RU2762771C1 - Способ хирургической коррекции сколиотически деформированного позвоночника пациентов - Google Patents

Способ хирургической коррекции сколиотически деформированного позвоночника пациентов Download PDF

Info

Publication number
RU2762771C1
RU2762771C1 RU2021109486A RU2021109486A RU2762771C1 RU 2762771 C1 RU2762771 C1 RU 2762771C1 RU 2021109486 A RU2021109486 A RU 2021109486A RU 2021109486 A RU2021109486 A RU 2021109486A RU 2762771 C1 RU2762771 C1 RU 2762771C1
Authority
RU
Russia
Prior art keywords
spine
patient
metal
scoliotically
screws
Prior art date
Application number
RU2021109486A
Other languages
English (en)
Inventor
Сергей Васильевич Колесов
Уырызмаг Владимирович Цопанов
Аркадий Иванович Казьмин
Андрей Андреевич Пантелеев
Максим Леонидович Сажнев
Григорий Сергеевич Колесов
Артем Сергеевич Хиценко
Элина Александровна Хурматулина
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ТО им. Н.Н. Приорова" Минздрава России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ТО им. Н.Н. Приорова" Минздрава России) filed Critical Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ТО им. Н.Н. Приорова" Минздрава России)
Priority to RU2021109486A priority Critical patent/RU2762771C1/ru
Application granted granted Critical
Publication of RU2762771C1 publication Critical patent/RU2762771C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)

Abstract

Изобретение относится к медицине, а именно к травматологии и ортопедии, и может быть использовано для хирургической коррекции сколиотически деформированного позвоночника. В предоперационный период определяют методом многослойной спиральной компьютерной томографии пространственную визуализацию пораженных костных анатомических структур реконструируемого позвоночника пациента. Методом магнитно-резонансной томографии оценивают состояние окружающих мягких тканей, сосудистых и нервных структур. Результаты многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациента сохраняют в формате DICOM и переносят в Dolphin Imaging с образованием DICOM-файлов. Выполняют формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника из биологически совместимого и нетоксичного полимерного материала, в качестве которого используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA), или полиамид. Выполняют с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформации. Размещают в заданных точках введения транспедикулярных винтов металлические стержни диаметром 2,0-3,0 мм с длиной от 80 до 150 мм с последующим их использованием в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника. Изготовленную 3D-модель позвоночника с установленными на ней стержнями подвергают газовой стерилизационной обработке. При положении пациента на животе, после осуществления анестезиологического пособия, выполняют разрез кожного покрова над остистыми отростками позвоночника на один уровень выше и ниже предполагаемой зоны установки металлоконструкции с последующим рассечением подкожной клетчатки и собственной фасции. Выполняют скелетирование задних элементов позвоночника с двух сторон, размещают транспедикулярные винты с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлоконструкции сколиотической деформации. Укладывают на головки размещенных транспедикулярных винтов металлический фиксирующий стержень металлофиксации, изогнутый по грудному кефозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками. Выполняют деротационный маневр ротацией металлического фиксирующего стержня в вогнутую сторону. Размещают с выпуклой стороны скелетированного позвоночника транспедикулярные винты и фиксируют в них металлический фиксирующий стержень. Выполняют задний спондилодез и послойное ушивание рассеченных мышц и фасции послеоперационной раны. Способ обеспечивает надежное анатомическое восстановление формы и опорной функции позвоночника, получение полноценного заднего спондилодеза с восстановлением конфигурации позвоночного канала, раннюю социальную реабилитацию пациента за счет позиционирования транспедикулярных винтов. 4 пр.

Description

Изобретение относится к области медицины, а именно к травматологии и ортопедии, к способу хирургической коррекции сколиотически деформированного позвоночника пациентов и может быть использовано при лечении пациентов с деформациями позвоночника в условиях травматологических, хирургических и других стационаров.
Известен способ оперативного лечения сколиоза у взрослых с применением современных металлоконструкций, включающий выполнение после интубационного наркоза при положении пациента на животе разреза кожного покрова над остистыми отростками сколиоза на один уровень выше и ниже предполагаемой зоны установки металлоконструкции в позвоночнике с последующим рассечением подкожной клетчатки и собственной фасции, скелетирование задних элементов позвоночника с двух сторон, размещение транспедикулярных винтов с вогнутой стороны сколиотической деформации под контролем ЭОП, укладывание на головки размещенных транспедикулярных винтов металлического фиксирующего стержня металлофиксации, изогнутого по грудному кифозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками, выполнение деротационного маневра ротацией металлического фиксирующего стержня в вогнутую сторону, размещение с другой выпуклой стороны скелетированного позвоночника транспедикулярных винтов и фиксация в них металлического фиксирующего стержня, выполнение заднего спондилодеза и послойное ушивание рассеченных мышц и фасции послеоперационной раны, (см. С.Т. Ветрилэ и А.А. Кулешов, «Хирургическое лечение тяжелых форм сколиоза с использованием инструментария COTREL-DUBOUSSET», Пособие для врачей, Государственное учреждение науки «Центральный институт травматологии и ортопедии им. Н.Н. Приорова», Москва, 2002, с. 6-9).
Однако известный способ при своем использовании обладает следующими недостатками:
- в недостаточной степени обеспечивает надежное анатомическое восстановление формы и опорной функции позвоночника при позиционировании транспедикулярных винтов,
- высокой частотой мальпозиции транспедикулярных винтов, с развитием послеоперационных осложнений,
- недостаточно обеспечивает раннюю социальную реабилитацию пациента. Задачей изобретения является создание способа хирургической коррекции
- сколиотически деформированного позвоночника пациентов.
Техническим результатом является обеспечение достаточной степени надежного анатомического восстановления формы и опорной функции позвоночника при позиционирование транспедикулярных винтов, обеспечение получения полноценного заднего спондилодеза с восстановлением конфигурации позвоночного канала, а также обеспечение ранней социальной реабилитации пациента с обеспечением достаточного и необходимого повышения качества его жизни.
Технический результат достигается тем, что предложен способ хирургической коррекции сколиотически деформированного позвоночника пациентов, характеризующийся тем, что в предоперационный период определяют методом многослойной спиральной компьютерной томографии пространственную визуализацию пораженных костных анатомических структур реконструируемого позвоночника пациента, методом магнитно-резонансной томографии оценивают состояние окружающих мягких тканей, сосудистых и нервных структур, затем результаты многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациента сохраняют в формате DICOM и переносят в Dolphin Imaging с образованием DICOM файлов, выполняют формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника из биологически совместимого и нетоксичного полимерного материала, в качестве которого используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA) или полиамид, выполняют с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформации, и размещают в заданных точках введения транспедикулярных винтов металлические стержни диаметром 2,0-3,0 мм с длиной от 80 до 150 мм с последующим их использованием в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника, изготовленную 3D-модель позвоночника с установленными на ней стержнями подвергают газовой стерилизационной обработке, при положении пациента на животе, после осуществления анестезиологического пособия, выполняют разрез кожного покрова над остистыми отростками позвоночника на один уровень выше и ниже предполагаемой зоны установки металлоконструкции с последующим рассечением подкожной клетчатки и собственной фасции, выполняют скелетирование задних элементов позвоночника с двух сторон, размещают транспедикулярные винты с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлоконструкции сколиотической деформации, укладывают на головки размещенных транспедикулярных винтов металлический фиксирующий стержень металлофиксации, изогнутый по грудному кефозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками, выполняют деротационный маневр ротацией металлического фиксирующего стержня в вогнутую сторону, размещают с выпуклой скелетированного позвоночника транспедикулярные винты и фиксируют в них металлический фиксирующий стержень, выполняют задний спондилодез и послойное ушивание рассеченных мышц и фасции послеоперационной раны.
Способ осуществляется следующим образом. Перед выполнением хирургического лечения определяют методом многослойной спиральной компьютерной томографии пространственную визуализацию пораженных костных анатомических структур реконструируемого позвоночника пациента. Методом магнитно-резонансной томографии оценивают состояние окружающих мягких тканей, сосудистых и нервных структур.
Результаты многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациента сохраняют в формате DICOM и переносят в Dolphin Imaging с образованием DICOM файлов.
Выполняют формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника из биологически совместимого и нетоксичного полимерного материала, в качестве которого используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA) или полиамид.
Выполняют с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформации, и размещают в заданных точках введения транспедикулярных винтов металлические стержни диаметром 2,0-3,0 мм с длиной от 80 до 150 мм с последующим использованием их в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника.
Изготовленную демонстрационную 3D-модель позвоночника с установленными на ней стержнями подвергают газовой стерилизационной обработке.
При положении пациента на животе, после осуществления анестезиологического пособия, выполняют разрез кожного покрова над остистыми отростками позвоночника на один уровень выше и ниже предполагаемой зоны установки металлоконструкции с последующим рассечением подкожной клетчатки и собственной фасции. Выполняют скелетирование задних элементов позвоночника с двух сторон, размещают транспедикулярные винты с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной демонстрационной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлоконструкции сколиотической деформации.
Укладывают на головки размещенных транспедикулярных винтов металлический фиксирующий стержень металлофиксации, изогнутый по грудному кифозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками. Выполняют деротационный маневр ротацией металлического фиксирующего стержня в вогнутую сторону, размещают с выпуклой стороны скелетированного позвоночника транспедикулярные винты и фиксируют в них металлический фиксирующий стержень. Выполняют задний спондилодез и послойное ушивание рассеченных мышц и фасции послеоперационной раны.
Среди существенных признаков, характеризующих предложенный способ хирургической коррекции сколиотически деформированного позвоночника пациентов, отличительными являются:
- сохранение результатов многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациента в формате DICOM и перенесение результатов в Dolphin Imaging с образованием DICOM файлов,
- формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника из биологически совместимого и нетоксичного полимерного материала, в качестве которого используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA) или полиамид,
- выполнение с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформации, и размещение в заданных точках введения транспедикулярных винтов металлические стержни диаметром 2,0-3,0 мм с длиной от 80 до 150 мм с последующим их использованием их в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника,
- осуществление газовой стерилизационной обработки изготовленной демонстрационной 3D-модели позвоночника с установленными на ней стержнями,
- выполнение скелетирования задних элементов позвоночника с двух сторон, размещение транспедикулярных винтов с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлоконструкции сколиотической деформации, размещение с выпуклой стороны скелетированного позвоночника транспедикулярных винтов.
Экспериментальные и клинические исследования предложенного способа хирургической коррекции сколиотически деформированного позвоночника пациентов показали его высокую эффективность. Предложенный способ хирургической коррекции сколиотически деформированного позвоночника пациентов при своем использовании обеспечил достаточную степень надежного анатомического восстановления формы и опорной функции позвоночника при позиционирование транспедикулярных винтов, обеспечил получения полноценного заднего спондилодеза с восстановлением конфигурации позвоночного канала, а также обеспечил раннюю социальную реабилитацию пациента с обеспечением достаточного и необходимого повышения качества его жизни.
Реализация предложенного способа хирургической коррекции сколиотически деформированного позвоночника пациентов иллюстрируется следующими клиническими примерами.
Пример 1. Пациентка Л., 48 лет, поступила в 7-ое отделение ФГБУ «НМИЦ ТО им. Н.Н. Приорова» с диагнозом: «Диспластический комбинированный сколиоз». Состояние после операции. Нарушение сагиттального и фронтального баланса. Люмбалгия.
Жалобы на боли в области поясничного отдела позвоночника. Госпитализирована в отделение для обследования и определения тактики лечения.
Общее состояние: удовлетворительное. Сознание ясное. Положение активное. Кожный покров и видимые слизистые обычной окраски. Периферические лимфатические узлы не увеличены. Частота дыхательных движений 17 в минуту. Тоны сердца ясные, ритмичные. Артериальное давление 135/80 мм рт.ст. Частота пульса 82 в минуту.
Общий анализ крови: гемоглобин - 148 г/л, эритроциты - 4,32×1012 л, гематокрит - 37%, лейкоциты - 9,7×109/л, лимфоциты - 28,8, тромбоциты -229,0×109/л.
Биохимия крови: белок общий - 67 г/л, билирубин общий - 7,0 мкмоль/л, глюкоза- 5,0 ммоль/л, мочевина - 6,4 ммоль/л, АЛТ/АСТ-6/7, креатинин- 54 мкмоль/л.
Пациентке выполнили хирургическую коррекцию сколиотически деформированного позвоночника. Перед выполнением хирургического лечения определили методом многослойной спиральной компьютерной томографии пространственную визуализацию пораженных костных анатомических структур реконструируемого позвоночника пациентки. Методом магнитно-резонансной томографии оценили состояние окружающих мягких тканей, сосудистых и нервных структур.
Сохранили результаты многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациентки в формате DICOM и перенесли в Dolphin Imaging с образованием DICOM файлов.
Формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника выполнили из биологически совместимого и нетоксичного полимерного материала, в качестве которого использовали полилактид (PLA).
Осуществили с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформации. Разместили в заданных точках введения транспедикулярных винтов выполненные из металлического стержня диаметром 3,0 мм с длиной 80 мм иллюстрационные металлические метки для последующего использования их в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника.
Выполнили после осуществления анестезиологического пособия при положении пациентки на животе разрез кожного покрова над остистыми отростками сколиоза на один уровень выше и ниже предполагаемой зоны установки металлоконструкции в позвоночнике с последующим рассечением подкожной клетчатки и собственной фасции. Осуществили скелетирование задних элементов позвоночника с двух сторон, разместили транспедикулярные винты с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной демонстрационной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлофиксации корригирующей остеотомии.
Уложили на головки размещенных транспедикулярных винтов металлический фиксирующий стержень металлофиксации, изогнутый по грудному кифозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками. Выполнили деротационный маневр ротацией металлического фиксирующего стержня в вогнутую сторону. Разместили с другой выпуклой стороны скелетированного позвоночника транспедикулярные винты и зафиксировали в них металлический фиксирующий стержень. Выполнили задний спондилодез и послойное ушивание рассеченных мышц и фасции послеоперационной раны.
Течение послеоперационного периода гладкое. Проводилась антибактериальная, симптоматическая и инфузионная терапия. Послеоперационная рана зажила первичным натяжением.
Пациентку в удовлетворительном состоянии выписали на амбулаторное долечивание в поликлинику по месту жительства под наблюдение у травматолога-ортопеда и терапевта.
Пример 2. Пациентка Д., 19 лет, поступила в 7-ое отделение ФГБУ «НМИЦ ТО им. Н.Н. Приорова» с диагнозом: «Диспластический комбинированный сколиоз». Нарушение сагиттального и фронтального баланса. Люмбалгия.
Жалобы на боли в области поясничного отдела позвоночника. Госпитализирована в отделение для обследования и определения тактики лечения.
Общее состояние: удовлетворительное. Сознание ясное. Положение активное. Кожный покров и видимые слизистые обычной окраски. Периферические лимфатические узлы не увеличены. Частота дыхательных движений 18 в минуту. Тоны сердца ясные, ритмичные. Артериальное давление 125/85 мм рт. ст.Частота пульса 78 в минуту.
Общий анализ крови: гемоглобин - 99 г/л, эритроциты - 2,53×1012 л, гема-токрит - 42,3%, лейкоциты - 7,7×109/л, лимфоциты - 28,8%, тромбоциты - 192,0×109/л.
Биохимия крови: белок общий - 59 г/л, билирубин общий-3,7 мкмоль/л, глюкоза - 4,8 ммоль/л, мочевина - 5,0 ммоль/л, АЛТ/АСТ-6/7, креатинин- 57 мкмоль/л.
Пациентке выполнили хирургическую коррекцию сколиотически деформированного позвоночника. Перед выполнением хирургического лечения определили методом многослойной спиральной компьютерной томографии пространственную визуализацию пораженных костных анатомических структур реконструируемого позвоночника пациентки. Методом магнитно-резонансной томографии оценили состояние окружающих мягких тканей, сосудистых и нервных структур.
Сохранили результаты многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациентки в формате DICOM и перенесли в Dolphin Imaging с образованием DICOM файлов.
Формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника выполнили из биологически совместимого и нетоксичного полимерного материала, в качестве которого использовали акрилонитрилбутадинстирол (ABS).
Осуществили с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформации. Разместили в заданных точках введения транспедикулярных винтов выполненные из металлического стержня диаметром 2,0 мм с длиной 150 мм иллюстрационные металлические метки для последующего использования их в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника.
Выполнили после осуществления анестезиологического пособия при положении пациентки на животе разрез кожного покрова над остистыми отростками сколиоза на один уровень выше и ниже предполагаемой зоны установки металлоконструкции в позвоночнике с последующим рассечением подкожной клетчатки и собственной фасции. Осуществили скелетирование задних элементов позвоночника с двух сторон, разместили транспедикулярные винты с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной демонстрационной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлофиксации корригирующей остеотомии.
Уложили на головки размещенных транспедикулярных винтов металлический фиксирующий стержень металлофиксации, изогнутый по грудному кифозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками. Выполнили деротационный маневр ротацией металлического фиксирующего стержня в вогнутую сторону. Разместили с другой выпуклой стороны скелетированного позвоночника транспедикулярные винты и зафиксировали в них металлический фиксирующий стержень. Выполнили задний спондилодез и послойное ушивание рассеченных мышц и фасции послеоперационной раны.
Течение послеоперационного периода гладкое. Проводилась антибактериальная, симптоматическая и инфузионная терапия. Послеоперационная рана зажила первичным натяжением.
Пациентку в удовлетворительном состоянии выписали на амбулаторное долечивание в поликлинику по месту жительства под наблюдение у травматолога-ортопеда и терапевта.
Пример 3. Пациент К., 32 года, поступил в 7-ое отделение ФГБУ «НМИЦ ТО им. Н.Н. Приорова» с диагнозом: «Диспластический комбинированный сколиоз». Нарушение сагиттального и фронтального баланса. Люмбалгия.
Жалобы на боли в области поясничного отдела позвоночника. Госпитализирован в отделение для обследования и определения тактики лечения.
Общее состояние: удовлетворительное. Сознание ясное. Положение активное. Кожный покров и видимые слизистые обычной окраски. Периферические лимфатические узлы не увеличены. Частота дыхательных движений 18 в минуту. Тоны сердца ясные, ритмичные. Артериальное давление 135/85 мм рт.ст. Частота пульса 79 в минуту.
Общий анализ крови: гемоглобин - 90 г/л, эритроциты - 3,12×1012/л, гема-токрит - 42,8%, лейкоциты - 10,2×109/л, лимфоциты - 30,1%, тромбоциты -267,0×109/л.
Биохимия крови: белок общий - 68,0 г/л, билирубин общий - 4,8 мкмоль/л, глюкоза - 5,0 моль/л, мочевина - 4,4 ммоль/л, АЛТ/АСТ-6/7, креатинин - 89,2 мкмоль/л.
Пациенту выполнили хирургическую коррекцию сколиотически деформированного позвоночника. Перед выполнением хирургического лечения определили методом многослойной спиральной компьютерной томографии пространственную визуализацию пораженных костных анатомических структур реконструируемого позвоночника пациентки. Методом магнитно-резонансной томографии оценили состояние окружающих мягких тканей, сосудистых и нервных структур.
Сохранили результаты многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациентки в формате DICOM и перенесли в Dolphin Imaging с образованием DICOM файлов.
Формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника выполнили из биологически совместимого и нетоксичного полимерного материала, в качестве которого использовали полиамид.
Осуществили с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформормации. Разместили в заданных точках введения транспедикулярных винтов выполненные из металлического стержня диаметром 2,5 мм с длиной 110 мм иллюстрационные металлические метки для последующего использования их в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника.
Выполнили после осуществления анестезиологического пособия при положении пациента на животе разрез кожного покрова над остистыми отростками сколиоза на один уровень выше и ниже предполагаемой зоны установки металлоконструкции в позвоночнике с последующим рассечением подкожной клетчатки и собственной фасции. Осуществили скелетирование задних элементов позвоночника с двух сторон, разместили транспедикулярные винты с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной демонстрационной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлофиксации корригирующей остеотомии.
Уложили на головки размещенных транспедикулярных винтов металлический фиксирующий стержень металлофиксации, изогнутый по грудному кифозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками. Выполнили деротационный маневр ротацией металлического фиксирующего стержня в вогнутую сторону. Разместили с другой выпуклой стороны скелетированного позвоночника транспедикулярные винты и зафиксировали в них металлический фиксирующий стержень. Выполнили задний спондилодез и послойное ушивание рассеченных мышц и фасции послеоперационной раны.
Течение послеоперационного периода гладкое. Проводилась антибактериальная, симптоматическая и инфузионная терапия. Послеоперационная рана зажила первичным натяжением.
Пациента в удовлетворительном состоянии выписали на амбулаторное долечивание в поликлинику по месту жительства под наблюдение у травматолога-ортопеда и терапевта.
Пример 4. Пациентка А., 43 года, поступила в 7-ое отделение ФГБУ «НМИЦ ТО им. Н.Н. Приорова» с диагнозом: «Диспластический комбинированный сколиоз». Нарушение сагиттального и фронтального баланса.
Жалобы на боли в области поясничного отдела позвоночника. Госпитализирована в отделение для обследования и определения тактики лечения.
Общее состояние: удовлетворительное. Сознание ясное. Положение активное. Кожный покров и видимые слизистые обычной окраски. Периферические лимфатические узлы не увеличены. Частота дыхательных движений 18 в минуту. Тоны сердца ясные, ритмичные. Артериальное давление 140/85 мм рт.ст. Частота пульса 78 в минуту.
Общий анализ крови: гемоглобин - 120 г/л, эритроциты - 3,59×107 л, гема-токрит - 33,3%, лейкоциты - 10,9×109/л, лимфоциты - 30,7%, тромбоциты -292×109/л.
Биохимия крови: белок общий - 66 г/л, билирубин общий - 4,9 мкмоль/л, глюкоза - 4,2 ммоль/л, мочевина - 4,7 ммоль/л, АЛТ/АСТ-6/7, креатинин - 85,8 мкмоль/л.
Пациентке выполнили хирургическую коррекцию сколиотически деформированного позвоночника. Перед выполнением хирургического лечения определили методом многослойной спиральной компьютерной томографии пространственную визуализацию пораженных костных анатомических структур реконструируемого позвоночника пациентки. Методом магнитно-резонансной томографии оценили состояние окружающих мягких тканей, сосудистых и нервных структур.
Сохранили результаты многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациентки в формате DICOM и перенесли в Dolphin Imaging с образованием DICOM файлов.
Формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника выполнили из биологически совместимого и нетоксичного полимерного материала, в качестве которого использовали полиэтилентерефталат с гликолем (PET-G).
Осуществили с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформации. Разместили в заданных точках введения транспедикулярных винтов выполненные из металлического стержня диаметром 2,5 мм с длиной 90 мм иллюстрационные металлические метки для последующего использования их в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника.
Выполнили после осуществления анестезиологического пособия при положении пациентки на животе разрез кожного покрова над остистыми отростками сколиоза на один уровень выше и ниже предполагаемой зоны установки металлоконструкции в позвоночнике с последующим рассечением подкожной клетчатки и собственной фасции. Осуществили скелетирование задних элементов позвоночника с двух сторон, разместили транспедикулярные винты с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной демонстрационной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлофиксации корригирующей остеотомии.
Уложили на головки размещенных транспедикулярных винтов металлический фиксирующий стержень металлофиксации, изогнутый по грудному кифозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками. Выполнили деротационный маневр ротацией металлического фиксирующего стержня в вогнутую сторону. Разместили с другой выпуклой стороны скелетированного позвоночника транспедикулярные винты и зафиксировали в них металлический фиксирующий стержень. Выполнили задний спондилодез и послойное ушивание рассеченных мышц и фасции послеоперационной раны.
Течение послеоперационного периода гладкое. Проводилась антибактериальная, симптоматическая и инфузионная терапия. Послеоперационная рана зажила первичным натяжением.
Пациентку в удовлетворительном состоянии выписали на амбулаторное долечивание в поликлинику по месту жительства под наблюдение у травматолога-ортопеда и терапевта.

Claims (1)

  1. Способ хирургической коррекции сколиотически деформированного позвоночника пациентов, характеризующийся тем, что в предоперационный период определяют методом многослойной спиральной компьютерной томографии пространственную визуализацию пораженных костных анатомических структур реконструируемого позвоночника пациента, методом магнитно-резонансной томографии оценивают состояние окружающих мягких тканей, сосудистых и нервных структур, затем результаты многослойной спиральной компьютерной томографии анатомических особенностей строения сколиотически деформированного позвоночника пациента сохраняют в формате DICOM и переносят в Dolphin Imaging с образованием DICOM-файлов, выполняют формирование твердотельной STL демонстрационной 3D-модели позвоночника с отображением всех пораженных костных анатомических структур и аномалий позвоночника из биологически совместимого и нетоксичного полимерного материала, в качестве которого используют акрилонитрилбутадиенстирол (ABS), или полиэтилентерефталат с гликолем (PET-G), или полилактид (PLA), или полиамид, выполняют с использованием изготовленной демонстрационной 3D-модели позвоночника виртуальное планирование этапов хирургической коррекции сколиотически деформированного позвоночника пациента с виртуальным определением точек введения в него транспедикулярных винтов металлофиксации в процессе предстоящего выполнения коррекции сколиотической деформации, и размещают в заданных точках введения транспедикулярных винтов металлические стержни диаметром 2,0-3,0 мм с длиной от 80 до 150 мм с последующим их использованием в качестве наглядной и контрольной информации во время выполнения хирургической коррекции сколиотически деформированного позвоночника, изготовленную 3D-модель позвоночника с установленными на ней стержнями подвергают газовой стерилизационной обработке, при положении пациента на животе, после осуществления анестезиологического пособия, выполняют разрез кожного покрова над остистыми отростками позвоночника на один уровень выше и ниже предполагаемой зоны установки металлоконструкции с последующим рассечением подкожной клетчатки и собственной фасции, выполняют скелетирование задних элементов позвоночника с двух сторон, размещают транспедикулярные винты с вогнутой стороны сколиотической деформации под контролем ЭОП с наглядным использованием ранее изготовленной 3D-модели позвоночника пациента с заданными точками размещения и угла введения транспедикулярных винтов металлоконструкции сколиотической деформации, укладывают на головки размещенных транспедикулярных винтов металлический фиксирующий стержень металлофиксации, изогнутый по грудному кефозу и поясничному лордозу сколиотической деформации с последующей его фиксацией гайками, выполняют деротационный маневр ротацией металлического фиксирующего стержня в вогнутую сторону, размещают с выпуклой стороны скелетированного позвоночника транспедикулярные винты, и фиксируют в них металлический фиксирующий стержень, выполняют задний спондилодез и послойное ушивание рассеченных мышц и фасции послеоперационной раны.
RU2021109486A 2021-04-06 2021-04-06 Способ хирургической коррекции сколиотически деформированного позвоночника пациентов RU2762771C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021109486A RU2762771C1 (ru) 2021-04-06 2021-04-06 Способ хирургической коррекции сколиотически деформированного позвоночника пациентов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021109486A RU2762771C1 (ru) 2021-04-06 2021-04-06 Способ хирургической коррекции сколиотически деформированного позвоночника пациентов

Publications (1)

Publication Number Publication Date
RU2762771C1 true RU2762771C1 (ru) 2021-12-22

Family

ID=80039267

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021109486A RU2762771C1 (ru) 2021-04-06 2021-04-06 Способ хирургической коррекции сколиотически деформированного позвоночника пациентов

Country Status (1)

Country Link
RU (1) RU2762771C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789044C1 (ru) * 2022-02-11 2023-01-27 Общество с ограниченной ответственностью "КОНМЕТ" Способ хирургической вентральной динамической коррекции деформаций позвоночника взрослых пациентов и детей и устройство для осуществления способа хирургической вентральной динамической коррекции деформаций позвоночника взрослых пациентов и детей

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2568534C1 (ru) * 2014-10-29 2015-11-20 Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт травматологии и ортопедии имени Н.Н. Приорова" Министерства здравоохранения Российской Федерации (ФГБУ "ЦИТО им. Н.Н. Приорова" Минздрава России) Способ хирургического лечения сколиотической деформации поясничного отдела позвоночника
WO2019112917A1 (en) * 2017-12-04 2019-06-13 Carlsmed, Inc. Systems and methods for multi-planar orthopedic alignment
RU2750415C1 (ru) * 2020-11-12 2021-06-28 Александр Андреевич Снетков Способ изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2568534C1 (ru) * 2014-10-29 2015-11-20 Федеральное государственное бюджетное учреждение "Центральный научно-исследовательский институт травматологии и ортопедии имени Н.Н. Приорова" Министерства здравоохранения Российской Федерации (ФГБУ "ЦИТО им. Н.Н. Приорова" Минздрава России) Способ хирургического лечения сколиотической деформации поясничного отдела позвоночника
WO2019112917A1 (en) * 2017-12-04 2019-06-13 Carlsmed, Inc. Systems and methods for multi-planar orthopedic alignment
RU2750415C1 (ru) * 2020-11-12 2021-06-28 Александр Андреевич Снетков Способ изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3D modeling in planning the surgical treatment of severe spinal deformities. Snetkov A.A., Shvets V.V., Kolesov S.V. In the book: Spring Days of Orthopedics. Abstracts of the International Congress. Edited by N.V. Zagorodny. 2019. S. 175-177. *
3D-моделирование при планировании хирургического лечения тяжелых деформаций позвоночника. Снетков А.А., Швец В.В., Колесов С.В. В книге: Весенние дни ортопедии. Тезисы Международного конгресса. Под редакцией Н.В. Загороднего. 2019. С. 175-177. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789044C1 (ru) * 2022-02-11 2023-01-27 Общество с ограниченной ответственностью "КОНМЕТ" Способ хирургической вентральной динамической коррекции деформаций позвоночника взрослых пациентов и детей и устройство для осуществления способа хирургической вентральной динамической коррекции деформаций позвоночника взрослых пациентов и детей
RU2802396C1 (ru) * 2022-10-28 2023-08-28 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова" Министерства здравоохранения Российской Федерации (ФГБУ "НМИЦ ТО им. Н.Н. Приорова" Минздрава России) Способ хирургического лечения идиопатического сколиоза позвоночника с использованием комбинированного введения транспедикулярных винтов

Similar Documents

Publication Publication Date Title
RU2762771C1 (ru) Способ хирургической коррекции сколиотически деформированного позвоночника пациентов
RU2486872C1 (ru) Способ восстановления нижней стенки глазницы и нижнеглазничного края после травмы
RU2702457C1 (ru) Способ дорсального спондилодеза атлантоаксиального комплекса
RU2393756C1 (ru) Способ выбора тактики лечения больных с дегенеративным поражением позвоночника
RU2802396C1 (ru) Способ хирургического лечения идиопатического сколиоза позвоночника с использованием комбинированного введения транспедикулярных винтов
RU2538797C2 (ru) Способ хирургического лечения компрессионного перелома позвонка при остеопорозе
RU2641160C1 (ru) Способ лечения повреждений С2 позвонка
RU2467716C1 (ru) Способ декомпрессии спинного мозга при переломах грудных и поясничных позвонков
RU2187978C2 (ru) Способ введения винтов для транспедикулярной фиксации позвонков
RU2784945C1 (ru) Способ хирургического лечения повреждений заднего полукольца таза с вертикальным смещением с использованием позвоночно-тазовой фиксации
RU2349277C2 (ru) Способ реконструкции таза при стабильном, неправильно сросшемся переломе
RU2568534C1 (ru) Способ хирургического лечения сколиотической деформации поясничного отдела позвоночника
RU2804846C1 (ru) Способ хирургической коррекции наклона таза у детей при нервно-мышечном и синдромальном сколиозе
Raimovich et al. PUNCTION VERTEBROPLASTY WITH BONE CEMENT FOR OSTEOPORTIC FRACTURES OF THE VERTEBRAS
RU2729372C1 (ru) Способ хирургического лечения лобкового симфиза тазового кольца с использованием аллопластического препарата на основе гидроксиапатита
RU2730891C1 (ru) Способ хирургического лечения лобкового симфиза тазового кольца с использованием аллопластического препарата на основе гидроксиапатита
Shul’ga et al. Surgical treatment of gross posttraumatic deformations in thoracic spine
RU2585410C1 (ru) Способ комбинированного хирургического лечения сколиотической деформации позвоночника
RU2704361C1 (ru) Способ хирургической коррекции сагиттального дисбаланса позвоночника у детей
RU2727892C1 (ru) Способ хирургического лечения лобкового симфиза тазового кольца
RU2705912C1 (ru) Способ транспедикулярной декомпрессии при неосложненном компрессионном переломе позвонка
RU2389435C1 (ru) Способ выбора тактики лечения больных с травматическим поражением позвоночника
RU2809698C1 (ru) Способ хирургической мобилизации основной дуги сколиотической деформации грудного отдела позвоночника при вентральной динамической коррекции
RU2699724C1 (ru) Способ восстановления целостности заднего опорного комплекса позвоночника при резекционной ляминэктомии
Nemsadze et al. The role of multislice spiral computed tomography in the diagnosis and management of acute facial trauma in patients with multiple injuries