RU2764925C1 - Способ модификации древесины - Google Patents
Способ модификации древесины Download PDFInfo
- Publication number
- RU2764925C1 RU2764925C1 RU2021112474A RU2021112474A RU2764925C1 RU 2764925 C1 RU2764925 C1 RU 2764925C1 RU 2021112474 A RU2021112474 A RU 2021112474A RU 2021112474 A RU2021112474 A RU 2021112474A RU 2764925 C1 RU2764925 C1 RU 2764925C1
- Authority
- RU
- Russia
- Prior art keywords
- wood
- hours
- carried out
- heat treatment
- impregnation
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K3/00—Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
Abstract
Изобретение относится к деревообрабатывающей промышленности, в частности к получению обработанной древесины для повышения ее водостойкости. Способ модификации древесины включает обработку древесины погружным методом в пропиточном растворе при нормальных условиях с последующей термообработкой. При этом в качестве пропиточного раствора используют 5% масс. раствор предварительно полученного сополимера глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата в метилэтилкетоне, при мольном соотношении мономеров, равном 1:2, пропитку осуществляют в течение 2–24 ч, а термообработку – при 140°С в течение 2 ч. Упрощается процесс гидрофобизации древесины и повышается ее водостойкость. 1 ил., 3 табл.
Description
Изобретение относится к способу получения обработанной древесины для повышения ее водостойкости и может быть использовано во всех отраслях народного хозяйства, где применяется древесина и изделия из нее.
Известен способ обработки древесины талловым маслом (патент RU 2375169, МПК В27К3/00, В27К3/50, В27К3/34, 10.12.2009). Пропиточную смесь приготавливают следующим образом: талловое масло предварительно нагревают до температуры 180-220°С, затем в него подают воздух в течение 90-150 минут, поддерживая указанную выше температуру, после этого вводят катализатор дегидратации в количестве 0,5-3% от массы таллового масла, затем выдерживают талловое масло при температуре 200-250°С в течение 2-5 часов, после чего осуществляют пропитку древесины при температуре 130-170°С в течение 10-60 минут и затем подвергают термообработке при температуре 155-185°С в течение 3-8 часов.
Недостатком данного способа является применение высокой температуры для подготовки и дальнейшей выдержки таллового масла, а также длительность проведения обработки.
Известен способ получения модифицированной древесины (патент RU 2712521, МПК В27К5/06, 07.02.2019), включающий пропитку древесины стабилизатором, сушку и прессование. Пропиточный раствор готовят путем добавления в карданол 2-3% ледяной 100%-ной уксусной кислоты с получением рН 6.3-6.5, полученным раствором пропитывают заготовки древесины автоклавным способом при давлении 10-15 атм в течение 10-15 мин до содержания карданола 6-12% по сухому остатку, после этого заготовки высушивают под механическим давлением 0.8 МПа и температуре 100-120°С до влажности 6-8%, а после прессования проводят термообработку при температуре 150-155°С в течение 8 ч.
Недостатком данного способа является технологическая сложность процесса. Кроме того, необходимо контролировать температуру обработки и наличие специального прессового оборудования для создания давления.
Известен способ модификации древесины (патент RU 2212335, МПК В27К3/44, 3/50, В05D7/06, 7/24, С09D5/14, 26.07.2002), композицией, содержащей синтетический олигопипериленовый каучук с молекулярной массой 15000-25000, растворенный в органическом растворителе - скипидаре, и битум нефтяной при следующем соотношении компонентов, масс.%: каучук синтетический олигопипериленовый - 8-40, битум нефтяной - 15-50, скипидар – остальное.
Недостатками способа являются применение дорогостоящего синтетического олигопропиленового каучука, использование скипидара, который обеспечивает интенсивное проникновение состава в древесину, но является горючим, взрывоопасным материалом, а также использование битума, который существенно изменяет цвет и фактуру материала, что портит внешний вид древесины.
Известен способ гидрофобизации с помощью состава (патент RU 2729741, МПК В27К3/34, 16.12.2019), включающего битум нефтяной (БНИ-4), отработанное моторное минеральное масло, полученное из базового дистиллятного масла, и технический парафин. Пропитка осуществляется в горячей ванне при влажности древесины не более 25% (ГОСТ 20022.6-93). В пропиточную жидкость, разогретую до температуры 115-125°С, помещались образцы древесины березы размером, требуемым для испытаний на водопоглощение, и выдерживались в течение 40 минут.
К недостаткам данного способа можно отнести высокую температуру пропиточной жидкости. Применение отработанного минерального моторного масла экологически не безопасно, так как оно является токсичным отходом.
Известен способ изготовления модифицированной древесины (SU 1306714, МПК В27К3/15, 5/06, 10.12.1985), где в качестве гидрофобизирующей добавки к стиролу используют полиэтилгидросилоксановую жидкость в количестве 2-8 мас. ч. на 100 мас. ч. стирола. Образцы древесины вакуумируют при остаточном давлении 2-5 кПа в течение 20-30 мин, затем выдерживают в пропиточном составе 30-45 мин. Полимеризацию проводят при температуре 60±2°С в течение 6-8 ч, а термическую обработку - при 95-100°С в течение 2-3 ч. После полимеризации проводят физико-механические испытания модифицированной древесины.
Недостатком данного метода является длительность технологического процесса (в среднем 12 часов).
Наиболее близким техническим решением является способ получения модифицированной древесины с помощью продукта эмульсионной сополимеризации этилакрилата со стиролом Эмукрил С или продукта сополимеризации акриловых мономеров Эмукрил М (патент RU 2381895, МПК В27К3/00, В27К3/04, 20.02.2010). Пропитку осуществляют при температуре при температуре 18-22°С в течение 3 сут., а термообработку при температуре 80°С в течение 10 ч. Водопоглощение (в масс. %) для Эмукрила М за 2 ч составляет – 8, за 24 ч – 22, за 30 сут – 81. Для Эмукрила С представлены данные о водопоглощении за 2 ч – 14 масс. %.
Недостатком данного способа является длительность процессов пропитки и термообработки, суммарно составляющие 82 ч.
Задачей предлагаемого изобретения является разработка эффективного способа получения модифицированной древесины, обладающей повышенной водостойкостью.
Техническим результатом является упрощение способа гидрофобизации древесины и повышение ее водостойкости.
Технический результат достигается в способе модификации древесины, включающем обработку древесины погружным методом в пропиточном растворе при нормальных условиях с последующей термообработкой, при этом в качестве пропиточного раствора используют 5% масс. раствор предварительно полученного сополимера глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата в метилэтилкетоне, при мольном соотношении мономеров равном 1:2, пропитку осуществляют в течение 2–24 ч, а термообработку – при 140°С в течение 2 ч.
Сущностью способа является модификация древесины, придающая ей гидрофобные свойства. Модификация осуществляется пропиткой раствором сополимера, в качестве которого используется 5% масс. раствор сополимера глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата в метилэтилкетоне при мольном соотношении мономерных звеньев глицидилметакрилата: 2,2,3,3,4,4,4-гептафторбутилметакрилата равном 1:2.
Пропитку древесины проводят погружным методом в течение 2–24 часов, а дальнейшую термическую обработку осуществляют при 140°С в течение 2 ч.
Для проведения модификации предварительно высушенный образец древесины сосны помещали в емкость. Во избежание всплытия образец сверху накрывали сеткой, поверх которой был установлен груз. В емкость наливали 5% масс. раствор сополимера в метилэтилкетоне так, чтобы образец был полностью погружен и над образцом древесины оставался слой раствора не менее 5 мм. По окончании пропитки образец древесины извлекали из раствора модификатора, подвергали термической обработке при 140°С в течение 2 ч. Далее высушенный образец извлекали из сушильного шкафа и оставляли на воздухе (при нормальных условиях) в течение 10 минут для охлаждения, а затем взвешивали.
Основным преимуществом данного способа пропитки по сравнению с другими является то, что предварительно синтезированные полимеры могут быть охарактеризованы традиционными химическими и физическими методами. Также данный метод пропитки является менее сложным с химической точки зрения и представляется более технологичным.
В процессе пропитки (от 2 до 24 часов) происходит хемосорбирование сополимеров в поверхностный слой и дальнейшая термообработка позволяет получать ковалентно закрепленные полимерные покрытия. Результаты исследования среднего изменения массы при разном времени пропитки представлены в таблице 1. Пропитка древесины раствором сополимера в метилэтилкетоне не изменяет внешний вид образцов, они остаются светлыми.
Таблица 1
Глубину проникновения модификатора исследовали методом энергодисперсионного микрорентгено-спектрального анализа. Изучали поверхность слома образцов, модифицированных сополимером глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата.
Результаты химического анализа поверхности слома модифицированных образцов приведены в таблице 2.
Химический анализ поверхности слома проводили по высоте от 180 до 1050 мкм по областям площадью 0,03 мм2. В состав исходной древесины входит только углерод (60,6 ат. %) и кислород (39,4 ат. %), что согласуется с литературными данными. Полученные данные (табл. 2) свидетельствуют о проникновении полимера на глубину более одного миллиметра – при возрастании глубины концентрация индикаторного элемента фтора убывает, а концентрации углерода и кислорода, входящих в состав субстрата, увеличивается. Концентрация фтора на поверхности образцов в зависимости от времени выдержки и кратности нанесения закономерно увеличивается от 4,4 до 8,8 ат. %. Однако на глубину проникновения сополимера больший вклад вносит время выдержки в растворе. Так, для 5 часовых образцов на глубине 1050 мкм концентрация фтора составляет 1 ат. %, а для 2 часовых покрытий составляет 0,6 ат. %. Глубина проникновения полимерного модификатора будет оказывать определяющее влияние на устойчивость водоотталкивающих свойств.
Таблица 2
Начальные углы смачивания на поверхности исходной высушенной древесины сосны поперек волокон составляют 120±3°. Измерения угла смачивания проведены в момент времени сразу после постановки капли. Следует отметить, что на этой поверхности наблюдается полное впитывание капли воды менее чем за минуту, что говорит о неустойчивом начальном гидрофобном состоянии, которое обусловлено наличием доступных кислородсодержащих полярных групп соединений, входящих в состав древесины. Гидрофобные свойства модифицированной древесины оценивали по краевому углу смачивания. Результаты исследования представлены в таблице 3.
Таблица 3
Из таблицы 3 видно, что в результате модификации образцов древесины сосны происходит изменение режима смачивания, поверхность приобретает супергидрофобные свойства с углами смачивания до 166°. Наблюдается существенное отличие контактных углов на поверхностях с различной ориентацией волокон, что связано с шероховатостью. Так на поверхности вдоль волокон значения контактных углов ниже (до 151°). Увеличение времени выдержки образцов сопровождается увеличением сорбции полимерного модификатора (табл. 1), что обеспечивает рост угла смачивания и уменьшение разброса значений, что должно положительно сказываться на устойчивости супергидрофобного состояния.
Исследование водопоглощения осуществлялось для древесины, модифицированной сополимером глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата, в результате пропитки в течение 2-24 ч при комнатной температуре и дальнейшей термообработке при температуре 140°С в течение 2 ч. Полученные результаты представлены на фигуре.
На чертеже показаны графики изменения водопоглощения древесины, в сравнении с немодифицированной древесиной – 1, в зависимости от времени выдержки в 5% масс. пропиточном растворе сополимера глицидилметакрилата и стеарилметакрилата с мольным соотношением мономерных звеньев 1:2: 2 часа – 2, 5 часов – 3, 24 часа –4.
Изучение водопоглощения модифицированной древесины показывает, что время выдержки в пропиточном растворе от 2 до 24 полимерного модификатора значительно влияют на свойства. Для всех модифицированных образцов характерно значительное снижение водопоглощения по сравнению с исходной древесиной. Так за 1-е сутки исходная древесина набрала 107 масс. %, а образцы, пропитанные сополимером глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата в течение 2-24 часа, в среднем, набрали 28 масс. %. По результатам испытаний на 60-е сутки исходная древесина набрала 185 масс. %, а образец, модифицированный раствором сополимера глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата в течение 2 часов, 69 масс. %. Увеличение времени пропитки от 2 до 24 часов позволяет уменьшить водопоглощение через 60 суток до 61 масс. %. При этом все образцы, модифицированные сополимерами глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата, не тонут в воде и остаются светлыми.
Синтез сополимера глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата проводили в метилэтилкетоне при 70°С в течение 24 часов. В качестве инициатора использовали азобисизобутиронитрил. Полимер высаживали в ледяной гексан, отфильтровывали на колбе Бунзена и сушили при пониженном давлении 24 ч. Для пропитки древесины готовили 5% масс. растворы полученных сополимеров в метилэтилкетоне.
Пример 1. Синтез сополимера глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата с мольным соотношением 1:2 проводили в метилэтилкетоне при 70°С в течение 24 часов. В 4,6 мл метилэтилкетона растворяли инициатор азобисизобутиронитрил (0,0031 г; 0,0186 ммоль), затем продували аргоном в течение 20 минут и при перемешивании добавляли глицидилметакрилат (0,254 мл, 1,8 ммоль) и 2,2,3,3,4,4,4-гептафторбутилметакрилат (0,744 мл, 3,7 ммоль). Полученную реакционную смесь выдерживали при 70°С в течение 24 часов. Полимер высаживали в ледяной гексан, отфильтровывали на колбе Бунзена и сушили при пониженном давлении 24 ч.
Для проведения модификации предварительно высушенный образец древесины сосны помещали в емкость. Во избежание всплытия образец сверху накрывали сеткой, поверх которой был установлен груз. В емкость наливали 5% масс. раствор сополимера в метилэтилкетоне так, чтобы образец был полностью погружен и над образцом древесины оставался слой раствора не менее 5 мм. Пропитку проводили в течение 2 ч. По окончании пропитки образец древесины извлекали из раствора модификатора, подвергали термической обработке при 140°С в течение 2 ч. Далее высушенный образец извлекали из сушильного шкафа и оставляли на воздухе (при нормальных условиях) в течение 10 минут для охлаждения, а затем взвешивали.
Пример 2. Способ осуществлялся аналогично примера 1, за исключением времени пропитки, которое составило 5 часов.
Пример 3. Способ осуществлялся аналогично примера 1, за исключением времени пропитки, которое составило 24 часа.
Таким образом, упрощенный способ модификации древесины, включающий обработку древесины погружным методом в течение 2-24 ч при нормальных условиях в 5% масс. пропиточном растворе сополимера глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилат, в метилэтилкетоне при мольном соотношении мономерных звеньев глицидилметакрилата: фторалкилметакрилата равном 1:2, последующую термообработку при 140°С в течение 2 часов, обеспечивает гидрофобизацию древесины и повышение ее водостойкости.
Claims (1)
- Способ модификации древесины, включающий обработку древесины погружным методом в пропиточном растворе при нормальных условиях с последующей термообработкой, отличающийся тем, что в качестве пропиточного раствора используют 5% масс. раствор предварительно полученного сополимера глицидилметакрилата и 2,2,3,3,4,4,4-гептафторбутилметакрилата в метилэтилкетоне, при мольном соотношении мономеров равном 1:2, пропитку осуществляют в течение 2–24 ч, а термообработку – при 140°С в течение 2 ч.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021112474A RU2764925C1 (ru) | 2021-04-29 | 2021-04-29 | Способ модификации древесины |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021112474A RU2764925C1 (ru) | 2021-04-29 | 2021-04-29 | Способ модификации древесины |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2764925C1 true RU2764925C1 (ru) | 2022-01-24 |
Family
ID=80445409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2021112474A RU2764925C1 (ru) | 2021-04-29 | 2021-04-29 | Способ модификации древесины |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2764925C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1306714A1 (ru) * | 1985-12-10 | 1987-04-30 | Институт химии древесины АН ЛатвССР | Способ изготовлени модифицированной древесины |
US5344956A (en) * | 1991-04-26 | 1994-09-06 | Minnesota Mining And Manufacturing Company | Fluoroacrylate monomers and polymers, processes for preparing the same and their use |
RU2212335C1 (ru) * | 2002-07-26 | 2003-09-20 | Беляев Дмитрий Анатольевич | Композиция для гидрофобизации древесины |
RU2375169C1 (ru) * | 2008-08-11 | 2009-12-10 | Геннадий Иванович Царев | Способ обработки древесины |
RU2381895C2 (ru) * | 2007-06-13 | 2010-02-20 | Государственное образовательное учреждение Высшего профессионального образования "Тамбовский государственный технический университет" ГОУ ВПО "ТГТУ" | Способ получения модифицированной древесины |
RU2712521C1 (ru) * | 2019-02-07 | 2020-01-29 | Общество с ограниченной ответственностью "Модификация" | Способ получения модифицированной древесины |
-
2021
- 2021-04-29 RU RU2021112474A patent/RU2764925C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1306714A1 (ru) * | 1985-12-10 | 1987-04-30 | Институт химии древесины АН ЛатвССР | Способ изготовлени модифицированной древесины |
US5344956A (en) * | 1991-04-26 | 1994-09-06 | Minnesota Mining And Manufacturing Company | Fluoroacrylate monomers and polymers, processes for preparing the same and their use |
RU2212335C1 (ru) * | 2002-07-26 | 2003-09-20 | Беляев Дмитрий Анатольевич | Композиция для гидрофобизации древесины |
RU2381895C2 (ru) * | 2007-06-13 | 2010-02-20 | Государственное образовательное учреждение Высшего профессионального образования "Тамбовский государственный технический университет" ГОУ ВПО "ТГТУ" | Способ получения модифицированной древесины |
RU2375169C1 (ru) * | 2008-08-11 | 2009-12-10 | Геннадий Иванович Царев | Способ обработки древесины |
RU2712521C1 (ru) * | 2019-02-07 | 2020-01-29 | Общество с ограниченной ответственностью "Модификация" | Способ получения модифицированной древесины |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thakur et al. | Graft copolymerization of methyl methacrylate onto cellulosic biofibers | |
Barsbay et al. | Functionalization of cellulose with epoxy groups via γ-initiated RAFT-mediated grafting of glycidyl methacrylate | |
Umar et al. | Oil-heat treatment of rubberwood for optimum changes in chemical constituents and decay resistance | |
Bartnicki et al. | New crosslinked hydrogels derivatives of 2-hydroxyethyl methacrylate: Synthesis, modifications and properties. | |
JP6645324B2 (ja) | 表面修飾フィルム | |
Bongiovanni et al. | Water resistance improvement of filter paper by a UV-grafting modification with a fluoromonomer | |
RU2764925C1 (ru) | Способ модификации древесины | |
Yu et al. | Study of radiation‐induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution | |
RU2764924C1 (ru) | Способ модификации древесины | |
RU2764921C1 (ru) | Способ модификации древесины | |
RU2764926C1 (ru) | Способ модификации древесины | |
Akhmedov et al. | The method of producing hydrophobic organosilicon polymers based on hydrolyzed polyacrylonitrile | |
Liu et al. | Rheological and curing behavior of aqueous ambient self‐crosslinkable polyacrylate emulsion | |
CN111876106B (zh) | 一种双元有机硅体系改性淀粉基木材胶黏剂的制备方法及其产品和应用 | |
TW419524B (en) | Amphiphilic copolymers, method for making the same, and its use in treating leather | |
Magami | Comparative gelation of acrylic acid and acrylamide in diacrylate and dimethacrylate crosslinked matrices | |
Belchinskaya et al. | Studying and imparting moisture absorption qualities of the new wood based bio-composite material | |
Borgin et al. | Improvement of capillary penetration of liquids into wood by use of supersonic waves | |
RU2615698C1 (ru) | Способ получения полимерного покрытия на поверхности хлопчатобумажной ткани | |
RU2615694C1 (ru) | Способ получения полимерного покрытия на поверхности хлопчатобумажной ткани | |
Li et al. | Modification of silk fiber via emulsion graft copolymerization with fluoroacrylate | |
Hakkou et al. | Evolution of wood hydrophobic properties during heat treatment | |
Bajpai et al. | Synthesis and characterization of poly [methyl methacrylate‐co‐2‐ethylhexyl acrylate‐co‐poly (propylene glycol diacrylate)] latices | |
Rahman et al. | Enhancement of thermo-mechanical properties of okra fiber by photografting technique | |
RU2577274C1 (ru) | Способ получения полимерного покрытия на поверхности хлопчатобумажной ткани |