RU2763963C1 - Устройство для диагностики технического состояния металлических трубопроводов - Google Patents

Устройство для диагностики технического состояния металлических трубопроводов Download PDF

Info

Publication number
RU2763963C1
RU2763963C1 RU2021109666A RU2021109666A RU2763963C1 RU 2763963 C1 RU2763963 C1 RU 2763963C1 RU 2021109666 A RU2021109666 A RU 2021109666A RU 2021109666 A RU2021109666 A RU 2021109666A RU 2763963 C1 RU2763963 C1 RU 2763963C1
Authority
RU
Russia
Prior art keywords
pipeline
input
output
magnetic field
magnetic
Prior art date
Application number
RU2021109666A
Other languages
English (en)
Inventor
Александр Николаевич Васильев
Марина Семёновна Гринева
Андрей Евгеньевич КУРАШВИЛИ
Александр Борисович ПРОКАЗИН
Степан Ильич Ребров
Андрей Борисович СЕРГЕЕВ
Original Assignee
Общество с ограниченной ответственностью Инженерный центр "Диагностика"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Инженерный центр "Диагностика" filed Critical Общество с ограниченной ответственностью Инженерный центр "Диагностика"
Priority to RU2021109666A priority Critical patent/RU2763963C1/ru
Application granted granted Critical
Publication of RU2763963C1 publication Critical patent/RU2763963C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к нефтяной и газовой промышленности и предназначено для контроля технического состояния трубопроводов без производства сплошных вскрышных работ и какого-либо воздействия на металл труб, и может быть использовано при бесконтактной дефектоскопии трубопроводов путем регистрации и измерения магнитных полей рассеяния дефектов трубопровода. Устройство для диагностики технического состояния металлических трубопроводов, которое содержит два трехкомпонентных датчика индукции магнитного поля, расположенные на разных уровнях относительно трубопровода, третий трехкомпонентный датчик магнитного поля, находящийся вне зоны влияния магнитного поля трубопровода, на расстоянии 10-20 м в зависимости от диаметра трубопровода. Кроме того, устройство содержит первый, второй и третий усилители, первый и второй аналого-цифровой преобразователи, устройство беспроводной передачи данных, устройство коррекции сигнала, контроллер, блок памяти и блок отображения информации, соответственно подключенные. Согласно изобретению, устройство дополнительно снабжено измерителем магнитной проницаемости металла, размещенным на внешней поверхности трубопровода, причем выход измерителя магнитной проницаемости соединен со входом второго устройства передачи данных, выход которого соединен с третьим входом устройства коррекции сигнала, выход которого соединен со входом контроллера. Технический результат: снижение затрат и повышение достоверности определения параметров дефектов трубопроводов при проведении бесконтактной магнитометрической диагностики за счет уменьшения погрешности измерений с учетом магнитных свойств металла трубопровода. 6 з.п. ф-лы, 2 ил.

Description

Изобретение относится к нефтяной и газовой промышленности и предназначено для контроля технического состояния трубопроводов без производства сплошных вскрышных работ и какого-либо воздействия на металл труб, и может быть использовано при бесконтактной дефектоскопии трубопроводов путем регистрации и измерения магнитных полей рассеяния дефектов трубопровода.
Известно устройство для контактной внутритрубной магнитной дефектоскопии трубопроводов, описанное в патенте РФ № RU 2586261, МПК G01N 27/82, опубл. 10.06.2016 г., содержащее специальный датчик, который состоит из магнитной пластины, установленной в непосредственной близости от внутренней стенки трубопровода, на равном расстоянии от которой с двух сторон установлены два полупроводниковых магнитных преобразователя, причем сигнал специального датчика пропорционален относительной дифференциальной проницаемости материала трубы в точке поля намагничивания относительно направления проката листа. Специальный датчик входит в блок датчиков, который установлен на плате, на которой установлены также преобразователи магнитного поля, измеряющие магнитное поле дефекта, при этом преобразователи магнитного поля установлены на таком расстоянии от магнитной пластины специального датчика, чтобы поле от нее не влияло на измерение полей дефектов. Блок датчиков залит компаундом и размещен на износоустойчивой подложке, которая скользит по внутренней стенке трубопровода, при этом на одном блоке датчиков размещено несколько каналов измерения магнитного поля дефекта.
Недостатком данного прибора является то, что он предназначен только для трубопроводов, приспособленных для проведения внутритрубной дефектоскопии.
Известно устройство для бесконтактного выявления наличия и местоположения дефектов стального трубопровода по патенту РФ на полезную модель № RU 55989, МПК G01N 27/82, опубл. 27.08.2006 г., содержащее систему датчиков магнитного поля с блоком усиления сигналов датчиков магнитного поля, блок аналогового вычитания и генератор возбуждения магнитного поля, при этом первый выход генератора соединен со входом системы датчиков, выход которой соединен с первым входом блока усиления сигналов датчиков магнитного поля, ко второму входу которого подключен второй выход генератора, а к первому выходу блока усиления сигналов датчиков магнитного поля подсоединен второй вход АЦП, к третьему входу которого подсоединен выход блока аналогового вычитания, ко входу которого подключен второй выход блока усиления сигналов магнитных датчиков, а выход АЦП подключен к первому входу блока управления.
Недостатком данного устройства является наличие в нем генератора возбуждения магнитного поля, что определяет его высокое потребление электроэнергии, и отсутствие устройства коррекции магнитометрических данных в зависимости от магнитных свойств металла трубопровода.
Известен магнитный дефектоскоп для контроля подземных трубопроводов по патенту РФ на полезную модель № RU 86316, МПК G01N 27/72, опубл. 27.08.2009 г., содержащий первый и второй преобразователи магнитного поля, первый из которых, содержащий не менее двух датчиков магнитного поля, установлен вдоль продольной оси трубопровода, а второй, содержащий не менее двух датчиков магнитного поля, установлен вдоль линии, перпендикулярной продольной оси трубопровода и поверхности грунта, контроллер с клавиатурой, аналого-цифровой преобразователь и устройство отображения информации, первый и второй усилители, аналого-цифровой преобразователь (АЦП), первый и второй программно-управляемые аттенюаторы, блок аналогового вычитания, блок питания преобразователей магнитного поля, промежуточный блок памяти, блок пространственной привязки. При этом первый выход блока питания преобразователей магнитного поля соединен со входом первого преобразователя магнитного поля, второй его выход соединен со входом второго преобразователя магнитного поля, первый выход второго усилителя соединен со вторым входом блока аналогового вычитания, первый вход которого соединен с первым выходом первого усилителя, первый вход которого соединен с выходом первого программно-управляемого аттенюатора, вход которого соединен с выходом первого преобразователя магнитного поля, первый выход блока аналогового вычитания соединен с первым входом промежуточного блока памяти, а второй его выход соединен с четвертым входом промежуточного блока памяти, выход которого соединен со входом АЦП, второй выход первого усилителя соединен со вторым входом промежуточного блока памяти, третий вход которого соединен со вторым выходом второго усилителя. Первый выход контроллера соединен со вторым входом первого программно-управляемого аттенюатора, третий выход контроллера соединен со вторым входом программно-управляемого аттенюатора, первый вход которого соединен с выходом второго преобразователя магнитного поля, а выход соединен со входом второго усилителя, третий вход контроллера соединен с выходом блока акселерометров, четвертый выход контроллера соединен со входом блока памяти, второй вход которого соединен с выходом блока пространственной привязки, выход АЦП соединен с первым входом контроллера, выход клавиатуры соединен с четвертым входом контроллера, второй выход которого соединен со входом блока отображения информации. В качестве датчиков магнитного поля использованы магниторезисторы, при этом блок питания преобразователя магнитного поля выполнен в виде стабилизированного источника постоянного тока.
Дефектоскоп обеспечивает регистрацию областей рассеяния магнитного поля дефектов металла трубопровода. Однако в данном дефектоскопе не учитываются вариации влияния внешнего фонового магнитного поля Земли, а также зависимость величины магнитного поля рассеяния дефекта от магнитных свойств металла трубопровода.
Известно устройство для диагностики технического состояния стальных трубопроводов, описанное в патенте РФ № RU 2453760, МПК F17D 5/00, опубл. 20.06.2012 г. Устройство содержит два трехкомпонентных датчика магнитного поля, которые расположены на разном уровне по высоте относительно контролируемого трубопровода. Каждый из датчиков содержит три измерителя индукции магнитного поля, расположенных по оси координат X, Y, Z, где ось X расположена в горизонтальной плоскости и перпендикулярна продольной оси трубопровода, ось Y расположена параллельно продольной оси трубопровода, ось Z - перпендикулярна осям X и Y. Устройство также содержит усилители сигналов измерителей, аналого-цифровой преобразователь (АЦП), контроллер, блок памяти и устройство отображения информации. В качестве датчиков использованы феррозонды. Каждый из датчиков снабжен аналоговым устройством определения разности значений индукции магнитного поля.
Недостатки данного технического решения заключаются в большом объеме аналоговой схемотехники, что увеличивает потребление электроэнергии и габариты оборудования, предназначенного для полевого применения. Это обусловлено применением феррозондов и аналоговых устройств определения разности значений. Кроме того, так же, как и в предыдущем патенте, отсутствует коррекция получаемых данных в зависимости от напряженности внешнего магнитного поля и магнитных свойств металла трубопровода.
Известно устройство для диагностики технического состояния металлических трубопроводов по патенту РФ на изобретение №RU 2525462, МПК G01N 27/82, F17D 5/00, опубл. 20.08.2014 г., содержащее, по меньшей мере, два трехкомпонентных датчика индукции магнитного поля, расположенных на разных уровнях по высоте относительно трубопровода, каждый из которых содержит три измерителя индукции магнитного поля, расположенных, соответственно, по осям координат X, Y, Z, где ось X расположена в горизонтальной плоскости и перпендикулярна продольной оси трубопровода, ось Y расположена параллельно продольной оси трубопровода, ось Z перпендикулярна осям X и Y, а также содержащее первый и второй усилители, аналогово-цифровой преобразователь (АЦП), устройство определения разности значений индукции магнитного поля по осям X, Y, Z, контроллер, блок памяти и устройство отображения информации, при этом первый, второй и третий измерители первого трехкомпонентного датчика соединены, соответственно, с первым, вторым и третьим входами первого усилителя, первый, второй и третий измерители второго трехкомпонентного датчика соединены, соответственно, с первым, вторым и третьим входами второго усилителя, выходы первого и второго усилителей соединены, соответственно, с первым и вторым входами АЦП, первый выход контроллера соединен с блоком памяти, а второй его выход соединен с устройством отображения информации. Устройство отличается тем, что оно дополнительно содержит блок определения величины и направления полного вектора индукции магнитного поля, измеряемой первым трехкомпонентным датчиком, блок определения величины и направления полного вектора индукции магнитного поля, измеряемой вторым трехкомпонентным датчиком, и блок определения разности и угла между полными векторами индукции магнитного поля, измеряемой первым и вторым трехкомпонентными датчиками, устройство определения разности значений индукции магнитного поля по осям X, Y, Z выполнено в виде блока цифрового вычитания, при этом первый выход АЦП соединен со входом блока цифрового вычитания, выход которого соединен с первым входом контроллера, вход блока определения направления полного вектора магнитной индукции первым трехкомпонентным датчиком соединен со вторым выходом АЦП, а выход этого блока соединен с первым входом блока определения разности и угла между полными векторами первого и второго трехкомпонентных датчиков, вход блока определения полного вектора магнитной индукции вторым трехкомпонентным датчиком соединен с третьим выходом АЦП, а выход этого блока соединен со вторым входом блока определения разности и угла между полными векторами первого и второго трехкомпонентных датчиков, выход которого соединен со вторым входом контроллера.
Устройство обеспечивает значительное повышение достоверности магнитометрических данных ввиду того, что измерение полных векторов магнитной индукции происходит с учетом направления векторов с определением угла между ними. Однако и в данном дефектоскопе отсутствует коррекция данных измерения магнитного поля трубопровода в зависимости от величины внешнего (фонового) магнитного поля и коррекция показаний измерителей магнитного поля с учетом магнитных свойств металла.
Известно также Устройство для диагностики технического состояния металлических трубопроводов, описанное в патенте РФ на изобретение № RU 2731117, МПК В23Р 6/00, опубл. 28.08.2020 г., принятое за прототип, которое содержит два трехкомпонентных датчика индукции магнитного поля, расположенные на разных уровнях относительно трубопровода, и дополнительно третий трехкомпонентный датчик магнитного поля, находящийся вне зоны влияния магнитного поля трубопровода, на расстоянии 10-20 м в зависимости от диаметра трубопровода. Каждый из датчиков содержит три измерителя магнитного поля, расположенных по осям координат X, Y, Z, где ось X расположена в горизонтальной плоскости и перпендикулярна продольной оси трубопровода, ось Y расположена параллельно продольной оси трубопровода, ось Z перпендикулярна осям X и Y. Устройство также содержит первый, второй и третий усилители, первый и второй аналого-цифровые преобразователи (АЦП), устройство беспроводной передачи данных, устройство коррекции сигнала, контроллер, блок памяти и блок отображения информации, при этом первый, второй и третий измерители первого трехкомпонентного датчика соединены соответственно с первым, вторым и третьим входами первого усилителя, первый, второй и третий измерители второго трехкомпонентного датчика соединены, соответственно, с первым, вторым и третьим входами второго усилителя, первый, второй и третий измерители третьего трехкомпонентного датчика соединены, соответственно, с первым, вторым и третьим входами третьего усилителя, выходы первого и второго усилителя соединены, соответственно, с первым и вторым входами первого аналого-цифрового преобразователя, выход третьего усилителя соединен со входом второго аналого-цифрового преобразователя, выход первого АЦП соединен с первым входом устройства коррекции сигнала, выход второго АЦП соединен со входом устройства беспроводной передачи данных, выход которого соединен со вторым входом устройства коррекции сигнала, выход устройства коррекции сигнала соединен со входом контроллера, первый выход контроллера соединен со входом блока памяти, а второй выход контроллера соединен со входом устройства отображения информации.
Это устройство содержит дополнительный трехкомпонентный датчик магнитного поля, находящийся вне зоны влияния магнитного поля трубопровода, который позволяет измерять величину внешнего (фонового) магнитного поля и обеспечивает коррекцию измерений в зависимости от его величин. Вместе с тем, и в данном устройстве отсутствует возможность коррекции измеряемых величин магнитного поля трубопровода и полей рассеяния дефекта в зависимости от магнитных свойств металла трубопровода.
Изобретение решает задачу создания экономичного и высокоточного устройства для контроля технического состояния трубопроводов без производства сплошных вскрышных работ с помощью бесконтактной магнитометрической диагностики.
Техническим результатом от использования данного изобретения является снижение затрат и повышение достоверности определения параметров дефектов трубопроводов при проведении бесконтактной магнитометрической диагностики за счет уменьшения погрешности измерений путем коррекции измеряемых величин магнитного поля трубопровода и полей рассеяния дефекта в зависимости от магнитных свойств металла трубопровода.
Указанный технический результат достигается тем, что в состав устройства включен дополнительный канал коррекции сигнала в зависимости от магнитных свойств стали контролируемого трубопровода.
Согласно изобретению, устройство для диагностики технического состояния металлических трубопроводов содержит два трехкомпонентных датчика индукции магнитного поля, расположенные на разных уровнях относительно трубопровода, третий трехкомпонентный датчик магнитного поля, находящийся вне зоны влияния магнитного поля трубопровода, на расстоянии 10-20 м в зависимости от диаметра трубопровода. Каждый из трех датчиков содержит три измерителя магнитного поля, расположенных по осям координат X, Y, Z, где ось X расположена в горизонтальной плоскости и перпендикулярна продольной оси трубопровода, ось Y расположена параллельно продольной оси трубопровода, ось Z перпендикулярна осям X и Y. Кроме того, устройство содержит первый, второй и третий усилители, первый и второй аналого-цифровой преобразователи, устройство беспроводной передачи данных, устройство коррекции сигнала, контроллер, блок памяти и блок отображения информации, при этом первый, второй и третий измерители первого трехкомпонентного датчика соединены соответственно с первым вторым и третьим входами первого усилителя, первый, второй и третий измерители второго трехкомпонентного датчика соединены соответственно с первым, вторым и третьим входами второго усилителя, первый, второй и третий измерители третьего трехкомпонентного датчика соединены соответственно с первым, вторым и третьим входами третьего усилителя, выходы первого и второго усилителя соединены соответственно с первым и вторым входом первого аналого-цифрового преобразователя, выход третьего усилителя соединен со входом второго аналого-цифрового преобразователя, выход первого АЦП соединен с первым входом устройства коррекции сигнала, выход второго АЦП соединен со входом устройства беспроводной передачи данных, выход которого соединен со вторым входом устройства коррекции сигнала, выход устройства коррекции сигнала соединен со входом контроллера, первый выход контроллера соединен со входом блока памяти, а второй выход контроллера соединен со входом устройства отображения информации.
При этом, согласно изобретению, устройство дополнительно снабжено измерителем магнитной проницаемости металла, размещенным на внешней поверхности трубопровода, причем выход измерителя магнитной проницаемости соединен со входом второго устройства передачи данных, выход которого соединен с третьим входом устройства коррекции сигнала, выход которого соединен со входом контроллера.
Измеритель магнитной проницаемости включает устройство намагничивания и устройство измерения магнитной индукции, а величина магнитной проницаемости материала трубопровода определяется по соотношению величины напряженности намагничивающего магнитного поля и величины магнитной индукции. В качестве измерителя магнитной проницаемости использован ферритометр.
Кроме того, третий трехкомпонентный датчик магнитного поля, находящийся вне зоны влияния магнитного поля трубопровода, расположен на расстоянии 10 -20 м в зависимости от диаметра трубопровода.
При этом измеритель магнитной проницаемости, установленный на внешней поверхности трубопровода, размещается в шурфе, пробуренном с поверхности земли, на каждом отрезке трубопровода с определенной маркой стали, если трубопровод находится под поверхностью земли, либо на выходе трубопровода на поверхность в районе размещения запорной и другой арматуры трубопровода.
Реализация отличительных признаков изобретения обеспечивает принципиально новое свойство объекта (технический результат), состоящее в обеспечении возможности коррекции данных магнитометрической диагностики трубопровода не только в зависимости от фонового (внешнего) магнитного поля, но и в зависимости от магнитных свойств металла трубопровода, что позволяет значительно повысить качество и достоверность магнитометрической диагностики, поскольку в соответствии с изменением режима транспортировки продукта (давления) в трубопроводе в значительной степени могут изменяться напряжения в металле его стенки, что, в соответствии с эффектом В ил лари, вызывает изменение магнитных свойств ферромагнетика (стали).
Сущность изобретения поясняется чертежами, на которых показано: на фиг. 1 - схема, иллюстрирующая расположение датчиков относительно трубопровода; на фиг. 2 - блок-схема устройства.
Устройство для диагностики технического состояния металлического трубопровода 1 содержит три трехкомпонентных датчика 2, 3 и 4 магнитного поля. Датчики 2 и 3 расположены вблизи трубопровода 1 на разных уровнях по высоте относительно него, датчик 4 расположен вне зоны влияния магнитного поля трубопровода 1 на расстоянии от 10 до 20 м от него в зависимости от диаметра трубопровода.
Каждый из датчиков 2, 3 и 4 магнитного поля содержит по три измерителя индукции магнитного поля, расположенных, соответственно, по осям X, Y, Z, где ось X расположена в горизонтальной плоскости и перпендикулярна продольной оси трубопровода; ось Y расположена параллельно продольной оси трубопровода; ось Z перпендикулярна осям X и Y. Датчик 2 содержит, соответственно, измерители 5, 6 и 7 индукции магнитного поля, датчик 3 - измерители 8, 9 и 10, а датчик 4 - измерители И, 12 и 13 индукции магнитного поля. В качестве измерителей 5, 6, 7, 8, 9, 10, 11, 12 и 13 используются, например, измерители индукции фирмы HONEYWELL НМС1053 или НМС 1047.
Устройство содержит также первый 14, второй 15 и третий 16 усилители, первый и второй аналого-цифровые преобразователи (АЦП) 17 и 18, соответственно, а также устройство 19 коррекции сигнала, устройство 20 беспроводной передачи данных.
При этом первый, второй и третий измерители 5, 6 и 7 первого трехкомпонентного датчика 2 соединены, соответственно, с первым, вторым и третьим входами первого усилителя 14, первый, второй и третий измерители 8, 9 и 10 второго трехкомпонентного датчика 3 соединены, соответственно, с первым, вторым и третьим входами второго усилителя 15, первый, второй и третий измерители 11, 12 и 13 соединены, соответственно, с первым, вторым и третьим входами третьего усилителя 16. Выходы первого 14 и второго 15 усилителя подключены, соответственно, к первому и второму входам первого АЦП 17, выход третьего усилителя 16 соединен со входом второго АЦП 18, выход первого АЦП 17 соединен с первым входом устройства 19 коррекции сигнала, выход второго АЦП 18 соединен со входом устройства 20 беспроводной передачи данных, выход которого соединен со вторым входом устройства 19 коррекции сигнала.
Устройство для диагностики технического состояния трубопроводов включает также блок памяти 21, контроллер 22, устройство 23 отображения информации, представляющее собой, например, жидкокристаллический монитор типа LM 4228.
Кроме того, заявленное устройство дополнительно снабжено измерителем 24 магнитной проницаемости металла трубопровода 1, установленным на поверхности трубопровода и подключенным к устройству 25 беспроводной передачи данных.
При этом выход устройства 19 коррекции сигнала соединен со входом контроллера 22, первый выход которого соединен со входом блока памяти 21, второй выход контроллера 22 соединен со входом устройства 23 отображения информации, выход измерителя 24 магнитной проницаемости соединен со входом устройства 25 беспроводной передачи данных, выход которого, в свою очередь, соединен со входом устройства 19 коррекции сигнала.
Если трубопровод 1 находится под поверхностью земли, то в месте, определенном для диагностики технического состояния трубопровода, с поверхности земли бурят шурф 26 до поверхности трубопровода 1, в котором и устанавливают измеритель 24 магнитной проницаемости.
Измеритель 24 магнитной проницаемости включает в себя устройство намагничивания 27 и устройство измерения магнитной индукции 28, причем величину магнитной проницаемости материала диагностируемого трубопровода определяют по соотношению величины напряженности намагничивающего магнитного поля и величины магнитной индукции, а в качестве измерителя 24 магнитной проницаемости может быть использован ферритометр.
Практически измерительным элементом ферритометра является одно- или двухполюсный феррозондовый магнитный преобразователь, содержащий возбуждающую и измерительную катушки. Магнитный поток, создаваемый возбуждающей катушкой феррозонда, зависит от магнитного сопротивления (магнитной проницаемости) участка объекта контроля.
Первый 14, второй 15 и третий 16 усилители могут быть выполнены, например, на базе микросхем AD8642. В качестве АЦП 17 и 18 могут быть использованы, например, микросхемы КНПС.466512.001. Устройство 19 коррекции сигнала может быть выполнено, например, на базе контроллера типа Melsek-FSG, устройство 20 беспроводной передачи данных - например, на базе Bluetooth приемника-передатчика ВК 8000L, блок памяти 21 - например, на базе микросхемы КНПС.467669.001, а контроллер 22 - на базе микросхемы КНПС.467441.001.
В качестве измерителя 24 магнитной проницаемости может быть использован ферритометр, например, типа «Ferromaster», а устройство беспроводной передачи данных 25 может быть выполнено, например, на базе радиомодема типа RAN.
Как известно, в зависимости от назначения и места прокладки трубопроводы могут быть выполнены из различных материалов, в частности, из стали различных марок, например, СтЗГПС2, Ст4, 10Г2, 17ГС, 09Г2С, 12ГСБ, 12МХ, 20Х, 13ХФА и многих других, отличающихся химическим составом, способом производства, различными магнитными свойствами, которые, в свою очередь, могут изменяться в процессе эксплуатации трубопровода. Известно, что магнитные свойства сталей аустенитного и аустенитно-ферритного классов зависят не только от содержания в них ферритной фазы, но и от ее химического состава, формы, ориентации и дисперсности частиц.
Относительная магнитная проницаемость различных марок трубопроводных сталей может меняться в очень широком диапазоне. Применение табличных способов для ее коррекции невозможно в силу целого ряда причин. В частности, относительная магнитная проницаемость сталей может изменяться в зависимости от следующих факторов:
- от структуры стали, которая может изменяться с течением времени эксплуатации трубопровода;
- от величины внешнего намагничивающего поля (фонового магнитного поля Земли), величина которого также может изменяться;
- от температуры окружающей среды;
- от величины начальной намагниченности стали, которая, в свою очередь, зависит от условий и способа производства трубы, от проведенных ремонтно-строительных работ, от расстояния до источников электромагнитного излучения (например, линий электропередач, которые очень часто проложены в одном коридоре с трубопроводом);
- от наличия или отсутствия электрохимической защиты трубопровода;
- от величины внешней коррозии стали и уровня межкристаллитной коррозии, возникшей за время эксплуатации, и от некоторых других причин.
Таким образом, наиболее точным способом обеспечить репрезентативность магнитометрических диагностических измерений является учет величины относительной магнитной проницаемости материала трубопровода (стали) в режиме реального времени, т.е. в процессе дефектоскопических мероприятий.
Устройство работает следующим образом.
В процессе проведения измерений магнитное поле трубопровода 1 воспринимается измерителями 5, 6 и 7 первого трехкомпонентного датчика 2 и измерителями 8, 9 и 10 второго трехкомпонентного датчика 3, а также измерителями 11, 12 и 13 третьего трехкомпонентного датчика 4, находящегося вне зоны действия магнитного поля трубопровода. Совокупность данных от измерителей 5, 6 и 7 позволяет получить картину магнитного поля по трем координатам X, Y, Z на более удаленном от трубопровода уровне, совокупность данных от измерителей 8, 9 и 10 позволяет получить картину магнитного поля трубопровода на уровне, более близком к трубопроводу, а совокупность данных от измерителей 11, 12 и 13 позволяет получить картину фонового магнитного поля в месте измерения. Измерители 5, 6, 7, 8, 9, 10, 11, 12 и 13 преобразуют магнитное поле в напряжение, пропорциональное величине магнитной индукции этого поля; это напряжение подается на усилители 14, 15 и 16. С выходов усилителей 14 и 15 аналоговые сигналы подаются на первый и второй входы первого АЦП 17, где преобразуются в цифровой код и подаются на устройство 19 коррекции сигнала, а с выхода усилителя 16 - на вход второго АЦП 18, где преобразуются в цифровой код, который подается на вход устройства 20 беспроводной передачи данных, с выхода которого сигнал передается на второй вход устройства 19 коррекции сигнала, с выхода которого откорректированный сигнал передается на вход контроллера 22. Первый выход контроллера 22 соединен со входом блока памяти 21, второй выход контроллера 22 соединен со входом устройства 23 отображения информации; выход датчика измерителя 24 магнитной проницаемости соединен со входом устройства 25 передачи данных, с выхода которого сигнал подается на третий вход блока 19 коррекции сигнала, выход которого, в свою очередь, соединен со входом контроллера 22.
Как уже упоминалось выше, измеритель 24 магнитной проницаемости размещают в шурфе 26, который пробуривают с поверхности земли на каждом отрезке трубопровода 1 с определенной маркой стали, если трубопровод 1 находится под поверхностью земли, либо на выходе трубопровода 1 на поверхность в районе размещения запорной и другой арматуры трубопровода.
При этом на вход контроллера 22 поступает сигнал с устройства 19 коррекции сигнала, определяющий истинное значение превышения магнитного поля трубопровода над фоновым полем, вне зависимости от величины фонового магнитного поля, а также сигнал, учитывающий величину магнитной проницаемости металла трубопровода. Благодаря этому измерения становятся не зависимыми ни от величины магнитного поля Земли, ни от локального магнитного фона, определяемого магнитными свойствами грунта по всей протяженности обследуемого трубопровода, ни от величины магнитной проницаемости металла, т.е. магнитных свойств металла трубопровода в момент проведения контроля трубопровода.
Таким образом, технический результат от использования заявленного изобретения достигается за счет того, что магнитометрическая диагностика проводится с учетом различных магнитных свойств материалов, связанных не только с применением при строительстве трубопроводов труб из различных марок стали, но и с влиянием производственных технологических особенностей, в частности, направления намагничивания относительно направления проката листа, а также всех изменений, произошедших в условиях эксплуатации.

Claims (7)

1. Устройство для диагностики технического состояния металлических трубопроводов, содержащее два трехкомпонентных датчика индукции магнитного поля, расположенные на разных уровнях относительно трубопровода вблизи от него, третий трехкомпонентный датчик магнитного поля, находящийся вне зоны влияния магнитного поля трубопровода, причем каждый из трех датчиков содержит три измерителя магнитного поля, расположенных по осям координат X, Y, Z, где ось X расположена в горизонтальной плоскости и перпендикулярна продольной оси трубопровода, ось Y расположена параллельно продольной оси трубопровода, ось Z перпендикулярна осям X и Y, первый, второй и третий усилители, первый и второй аналого-цифровой преобразователи (АЦП), устройство беспроводной передачи данных, устройство коррекции сигнала, контроллер, блок памяти и блок отображения информации, при этом первый, второй и третий измерители первого трехкомпонентного датчика соединены соответственно с первым, вторым и третьим входами первого усилителя, первый, второй и третий измерители второго трехкомпонентного датчика соединены соответственно с первым, вторым и третьим входами второго усилителя, первый, второй и третий измерители третьего трехкомпонентного датчика соединены соответственно с первым, вторым и третьим входами третьего усилителя, выходы первого и второго усилителя соединены соответственно с первым и вторым входом первого аналого-цифрового преобразователя, выход третьего усилителя соединен со входом второго аналого-цифрового преобразователя, выход первого АЦП соединен с первым входом устройства коррекции сигнала, выход второго АЦП соединен со входом устройства беспроводной передачи данных, выход которого соединен со вторым входом устройства коррекции сигнала, выход устройства коррекции сигнала соединен со входом контроллера, первый выход которого соединен со входом блока памяти, а второй его выход соединен со входом устройства отображения информации, отличающееся тем, что устройство дополнительно снабжено измерителем магнитной проницаемости металла, размещенным на внешней поверхности трубопровода, причем выход измерителя магнитной проницаемости соединен со входом второго устройства передачи данных, выход которого соединен с третьим входом устройства коррекции сигнала, выход которого соединен со входом контроллера.
2. Устройство по п. 1, отличающееся тем, что измеритель магнитной проницаемости включает устройство намагничивания и устройство измерения магнитной индукции, а величина магнитной проницаемости материала трубопровода определяется по соотношению величины напряженности намагничивающего магнитного поля и величины магнитной индукции.
3. Устройство по п. 2, отличающееся тем, что в качестве измерителя магнитной проницаемости использован ферритометр.
4. Устройство по п. 1, отличающееся тем, что третий трехкомпонентный датчик магнитного поля, находящийся вне зоны влияния магнитного поля трубопровода, расположен на расстоянии 10-20 м в зависимости от диаметра трубопровода.
5. Устройство по п. 1, отличающееся тем, что измеритель магнитной проницаемости, установленный на внешней поверхности трубопровода, размещается в шурфе, пробуренном с поверхности земли, если трубопровод находится под поверхностью земли.
6. Устройство по п. 5, отличающееся тем, что шурфы для установки измерителя магнитной проницаемости размещаются на поверхности земли на каждом отрезке трубопровода с определенной маркой стали.
7. Устройство по п. 1, отличающееся тем, что измеритель магнитной проницаемости, установленный на внешней поверхности трубопровода, размещается на выходе трубопровода на поверхность в районе размещения запорной и другой арматуры трубопровода.
RU2021109666A 2021-04-07 2021-04-07 Устройство для диагностики технического состояния металлических трубопроводов RU2763963C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021109666A RU2763963C1 (ru) 2021-04-07 2021-04-07 Устройство для диагностики технического состояния металлических трубопроводов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021109666A RU2763963C1 (ru) 2021-04-07 2021-04-07 Устройство для диагностики технического состояния металлических трубопроводов

Publications (1)

Publication Number Publication Date
RU2763963C1 true RU2763963C1 (ru) 2022-01-11

Family

ID=80040151

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021109666A RU2763963C1 (ru) 2021-04-07 2021-04-07 Устройство для диагностики технического состояния металлических трубопроводов

Country Status (1)

Country Link
RU (1) RU2763963C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU86316U1 (ru) * 2009-04-10 2009-08-27 Валерий Михайлович Саксон Магнитный дефектоскоп для контроля подземных металлических трубопроводов
KR20100135115A (ko) * 2009-06-16 2010-12-24 (주) 이우티이씨 광섬유 센서와 자기마커를 이용한 지하매설물 탐지 및 관리시스템
RU2453760C2 (ru) * 2009-12-18 2012-06-20 Открытое акционерное общество "Газпромнефть" Способ диагностики технического состояния подземных трубопроводов (варианты)
RU2525462C1 (ru) * 2013-04-04 2014-08-20 Валерий Михайлович Саксон Устройство для диагностики технического состояния металлических трубопроводов
CN110873232A (zh) * 2019-10-23 2020-03-10 河南城建学院 一种基于ct法的地下管线监测的方法
RU2731117C1 (ru) * 2020-03-24 2020-08-28 Общество с ограниченной ответственностью "Строительная компания "ОХА" Устройство для бесконтактной магнитометрической диагностики технического состояния стальных трубопроводов с учетом величины фонового магнитного поля

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU86316U1 (ru) * 2009-04-10 2009-08-27 Валерий Михайлович Саксон Магнитный дефектоскоп для контроля подземных металлических трубопроводов
KR20100135115A (ko) * 2009-06-16 2010-12-24 (주) 이우티이씨 광섬유 센서와 자기마커를 이용한 지하매설물 탐지 및 관리시스템
RU2453760C2 (ru) * 2009-12-18 2012-06-20 Открытое акционерное общество "Газпромнефть" Способ диагностики технического состояния подземных трубопроводов (варианты)
RU2525462C1 (ru) * 2013-04-04 2014-08-20 Валерий Михайлович Саксон Устройство для диагностики технического состояния металлических трубопроводов
CN110873232A (zh) * 2019-10-23 2020-03-10 河南城建学院 一种基于ct法的地下管线监测的方法
RU2731117C1 (ru) * 2020-03-24 2020-08-28 Общество с ограниченной ответственностью "Строительная компания "ОХА" Устройство для бесконтактной магнитометрической диагностики технического состояния стальных трубопроводов с учетом величины фонового магнитного поля

Similar Documents

Publication Publication Date Title
CN103075641B (zh) 非接触式管道磁检测方法
US8447532B1 (en) Metallic constructions integrity assessment and maintenance planning method
Tehranchi et al. Double core giant magneto-impedance sensors for the inspection of magnetic flux leakage from metal surface cracks
RU2525462C1 (ru) Устройство для диагностики технического состояния металлических трубопроводов
RU2453760C2 (ru) Способ диагностики технического состояния подземных трубопроводов (варианты)
RU2568808C2 (ru) Способ и устройство для бесконтактной диагностики технического состояния подземных трубопроводов
CN106247171B (zh) 管道缺陷检测方法、管道缺陷检测装置和管道缺陷检测设备
RU2630856C1 (ru) Способ диагностики технического состояния подземных трубопроводов
He et al. Experimental and numerical analysis of non-contact magnetic detecting signal of girth welds on steel pipelines
WO2019094169A1 (en) Methods and systems for nondestructive material inspection using magnetic means
CN109521084A (zh) 一种埋地管道弱磁检测评价方法
CN101694478B (zh) 一种探测钢铁管道内腐蚀的方法
Narkhov et al. Novel quantum NMR magnetometer non-contact defectoscopy and monitoring technique for the safe exploitation of gas pipelines
RU2763963C1 (ru) Устройство для диагностики технического состояния металлических трубопроводов
RU2731117C1 (ru) Устройство для бесконтактной магнитометрической диагностики технического состояния стальных трубопроводов с учетом величины фонового магнитного поля
He et al. A novel three-dimensional non-contact magnetic stress inspection technology and its application on LNG pipeline
RU2294482C1 (ru) Способ контроля и обнаружения дефектов на трубопроводах из ферромагнитных материалов
US20210072187A1 (en) Non-destructive inspection device
CN104122323A (zh) 非磁化管道内检测方法
Shleenkov et al. Features and advantages of applying anisotropic magnetoresistive field sensors to testing the full volume of small-and medium-diameter pipes
Li et al. Theoretical research on the characteristics of the self-magnetic leakage field induced by ferromagnetic pipelines
CA1161115A (en) Pipeline inspection and maintenance method
EP3842796A1 (en) A process of contactless detection of presence, location, and danger degree of stress concentrators of mechanical stress in metal of ferromagnetic constructions
He et al. A novel non-contact, magnetic-based stress inspection technology and its application to stress concentration zone diagnosis in pipelines
Svensson et al. Application of ultrasonic clamp-on flow meters for in situ tests of billing meters in district heating systems