=80214566

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021103147A RU2765570C1 (ru) 2021-02-09 2021-02-09 Нерегулярная линза и многолучевая антенная система с двумя ортогональными поляризациями на ее основе

Country Status (1)

Country Link
RU (1) RU2765570C1 (ru)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781163A (en) * 1995-08-28 1998-07-14 Datron/Transco, Inc. Low profile hemispherical lens antenna array on a ground plane
RU2293409C2 (ru) * 1990-11-14 2007-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Градиент" Многолучевая антенная система
US20090289863A1 (en) * 2008-05-20 2009-11-26 Lockheed Martin Corporation Antenna array with metamaterial lens
RU2660385C1 (ru) * 2017-07-24 2018-07-06 Общество с ограниченной ответственностью "Радио Модуль НН" Сканирующая линзовая антенна
US20190237874A1 (en) * 2016-09-07 2019-08-01 Commscope Technologies Llc Multi-band multi-beam lensed antennas suitable for use in cellular and other communications systems
US20190363456A1 (en) * 2018-05-22 2019-11-28 Shenzhen Chao-De Communication Co., Ltd Antenna structure and wireless communication device using the same
CN111009728A (zh) * 2018-10-08 2020-04-14 合肥若森智能科技有限公司 龙伯透镜及基于龙伯透镜阵列的低剖面阵列天线、卫星天线
US20200195481A1 (en) * 2017-01-13 2020-06-18 Matsing, Inc. Multi-beam mimo antenna systems and methods
US20200243981A1 (en) * 2018-02-15 2020-07-30 University Of South Florida Hybrid mimo architecture using lens arrays

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2293409C2 (ru) * 1990-11-14 2007-02-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт "Градиент" Многолучевая антенная система
US5781163A (en) * 1995-08-28 1998-07-14 Datron/Transco, Inc. Low profile hemispherical lens antenna array on a ground plane
US20090289863A1 (en) * 2008-05-20 2009-11-26 Lockheed Martin Corporation Antenna array with metamaterial lens
US20190237874A1 (en) * 2016-09-07 2019-08-01 Commscope Technologies Llc Multi-band multi-beam lensed antennas suitable for use in cellular and other communications systems
US20200195481A1 (en) * 2017-01-13 2020-06-18 Matsing, Inc. Multi-beam mimo antenna systems and methods
RU2660385C1 (ru) * 2017-07-24 2018-07-06 Общество с ограниченной ответственностью "Радио Модуль НН" Сканирующая линзовая антенна
US20200243981A1 (en) * 2018-02-15 2020-07-30 University Of South Florida Hybrid mimo architecture using lens arrays
US20190363456A1 (en) * 2018-05-22 2019-11-28 Shenzhen Chao-De Communication Co., Ltd Antenna structure and wireless communication device using the same
CN111009728A (zh) * 2018-10-08 2020-04-14 合肥若森智能科技有限公司 龙伯透镜及基于龙伯透镜阵列的低剖面阵列天线、卫星天线

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЗЕЛЕНИН И.А. и др. Антенная решетка на основе линзы Ротмана, Вестник Воронежского государственного технического университета, Том: 8, N11, 2012. *

Similar Documents

Publication Publication Date Title
KR101864052B1 (ko) 조종 가능한 원통 모양으로 급전된 홀로그래픽 안테나를 위한 동적 편광 및 결합 제어
KR101922785B1 (ko) 조종 가능한, 다층 구조의 원통 모양으로 급전된 홀로그래픽 안테나를 위한 동적 편광 및 결합 제어
US10490903B2 (en) Liquid-crystal reconfigurable metasurface reflector antenna
US10454185B1 (en) Interferometric direction finding antenna
CN109950707B (zh) 一种圆锥共形端射阵列天线
KR102172187B1 (ko) 이동통신 서비스용 옴니 안테나
KR101744886B1 (ko) 마이크로 스트립 패치 안테나
US20100045553A1 (en) Low-profile antenna structure
JP2005303986A (ja) 円偏波円偏波アレーアンテナ
US4297708A (en) Apparatus and methods for correcting dispersion in a microwave antenna system
CA2873789C (en) Selectable low-gain/high-gain beam implementation for victs antenna arrays
JP5731745B2 (ja) アンテナ装置およびレーダ装置
JP7013586B2 (ja) 基板集積型導波路アンテナ
Nepa et al. Technologies for near‐field focused microwave antennas
CN112103662A (zh) 透镜天线模组及电子设备
KR101015889B1 (ko) 안테나 이득향상을 위한 전도성 구조체 및 안테나
CN114008861A (zh) 球面龙勃透镜增强的紧凑型多波束天线
WO2019156745A1 (en) Interleaved array of antennas operable at multiple frequencies
RU2435263C1 (ru) Двухдиапазонная антенна
RU2755403C1 (ru) Ненаправленная антенна горизонтальной поляризации
Tiwari et al. Active beamsteerable digital metasurface lens antenna for millimeter-wave applications
RU2765570C1 (ru) Нерегулярная линза и многолучевая антенная система с двумя ортогональными поляризациями на ее основе
CN110233334B (zh) 基于基片集成镜像介质波导的水平极化漏波天线
WO2021003081A1 (en) Base station antenna including fabrey-perot cavities
WO2015040500A2 (en) Feed system for beam steerable circular antenna arrays