RU2764912C1 - Способ получения соединения стали с титановым сплавом методом прямого лазерного выращивания - Google Patents

Способ получения соединения стали с титановым сплавом методом прямого лазерного выращивания Download PDF

Info

Publication number
RU2764912C1
RU2764912C1 RU2021114962A RU2021114962A RU2764912C1 RU 2764912 C1 RU2764912 C1 RU 2764912C1 RU 2021114962 A RU2021114962 A RU 2021114962A RU 2021114962 A RU2021114962 A RU 2021114962A RU 2764912 C1 RU2764912 C1 RU 2764912C1
Authority
RU
Russia
Prior art keywords
layers
powder
powders
argon
surfacing
Prior art date
Application number
RU2021114962A
Other languages
English (en)
Inventor
Павел Александрович Хорьков
Игорь Владимирович Антонов
Валерий Михайлович Удалов
Глеб Андреевич Туричин
Евгений Вячеславович Земляков
Константин Дмитриевич Бабкин
Ольга Геннадьевна Климова-Корсмик
Артур Маратович Вильданов
Марина Олеговна Гущина
Original Assignee
Акционерное общество "Центральное конструкторское бюро морской техники "Рубин"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Центральное конструкторское бюро морской техники "Рубин" filed Critical Акционерное общество "Центральное конструкторское бюро морской техники "Рубин"
Priority to RU2021114962A priority Critical patent/RU2764912C1/ru
Application granted granted Critical
Publication of RU2764912C1 publication Critical patent/RU2764912C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

Изобретение относится к способу соединения стали с титановым сплавом методом прямого лазерного выращивания и может найти применение при изготовлении изделий космического, энергетического и химического машиностроения, а также при изготовлении изделий корпусного насыщения в судостроении. Порошковый материал подают в зону наплавки потоком аргона. Наплавку производят непрерывным лазерным лучом в среде аргона. Соединение получают путем нанесения на подложку из титанового сплава не менее пяти слоев из смеси сферических порошков молибдена и медно-алюминиевой бронзы в соотношении 60% и 40% соответственно и последующего нанесения на этот слой слоев из сферического порошка нержавеющей стали. Порошок из молибдена имеет дисперсность от 40 мкм до 100 мкм, порошки из медно-алюминиевой бронзы и нержавеющей стали имеют дисперсность от 50 мкм до 150 мкм. Порошки подают в зону наплавки лазерным лучом потоком аргона с расходом 5 л/мин, при этом зону наплавки защищают аргоном, подаваемым с расходом 20 л/мин. Слои накладывают лазерным лучом, сфокусированным на поверхности подложки или предыдущего слоя в пятно диаметром от 2 мм до 3 мм, со скоростью 1,5 м/мин с изменением мощности лазерного излучения от 1,6 кВт до 1,8 кВт. Шаг вертикального смещения слоев задают равным 0,6 мм, шаг поперечного смещения слоев -1,3 мм, массовый расход подаваемого порошка для каждого типа используемых порошков - от 3 г/мин до 5 г/мин. Слой формируют последовательным нанесением валиков один за другим с их частичным перекрытием в поперечном сечении. Способ обеспечивает получение надежного равнопрочного соединения стали и титанового сплава при изготовлении заготовок, не требующих дополнительной обработки, дополнительных расходных материалов на обработку и выделения дополнительного времени. 1 пр., 1 табл.

Description

Изобретение относится к области порошковой металлургии, в частности к способам получения соединения разнородных металлов с использованием лазерного излучения, предназначено для получения надежного равнопрочного соединения между титановым сплавом и сталью и может быть использовано при изготовлении изделий космического, энергетического и химического машиностроения, а также при изготовлении изделий корпусного насыщения в судостроении.
Из патента RU №2704945, МПК: B23K 26/34, В32В 15/01, С23С 4/08, B22F 7/04 (опубл. 31.10.2019) известен способ получения трехслойного материала сталь Х17Н2 - V-4, 9Ti-4,8 Cr - сталь Х17Н2, включающий нанесение коррозионностойкой стали на пластину из ванадиевого сплава, при котором на пластину из ванадиевого сплава V-4,9 Ti-4,8 Cr лазерной наплавкой наносят порошок коррозионностойкой стали Х17Н2 дисперсностью 50-150 мкм и с массовым расходом 20-25 г/мин, при этом лазерную наплавку осуществляют лазерным лучом мощностью 950-1200 В и диаметром 1,6-2,0 мм.
Недостатком данного способа получения соединения разнородных металлов лазерной наплавкой является то, что выполнение соединения стали с титановым сплавом через переходный слой на указанных в аналоге режимах лазерной наплавки не позволяет получить надежное равнопрочное соединение стали с титановым сплавом.
Наиболее близким техническим решением, взятым за прототип, является патент RU №2503740, МПК: С23С 4/12, B23K 26/34 (опубл. 10.01.2014), способ получения композиционных покрытий методом коаксиальной лазерной оплавки, включающей очистку, промывку и струйно-абразивную обработку подвергаемой наплавке поверхности детали с последующей обдувкой подготовленной поверхности сжатым воздухом, подготовку порошкового материала, его подачу на поверхность детали в зону наплавки потоком аргона и наплавку импульсным лазерным лучом в среде аргон, при этом, очистке и промывке дополнительно подвергают поверхности детали, прилегающей к зоне наплавки, в процессе струйно-абразивной обработки подвергаемой наплавке поверхности детали придают обеспечивающую адгезию с покрытием шероховатость, порошковый материал на поверхность детали в зону наплавки подают из двух дозаторов, а наплавку осуществляют, по крайней мере, в два слоя лазерным лучом мощностью 2 кВт при скорости его перемещения в процессе наплавки 2 м/мин, при этом, из одного дозатора в поток аргона подают армирующий неметаллический дисперсный порошок агломерированного карбида вольфрама WC фракцией 80,0-150,0 мкм, а из другого дозатора -металлический порошок сплава кобальта ВЗК фракцией 53-106 мкм, причем при наплавке первого слоя порошок карбида вольфрама и порошок сплава кобальта подают в соотношении 1:4, а при наплавке второго слоя устанавливают соотношение 1:5. Покрытие наносят на детали из углеродистой или нержавеющей стали, или титановых сплавов, или магниевых сплавов, или алюминиевых сплавов, или бронз, или латуней. Прилегающие к зоне наплавки поверхности детали очищают и промывают на расстоянии не менее 50 мм. В процессе струйно-абразивной обработки подвергаемой наплавке поверхности детали придают шероховатость Rz не менее 20 мкм. После наплавки второго слоя наплавляют третий слой при соотношении подачи порошка карбида вольфрама и порошка сплава кобальта 1:5, после чего наплавляют четвертый слой при соотношении 1:6.
Недостатком данного способа получения соединения разнородных металлов лазерной наплавкой является многостадийность процесса, проявляющаяся в том, что для его реализации требуется проводить струйно-абразивную обработку наплавляемой поверхности детали, которая требует использования дополнительного оборудования и расходных материалов, выделения дополнительного времени.
Задачей предлагаемого изобретения является получение надежного равнопрочного соединения стали и титанового сплава при изготовлении заготовок, не требующих дополнительной обработки, дополнительных расходных материалов на обработку и выделения дополнительного времени.
Поставленная задача достигается способом получения соединения стали с титановым сплавом методом прямого лазерного выращивания, включающим подготовку порошкового материала, его подачу в зону наплавки потоком аргона и наплавку лазерным лучом в среде аргона, при этом, соединение получают путем нанесения непрерывным лазерным лучом на подложку из титанового сплава не менее пяти слоев из смеси сферических порошков молибдена и медно-алюминиевой бронзы в соотношении 60% и 40%, соответственно, и последующего нанесения на этот слой слоев из сферического порошка нержавеющей стали, порошок из молибдена имеет дисперсность от 40 мкм до 100 мкм, порошки из медно-алюминиевой бронзы и нержавеющей стали имеют дисперсность от 50 мкм до 150 мкм, порошки подают в зону наплавки лазерным лучом потоком аргона с расходом 5 л/мин, зону наплавки защищают аргоном, подаваемым с расходом 20 л/мин, слои накладывают лазерным лучом, сфокусированным на поверхности подложки или предыдущего слоя в пятно диаметром от 2 мм до 3 мм со скоростью 1,5 м/мин с изменением мощности лазерного излучения в пределах от 1,6 кВт до 1,8 кВт, шаг вертикального смещения слоев задают равным 0,6 мм, шаг поперечного смещения слоев - 1,3 мм, массовый расход подаваемого порошка для каждого типа используемых порошков находится в пределах от 3 г/мин до 5 г/мин, слой формируют последовательным нанесением валиков один за другим с их частичным перекрытием в поперечном сечении.
Пример реализации способа:
В процессе выращивания герметичную камеру заполняют аргоном высокой чистоты (не менее 99,99%) до избыточного давления 2 МПа. В камере после заполнения аргоном, содержание кислорода не должно превышать 150 ppm. Процесс прямого лазерного выращивания осуществляют при следующих технологических параметрах: сначала накладывают пять слоев из смеси порошков 60% молибдена и 40% медно-алюминиевой бронзы при мощности излучения 1,6 кВт, скорость перемещения сопла относительно подложки 1,5 м/мин, диаметр пятна сфокусированного лазерного луча на поверхности подложки из титанового сплава или предыдущего слоя 3 мм, массовый расход подаваемого порошка 3 г/мин, расход транспортного газа 5 л/мин, расход защитного газа 20 л/мин. При этом шаг вертикального смещения сопла составляет 0,6 мм, а шаг поперечного смещения сопла -1,33 мм. Затем на последний слой накладывают десять слоев из порошка из нержавеющей стали при мощности излучения 1,8 кВт, скорость перемещения сопла относительно подложки 1,5 м/мин, диаметр пятна сфокусированного лазерного луча на поверхности подожки или предыдущего слоя 2 мм, массовый расход подаваемого порошка 5 г/мин, расход транспортного газа 5 л/мин, расход защитного газа 20 л/мин. Слой формируют последовательным нанесением валиков с их частичным перекрытием в поперечном сечении. Валики накладывают последовательно один за другим, слои накладывают также последовательно один на другой.
Для подтверждения заявленного способа были выращены образцы на указанных в примере реализации способа параметрах режима прямого лазерного выращивания и проведены металлографические исследования шлифов полученных образцов, выполнены механические испытания по ТУ 5.961-11917-2015. Исследования металлографического шлифа выращенного образца показало отсутствие трещин, возникающих в результате внутренних напряжений из-за образования интерметаллидов, а также отсутствие несплавлений. В таблице 1 приведено сравнение основных механических свойств (результаты испытания на определение сопротивления отрыву) биметаллических соединений сталь-титан, получаемых традиционными способами и образцов, выращенных предлагаемым методом.
Figure 00000001
Как видно из таблицы 1, образцы, полученные предлагаемым способом, обладают повышенными механическими свойствами по сравнению с аналогами.
Заявляемое техническое решение позволяет решить поставленную задачу, используя метод прямого лазерного выращивания, и обеспечивает получение надежного равнопрочного соединения стали и титанового сплава при изготовлении заготовок, не требующих дополнительной обработки, дополнительных расходных материалов на обработку и выделения дополнительного времени. Преимущество предлагаемого способа перед известными решениями заключается в повышении механических свойств заготовок и сокращении времени, затрачиваемого на дополнительные технологические операции.

Claims (1)

  1. Способ получения соединения стали с титановым сплавом методом прямого лазерного выращивания, включающий подготовку порошкового материала, его подачу в зону наплавки потоком аргона и наплавку лазерным лучом в среде аргона, отличающийся тем, что соединение получают путем нанесения непрерывным лазерным лучом на подложку из титанового сплава по меньшей мере пяти слоев из смеси сферических порошков молибдена и медно-алюминиевой бронзы в соотношении 60% и 40% соответственно и последующего нанесения на них слоев из сферического порошка нержавеющей стали, при этом используют порошок из молибдена с дисперсностью 40 -100 мкм, а порошки из медно-алюминиевой бронзы и нержавеющей стали -с дисперсностью 50-150 мкм, причем порошки подают в зону наплавки лазерным лучом потоком аргона с расходом 5 л/мин, а зону наплавки защищают аргоном, который подают с расходом 20 л/мин, при этом слои накладывают лазерным лучом, сфокусированным на поверхности подложки или предыдущего слоя в пятно диаметром 2-3 мм, со скоростью 1,5 м/мин с изменением мощности лазерного излучения от 1,6 кВт до 1,8 кВт, причем шаг вертикального смещения слоев задают равным 0,6 мм, шаг поперечного смещения слоев - 1,3 мм, причем массовый расход подаваемого порошка для каждого типа используемых порошков составляет 3-5 г/мин, при этом слой формируют последовательным нанесением валиков один за другим с их частичным перекрытием в поперечном сечении.
RU2021114962A 2021-05-25 2021-05-25 Способ получения соединения стали с титановым сплавом методом прямого лазерного выращивания RU2764912C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021114962A RU2764912C1 (ru) 2021-05-25 2021-05-25 Способ получения соединения стали с титановым сплавом методом прямого лазерного выращивания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021114962A RU2764912C1 (ru) 2021-05-25 2021-05-25 Способ получения соединения стали с титановым сплавом методом прямого лазерного выращивания

Publications (1)

Publication Number Publication Date
RU2764912C1 true RU2764912C1 (ru) 2022-01-24

Family

ID=80445396

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021114962A RU2764912C1 (ru) 2021-05-25 2021-05-25 Способ получения соединения стали с титановым сплавом методом прямого лазерного выращивания

Country Status (1)

Country Link
RU (1) RU2764912C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535603A (zh) * 2022-01-29 2022-05-27 沈阳航空航天大学 一种提高增材制造金属层状复合材料薄弱区塑韧性的方法
CN115351392A (zh) * 2022-09-21 2022-11-18 福州大学 一种异质钛/不锈钢功能梯度复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015100A (en) * 1974-01-07 1977-03-29 Avco Everett Research Laboratory, Inc. Surface modification
JPS63224890A (ja) * 1987-03-13 1988-09-19 Toyota Motor Corp レ−ザ肉盛方法
RU2503740C2 (ru) * 2011-10-18 2014-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения композиционных покрытий методом коаксиальной лазерной оплавки
RU2715404C1 (ru) * 2019-09-09 2020-02-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ создания заготовки гребного винта
RU2724210C1 (ru) * 2019-10-14 2020-06-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (ФГБОУ ВО СПбГМТУ) Способ повышения механических свойств стали аб2-1 при осуществлении прямого лазерного выращивания металлических заготовок

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4015100A (en) * 1974-01-07 1977-03-29 Avco Everett Research Laboratory, Inc. Surface modification
JPS63224890A (ja) * 1987-03-13 1988-09-19 Toyota Motor Corp レ−ザ肉盛方法
RU2503740C2 (ru) * 2011-10-18 2014-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ получения композиционных покрытий методом коаксиальной лазерной оплавки
RU2715404C1 (ru) * 2019-09-09 2020-02-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ создания заготовки гребного винта
RU2724210C1 (ru) * 2019-10-14 2020-06-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (ФГБОУ ВО СПбГМТУ) Способ повышения механических свойств стали аб2-1 при осуществлении прямого лазерного выращивания металлических заготовок

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114535603A (zh) * 2022-01-29 2022-05-27 沈阳航空航天大学 一种提高增材制造金属层状复合材料薄弱区塑韧性的方法
CN114535603B (zh) * 2022-01-29 2024-05-24 沈阳航空航天大学 一种提高增材制造金属层状复合材料薄弱区塑韧性的方法
CN115351392A (zh) * 2022-09-21 2022-11-18 福州大学 一种异质钛/不锈钢功能梯度复合材料的制备方法

Similar Documents

Publication Publication Date Title
Karmakar et al. A review on the nickel based metal matrix composite coating
RU2764912C1 (ru) Способ получения соединения стали с титановым сплавом методом прямого лазерного выращивания
Haldar et al. Identifying defects and problems in laser cladding and suggestions of some remedies for the same
US8828312B2 (en) Dilution control in hardfacing severe service components
US8636194B2 (en) Friction stir fabrication
RU2503740C2 (ru) Способ получения композиционных покрытий методом коаксиальной лазерной оплавки
JP6442791B2 (ja) 第1及び第2の金属ワークピースの表面の1つに対する溶接改質材の層の冷溶射を用いた、第1及び第2の金属ワークピースの溶接方法
US11453088B2 (en) Process and composition for formation of hybrid aluminum composite coating
EP2076352A2 (en) Refractory metal tooling for friction stir welding
WO2006133034A1 (en) Direct metal deposition using laser radiation and electric arc
CN104722893B (zh) 一种基于堆焊和氩弧熔覆制备耐磨涂层的方法
Yamaguchi et al. Porosity reduction in WC-12Co laser cladding by aluminum addition
Anand et al. Fabrication of multilayer thin wall by WAAM technique and investigation of its microstructure and mechanical properties
Yao et al. A study on mechanical properties of CuNi2SiCr layered on nickel–aluminum bronze via directed energy deposition
Sharma et al. Processing techniques, microstructural and mechanical properties of wire arc additive manufactured stainless steel: a review
THIAGARAJAN et al. Effect of cladding of stellite-6 filler wire on the surface of ss316l alloy through cold metal arc transfer process
Mikheev Application of the friction surfacing process for the production of functional gradient layered composition
Ochonogor et al. Microstructure characterization of laser-deposited titanium carbide and zirconium-based titanium metal matrix composites
Węglowski et al. Electron beam additive manufacturing with wire
Orishich et al. Creation of heterogeneous metal-ceramic structures based on Ti, Ni and WC, B4C by the combined method of laser cladding and cold gas-dynamic spraying
Biswas et al. A review on TIG cladding of engineering material for improving their surface property
RU2800900C1 (ru) Градиентный материал для соединения титанового сплава bt1-0 с нержавеющей сталью 316l методом прямого лазерного выращивания
Semenchuk et al. Influence of 3D Printing Parameters of Aluminum–Manganese Bronze by Wire-Arc Additive Manufacturing on the Microstructure and Mechanical Properties
Banai et al. Effect of composite coating using TIG cladding process: A review
JP7506421B2 (ja) 硬質金属部材の製造方法及び硬質金属部材並びにその原料粉末