RU2759243C1 - Электронное устройство на основе одноэлектронного транзистора, реализующее отрицательное дифференциальное сопротивление - Google Patents
Электронное устройство на основе одноэлектронного транзистора, реализующее отрицательное дифференциальное сопротивление Download PDFInfo
- Publication number
- RU2759243C1 RU2759243C1 RU2020141652A RU2020141652A RU2759243C1 RU 2759243 C1 RU2759243 C1 RU 2759243C1 RU 2020141652 A RU2020141652 A RU 2020141652A RU 2020141652 A RU2020141652 A RU 2020141652A RU 2759243 C1 RU2759243 C1 RU 2759243C1
- Authority
- RU
- Russia
- Prior art keywords
- atoms
- drain
- electrodes
- impurity
- bridge
- Prior art date
Links
- 239000012535 impurity Substances 0.000 claims abstract description 81
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 230000005641 tunneling Effects 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 239000004020 conductor Substances 0.000 claims abstract description 4
- 125000004429 atom Chemical group 0.000 claims description 94
- 238000000034 method Methods 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 27
- 239000010410 layer Substances 0.000 claims description 25
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 238000002513 implantation Methods 0.000 claims description 11
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical group [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 10
- 238000010586 diagram Methods 0.000 claims description 7
- 238000001459 lithography Methods 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 4
- 239000002800 charge carrier Substances 0.000 claims description 4
- 238000007654 immersion Methods 0.000 claims description 4
- 238000010884 ion-beam technique Methods 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 4
- 238000000137 annealing Methods 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 238000005468 ion implantation Methods 0.000 claims description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical group [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- 125000004437 phosphorous atom Chemical group 0.000 claims description 2
- 238000007750 plasma spraying Methods 0.000 claims description 2
- 238000012883 sequential measurement Methods 0.000 claims description 2
- 238000007751 thermal spraying Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 15
- 238000005516 engineering process Methods 0.000 abstract description 7
- 238000013461 design Methods 0.000 abstract description 3
- 238000004891 communication Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 229910052710 silicon Inorganic materials 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 15
- 239000010703 silicon Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- LVQULNGDVIKLPK-UHFFFAOYSA-N aluminium antimonide Chemical compound [Sb]#[Al] LVQULNGDVIKLPK-UHFFFAOYSA-N 0.000 description 2
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 230000005493 condensed matter Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002902 organometallic compounds Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/322—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
- H01L21/3221—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
- H01L21/3226—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering of silicon on insulator
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Изобретение относится к нанотехнологиям, а конкретно к технологиям изготовления одноэлектронных транзисторов, которые могут быть использованы для конструирования новых вычислительных, коммуникационных и сенсорных устройств. Электронное устройство на основе одноэлектронного транзистора включает подложку с расположенными на ней электродами стока и истока, управляющими электродами затвора, при этом электроды стока и истока выполнены из проводящего материала, расположены в одной плоскости с образованием зазора и соединены с помощью мостика, содержащего от 2 до 10 примесных атома в его квазидвумерном слое, при этом примесные атомы расположены на расстоянии друг от друга, обеспечивающем туннелирование электронов и создание отрицательного дифференциального сопротивления при подаче напряжения на электроды стока и истока. Изобретение обеспечивает возможность создания электронного устройства на основе одноэлектронного транзистора, реализующего отрицательное дифференциальное сопротивление и имеющего размеры рабочей области до 50 нм. 3 н. и 4 з.п. ф-лы, 1 табл., 4 ил.
Description
Область техники, к которой относится изобретение
Настоящее изобретение относится к нанотехнологиям, а конкретно к технологиям изготовления электронных устройство на основе одноэлектронных транзисторов, которые могут быть использованы для конструирования новых вычислительных, коммуникационных и сенсорных устройств.
Уровень техники
Разработка элементов для создания вычислительных и сенсорных устройств, разработка технологий изготовления квазидвумерных твердотельных структур субнанометровых размеров, использующих в качестве активных элементов одиночные атомы, являются крайне актуальными задачами. Создание элемента с отрицательным дифференциальным сопротивлением, имеющим размеры в несколько десятков нанометров, способом, включающим небольшое количество технологических шагов - является актуальной задачей.
Из уровня техники известны устройство с вертикальным туннелированием и отрицательным дифференциальным сопротивлением и способ его изготовления (Патент US 9293546 B2). Устройство включает электроды стока и истока, между которыми вертикально расположены одна или несколько квантовых ям, которые обеспечивают реализацию устройства с отрицательным дифференциальным сопротивлением. Устройство изготавливают с использованием методов литографии и химического осаждения из газовой фазы или физического осаждения из газовой фазы или атомно-слоевого осаждения или молекулярно-лучевой эпитаксии или эпитаксии химического осаждения из газовой фазы металлоорганических соединений или эпитаксией в сверхвысоком вакууме при пониженной температуре. Однако известное устройство имеет значительно большие размеры (100÷500 нм) по сравнению с заявляемым устройством. Кроме того, в известном устройстве используется схема транзистора с закрытым каналом, способ изготовления которого предполагает намного больше технологических этапов за счет необходимости формирования по меньшей мере 8 технологических слоев, а также формирования в каждом слое различных элементов устройства. Кроме того, для изготовления устройства требуется значительно большее количество типов материалов (Si, InxAl1-xAs, AlAs, InxGa1-xAs, high K материалы), что усложняет технологию изготовления устройства.
Известно устройство с отрицательным дифференциальным сопротивлением (Патент US 9159476 B2), включающее управляющие проводящие линии, направленные перпендикулярно друг другу, в местах пересечения которых расположены области, в которых реализуется эффект отрицательного дифференциального сопротивления. Размер каждой области варьируется от 100х100х500 до 100х100х10 нм. Такое устройство имеет относительно большие размеры и не позволяет настраивать параметры отрицательного дифференциального сопротивления. В устройстве также используется схема транзистора с закрытым каналом.
Известен полевой транзистор с отрицательным дифференциальным сопротивлением и схема на его основе (Патент US 6559470 B2). В изобретении представлен классический полевой транзистор с каналом n-типа со сформированным слоем зарядовых ловушек, находящимся в непосредственной близости от подложки, на которой расположен транзистор. Такое устройство в сенсорных приложениях обладает меньшей чувствительностью, чем предлагаемое электронное устройство на основе одноэлектронного транзистора. Транзистор изготавливают с использованием методов литографии и стандартных КМОП технологий. Однако известные методы позволяют создавать устройства с характерными планарными размерами ~ 250 нм и не обеспечивают возможности получения устройства с характерным размером менее 50 нм. Кроме того, для изготовления данного полевого транзистора требуется большее количество технологических операций, и потенциально большее энергопотребление, чем в предлагаемом устройстве.
Наиболее близкими к заявляемым способу и устройству являются способ изготовления одноэлектронных одноатомных транзисторов с открытым каналом, и транзистор, изготовленный таким способом (патент RU 2694155). Одноэлектронный одноатомный транзистор с открытым каналом содержит туннельные электроды, выполненные в виде узких (не более 50 нм) полос, расположенных с зазором не более 50 нм между их торцами, а также управляющие электроды, при этом управляющие электроды транзистора удалены от острова транзистора не более чем на 5-50 нм. Остров транзистора представляет собой примесный атом, который может располагаться как на краю, так и в центре канала транзистора. Расстояние, на котором располагаются управляющие электроды от острова транзистора, определяется как расстояние от затвора до края кремниевого канала или от затвора до середины кремниевого канала. Способ изготовления одноэлектронного одноатомного транзистора с открытым каналом (RU 2694155) включает формирование подложки с имплантацией примесных атомов в поверхностном квазидвумерном слое толщиной 5-10 нм, формирование на подложке туннельных электродов с обеспечением зазора между ними, формирование мостика между туннельными электродами, содержащего один примесный атом в его квазидвумерном слое, формирование управляющих электродов затвора. Однако, из-за того, что остров транзистора формируется одним примесным атомом, в устройстве не будет реализовываться эффект отрицательного дифференциального сопротивления.
Раскрытие изобретения
Решаемой технической проблемой и достигаемым техническим результатом является создание электронного устройства на основе одноэлектронного транзистора, реализующего отрицательное дифференциальное сопротивление, и имеющего размеры рабочей области до 50 нм (ширина w = 5÷50 нм, предпочтительно w = 5÷40 нм; длина l = 10÷50 нм; высота h = 15÷50 нм).
Реализация отрицательного дифференциального сопротивления обеспечивается за счет имплантации определенного количества (от 2 до 10) примесных атомов между электродами стока и истока и обеспечения высокой однородности концентрации примесных атомов. Нижняя граница количества атомов (2 примесных атома) определяется необходимостью формирования как минимум 2 локализованных систем дискретных энергетических уровней, необходимых для реализации эффекта, верхняя граница (10 примесных атома) определяется тем, что при превышении данного количества эффект будет размыт за счет большого количества возможных путей туннелирования электронов через примесные атомы.
Технический результат достигается при изготовлении и использовании электронного устройства на основе одноэлектронного транзистора, включающего подложку с расположенными на ней электродами стока и истока, управляющими электродами затвора, при этом электроды стока и истока, выполнены из проводящего материала, расположены в одной плоскости с образованием зазора и соединены с помощью мостика, содержащего от 2 до 10 примесных атома в его квазидвумерном слое, при этом примесные атомы расположены на расстоянии друг от друга, обеспечивающем туннелирование электронов и создание отрицательного дифференциального сопротивления при подаче напряжения на электроды стока и истока.
Для реализации эффекта туннелирования предпочтительно последовательное расположение примесных атомов в квазидвумерном слое с обеспечением среднего расстояния L между соседними примесными атомами, определяемого из условия:
где n – концентрация примесных атомов, L – среднее расстояние между атомами, e – заряд электрона, ε - относительная диэлектрическая проницаемость подложки, I d – потенциал ионизации электронов примесного атома, – постоянная Планка, m * – эффективная масса носителей заряда на дне проводимости материала мостика, τ – прозрачность туннельного барьера между примесными атомами.
Материал подложки и материал для примесных атомов выбирают исходя из следующих условий: τ = 0,01÷0,0001; n = 1012÷5*1013 см-2;ε = 3÷30, I d = 10÷300 мэВ, m * = 0,1 ÷ 2.0 m, где m – масса электрона, при этом в качестве примесных атомов могут быть использованы: K, As, P, N, Al, B, Au, Ga, Li, Fe, Pb, Cr, C; а подложка может быть выполнена из следующих материалов: Si, SiC, InxAl1-xAs, AlAs, InxGa1-xAs, (0.1 ≤ x ≤ 0.9), high-K материалов.
В предпочтительном варианте осуществления изобретения мостик имеет следующие размеры – ширину, длину, высоту не более 50 нм, при этом среднее расстояние между примесными атомами в квазидвумерном слое мостика составляет до 7 нм.
Способ получения электронного устройства включает формирование подложки с имплантацией примесных атомов в поверхностном квазидвумерном слое толщиной 5-10 нм, формирование на подложке электродов стока и истока с обеспечением зазора между ними, формирование мостика между электродами стока и истока (с примесными атомами в поверхностном квазидвумерном слое толщиной 5-10 нм), формирование управляющих электродов затвора, при этом мостик между электродами стока и истока формируют с обеспечением концентрации примесных атомов, выбранной из диапазона n = 1012÷5*1013 см-2 с учетом величин ε, I d , τ формулы (01). Электроды на поверхности подложки могут быть сформированы методом литографии и термического или плазменного напыления. Требуемую концентрацию примесных атомов в поверхностном квазидвумерном слое мостика обеспечивают методом ионно-пучковой имплантации, или методом плазменно-иммерсионной ионной имплантации, или методом термического отжига, выполненным после имплантации.
Способ реализации отрицательного сопротивления включает определение конфигурации напряжений на электродах путем определения диаграммы стабильности электронного устройства методом последовательного измерения вольт-амперных характеристик между электродами стока и истока; выбор области диаграммы стабильности с учетом наличия в этой области участка с отрицательным дифференциальным сопротивлением; подачу на электроды стока и истока и управляющие электроды напряжений, соответствующих выбранным значениям из диаграммы стабильности.
В предлагаемом способе и устройстве техническая сложность создания устройства с малыми размерами решается путем реализации эффекта отрицательного дифференциального сопротивления через использование явления туннелирования электронов через конечное (небольшое) количество одиночных примесных атомов. Заявляемый способ позволяет реализовать технологию имплантации подложки с высокой точностью и высокой однородностью концентрации примесных атомов.
Технический результат заявляемого устройства и способа заключается в реализации элемента с отрицательным дифференциальным сопротивлением, имеющим следующие размеры (ширину (w), длину (l), высоту (h)): w = 5÷40 нм, l = 10÷50 нм, h = 15÷50 нм), позволяющим контролировать параметры этого элемента (значение напряжения сток-исток, при котором реализуется эффект отрицательного дифференциального сопротивления, значение управляющего напряжения, при котором реализуется эффект отрицательного дифференциального сопротивления, величину тока сток-исток), и обладающий рекордной чувствительностью к изменению электрического заряда (10-2÷101 e/Гц1/2) при использовании его в сенсорных приложениях.
Краткое описание чертежей
Изобретение поясняется иллюстративными материалами, где на фиг. 1 представлена конструкция электронного устройства на основе одноэлектронного транзистора, реализующего отрицательное дифференциальное сопротивление; на фиг. 2 представлено изображение одноэлектронного транзистора на основе нескольких примесных атомов калия, полученное с помощью электронного микроскопа; на фиг. 3 представлен график зависимости тока транзистора с легирующими атомами калия от величины напряжения сток-исток, измеренные при температуре 300°К. В диапазоне управляющих напряжений от -3.6 Вольт (квадраты) до -3.8 Вольт (треугольники) реализуется эффект отрицательного дифференциального сопротивления для диапазонов напряжения сток-исток 1.7-1.9 Вольт и 2.5-2.7 Вольт; на фиг. 4 представлена модель одноэлектронного транзистора, включающего два туннельно-связанных примесных атома, которые расположены между электродами стока и истока и связаны с ними через туннельные переходы. Каждый примесный атом изображен двумя электронными энергетическими уровнями (первый атом: ε 11, ε 12, второй атом: ε 21, ε 22). На каждом уровне может находиться 2 электрона со спином вверх и со спином вниз (отмечены стрелками). Электроны могут туннелировать между левым электродом и левым атомом (переходы Г11 и Г12), между правым электродом и правым атомом (переходы ГR1 и ГR2), между атомами (переходы Г11-21, Г11-22, Г12-21 и Г12-22).
Позициями на чертежах обозначены: 1 – одноэлектронный транзистор с открытым каналом, 2 – квазидвумерный слой примесных атомов в мостике транзистора, 3 – подложка, 4 – мостик транзистора, 5 – электрод стока, 6 – электрод истока, 7 – управляющий электрод.
Осуществление изобретения
Ниже представлено более детальное описание заявляемого электронного устройства на основе одноэлектронного транзистора, реализующего отрицательное дифференциальное сопротивление, а также способа создания электронного устройства и способа его применения.
Электронное устройство на основе одноэлектронного транзистора, реализующее отрицательное дифференциальное сопротивление, содержит квазидвумерный слой примесных атомов 2 в виде небольшого (2-10) количества примесных атомов в кристаллической решетке с открытым каналом. Заявляемое устройство представлено на фиг. 1, 2. Устройство состоит из подложки 3, например, из кремния, германия, карбида кремния, антимонида алюминия, арсенида алюминия, арсенида галлия, селенид кадмия и т.д.; тонкого мостика 4, допированного примесными атомами, включая атомы калия, или атомы мышьяка, или атомы фосфора, или атомы азота, или атомы алюминия, или атомы бора, или атомы золота, или атомы галлия, или атомы лития, или атомы железа, или атомы свинца, или атомы хрома, или атомы углерода, в квазидвумерном приповерхностном слое; электродов стока 5 и истока 6; управляющим (одним или несколькими) электродом затвора 7, расположенным близко к тонкому мостику, например, на расстоянии 5-30 нм.
Для обеспечения туннелирования электронов примесные атомы в квазидвумерном слое расположены последовательно, при этом среднее расстояние L между соседними примесными атомами (при этом расстояние между электродом и ближайшим атомом также равно среднему расстоянию между атомами) выбрано из условия:
где n – концентрация примесных атомов, L – среднее расстояние между атомами, e – заряд электрона, ε – относительная диэлектрическая проницаемость, I d – потенциал ионизации электронов примесного атома, – постоянная Планка, m * – эффективная масса носителей заряда на дне проводимости материала мостика, τ – прозрачность туннельного барьера между примесными атомами.
Материал подложки и материал для примесного атома выбирают с обеспечением следующих параметров: τ = 0,01÷0,0001; n = 1012÷5*1013 см-2; ε = 3÷30, I d = 10÷300 мэВ, m * = 0,1÷2.0 m, где m – масса электрона. Диапазоны значений для ε, I d и m * соответствуют следующим материалам подложки: Si, SiC, InxAl1-xAs, AlAs, InxGa1-xAs, (0.1 ≤ x ≤, 0.9), high-K материалам, и материалам для примесных атомов: K, As, P, N, Al, B, Au, Ga, Li, Fe, Pb, Cr, C. Диапазон концентраций примесных атомов соответствует диапазону средних расстояний между примесными атомами в мостике устройства от 2 до 7 нм.
Способ получения устройства на основе одноэлектронного транзистора, реализующего отрицательное дифференциальное сопротивление, основан на создании между двумя электродами тонкого мостика из полупроводника или диэлектрика, в которые имплантированы несколько (от 2 до 10) примесных атомов (фиг. 1, фиг. 2).
Заявляемое устройство может быть изготовлено способом, который подробно изложен в описании изобретения по патенту RU 2694155. При этом концентрацию примесных атомов (n = 1012 ÷ 5*1013 см-2) в поверхностном квазидвумерном слое мостика обеспечивают методом ионно-пучковой имплантации либо методом плазменно-иммерсионной ионной с последующим термическим отжигом (Анищик В.М., Углов В.В. Модификация инструментальных материалов ионными и плазменными пучками, Белорусский государственный университет, 2003; K. Rudenko, S. Averkin, V. Lukichev, A. Orlikovsky, A. Pustovitand A. Vyatkin, Ultrashallow p+-n junctions in Si produced byplasma immersion ion implantation. Proc.SPIE 6260, 626003 (2006) http://doi.org/10.1117/12.676912). В качестве материала мостика может быть использован полупроводник (кремний, германий, карбид кремния, антимонид алюминия, арсенид алюминия, арсенид галлия, селенид кадмия и т.д.), материала электродов – проводящий материал (любые металлы, например золото, хром, медь, титан, никель, алюминий, и др.; сильно легированные полупроводниковые материалы, например кремний, карбид кремния, и др.). Размеры мостика (ширина w, длина l, высота h) могут варьироваться в следующих диапазонах: w = 5÷40 нм, l = 10÷50 нм, h = 15÷50 нм.
В одном из вариантов реализации способ изготовления одноэлектронного транзистора с открытым каналом включает следующие этапы: 1) имплантация примесных атомов калия в поверхностный слой кремния (толщиной 5-10 нм) пластины кремния на изоляторе; 2) а) нанесение слоя позитивного электронного резиста (ЭРП) на пластину кремния на изоляторе (КНИ) в виде тонкой полимерной пленки; б) формирование рисунка электродов стока и истока (далее по тексту – электродов) в виде сужающихся по направлению друг к другу полос с зазором между их торцами в слое ЭРП посредством электронной литографии и проявления экспонированного рисунка в проявителе; в) напыление пленки стойкого к щелочному травлению металла толщиной не более 50 нм на пластину с рисунком электродов с последующим удалением оставшегося резиста и пленки металла на нем растворителем, в результате чего получают пластину с металлическими выступами, представляющими собой электроды, расположенные с зазором между торцами; 3) а) нанесение пленки ЭРП на полученную пластину с электродами и формирование рисунка маски с обеспечением покрытия маской туннельных электродов и зазора между ними в слое резиста посредством электронной литографии и проявления экспонированного рисунка; б) напыление пленки маскирующего материала толщиной не менее 5 нм на пластину с рисунком туннельных электродов с последующим удалением оставшегося резиста и пленки металла на нем посредством помещения пластины в растворитель, в результате чего получают на пластине маску, покрывающую электроды и зазор между ними; в) удаление верхнего слоя кремния пластины КНИ посредством анизотропного реактивно-ионного травления, при этом слой кремния остается только в местах, которые были защищены маской, включая электроды и зазор между ними, а слой маски выступает за границы оставшегося слоя кремния на расстояние не более 10 нм; 4) а) нанесение пленки ЭРП на полученную пластину с электродами с последующим формированием щели в полученном слое резиста в виде полосы, ориентированной под углом к линии расположения электродов, с использованием метода электронной литографии и проявления; б) напыление слоя стойкого металла в сформированную щель с образованием управляющих электродов и удаление растворителем остатков резиста с пленкой металла на нем; в) растворение маски с остатками стойкого металла в щелочном травителе. В качестве ЭРП может быть использован полиметилметакрилат (ПММА), ZEP 520А или AR-P 6200. В качестве стойкого металла при формировании электродов используют хром, а при формировании управляющих электродов используют титан, или наоборот. В качестве маскирующего материала используют алюминий или оксид алюминия.
Заявляемый способ в отличие от схем с закрытым каналом (Sellier H. etal. Transport spectroscopy of a single dopant in a gated silicon nanowire) позволяет при изготовлении имплантировать дополнительно или удалять зарядовые центры в/из кристаллической решетки.
Заявляемое устройство работает следующим образом.
На фиг. 3 представлен график зависимости тока транзистора от величины напряжения сток-исток.
Электронный транспорт реализуется только за счет туннелирования между примесными атомами. Эффект отрицательного дифференциального сопротивления реализуется при таких напряжениях между электродами, когда дискретные энергетические уровни двух соседних примесных атомов не совпадают и туннелирование между ними невозможно.
При туннелировании электронов в одноэлектронном режиме через примесные атомы, которые обладают выраженным дискретным одночастичным энергетическим спектром, при определенных значениях напряжения сток-исток и управляющего напряжения (например, для материала подложки Si, материала примесных атомов K напряжение сток-исток 2÷2.3 Вольта, управляющее напряжение -1.24÷-1.18 Вольт) возникает запрет на туннелирование, связанный с несоответствием изменения свободной энергии системы при туннелировании и разности энергий соответствующих одночастичных энергетических уровней (начального и конечного), что приводит к появлению эффекта отрицательного дифференциального сопротивления.
На фиг. 4 представлена модель системы, состоящей из двух туннельно-связанных примесных атомов, которые расположены между управляющими электродами и связаны с ними через туннельные переходы. Каждый примесный атом имеет набор дискретных одноэлектронных уровней энергии ε i , примесные атомы имеют разное пространственное расположение и, следовательно, различную связь с электродами истока и стока. Каждый примесные атом изображен двумя электронными энергетическими уровнями (первый атом: ε 11, ε 12, второй атом: ε 21, ε 22). На каждом уровне может находиться 2 электрона со спином вверх и со спином вниз (отмечены черными стрелками). Электроны могут туннелировать между левым электродом и левым атомом (переходы Г11 и Г12), между правым электродом и правым атомом (переходы ГR1 и ГR2), между атомами (переходы Г11-21, Г11-22, Г12-21 и Г12-22).
При нулевом и очень малом (например, для материала подложки Si, материала примесных атомов K напряжение сток-исток < 1.0 Вольта) напряжении смещения туннелирование электронов между электродами и примесными атомами и между примесными атомами отсутствует из-за увеличения кулоновской энергии в результате этого процесса. При увеличении напряжения смещения (например, для материала подложки Si, материала примесных атомов K напряжение сток-исток > 1.0 Вольта) становится возможным туннелирование электронов между левым электродом и примесными атомами, между примесными атомами, между примесными атомами и правым электродом. При этом туннелирование между примесными уровнями возможно только для уровней энергии ε 11 и ε 21, ε 12 и ε 22 соответственно. Наличие такой возможности приводит к появлению первого токового пика на ВАХ. При продолжении увеличении напряжения смещения закон сохранения энергии при туннелировании между ε 11 и ε 21, ε 12 и ε 22 перестает выполняться и туннельный ток уменьшается, а затем продолжающееся увеличение напряжения смещения приводит к появлению возможности туннелирования между энергетическими уровнями ε 11 и ε 22 и, как результат, к появлению второго токового пика на ВАХ. Дальнейшее увеличение электрического смещения приводит снова к падению электрического тока в системе до тех пор, пока снова не возникнет возможность для туннелирования электронов между парой энергетических уровней примесных атомов.
Измеряя диаграмму стабильности транзистора (зависимость транспортного тока от напряжения сток-исток и управляющего напряжения), определяют области напряжений, при которых реализуется эффект отрицательного дифференциального сопротивления.
Примеры реализации изобретения
Согласно заявляемому изобретению было изготовлено электронное устройство на основе одноэлектронного транзистора, реализующего отрицательное дифференциальное сопротивление, работающее при комнатной температуре. Заявленное устройство было изготовлено согласно описанной выше технологии. В качестве материала мостика был использован кремний с примесными атомами калия (I d = 250 мэВ). Материал проводящих электродов: хром. Концентрация примесных атомов n = 1,2*1013 см-2, среднее расстояние между примесными атомами в мостике: 2,9 нм. Внедрение примесных атомов было реализовано методом ионно-пучковой имплантации. Электроды формировались методом электронно-лучевой литографии и вакуумного термического напыления хрома. Мостик устройства формировался методом реактивно-ионного травления во фторсодержащей плазме через алюминиевую маску. Размеры мостика: длина (l) 50 нм, ширина (w) 40 нм, высота (h) 50 нм. Диэлектрическая проницаемость в кремнии ε = 12, эффективная масса носителей заряда m * = 1,08.
Параметры вольт-амперной характеристики (ВАХ) полученного устройства с эффектом отрицательного дифференциального сопротивления приведены на фиг. 3. На данной фигуре представлена зависимость тока транзистора с легирующими атомами калия от величины напряжения сток-исток, измеренные при температуре 300°К. В диапазоне управляющих напряжений от -3.6 до -3.8 Вольт реализуется эффект отрицательного дифференциального сопротивления для диапазонов напряжения сток-исток 1.7-1.9 Вольт и 2.5-2.7 Вольт. Изменение тока между электродами стока и истока на участках с отрицательным дифференциальным сопротивлением составляет от 0,3 до 0,7 нА при абсолютной величине тока 1.0-2.0 нА. Чувствительность к изменению электрического потенциала на участках с отрицательным дифференциальным сопротивлением составляет 1 ÷ 5 мВ.
В таблице 1 указаны значения среднего расстояния между примесными атомами (L) и концентрации (n) для кремниевой подложки (ε = 12), для примесных атомов мышьяка, алюминия, калия и фосфора, которые были использованы при изготовлении заявляемых устройств, которые обеспечивали достижение указанного технического результата. Величина прозрачности туннельного барьера соответствует туннельному сопротивлению между примесными атомами от единиц (τ = 0,01) до сотен (τ = 0,0001) МОм, что соответствует току между электродами стока и истока от единиц до сотни нА при напряжении от десятков до тысяч мВ. Указанный диапазон прозрачностей необходим для реализации одноэлектронного режима туннелирования между электродами стока и истока: электрическое сопротивление между электродами стока и истока должно быть много больше квантового сопротивления (Rq ≅25, 8 кОм) [D.V. AVERIN, K.K. LIKHAREV, Chapter 6 - Single Electronics: A Correlated Transfer of Single Electrons and Cooper Pairs in Systems of Small Tunnel Junctions, Editor(s): B.L. ALTSHULER, P.A. LEE, R.A. WEBB, Modern Problems in Condensed Matter Sciences, Elsevier, Volume 30, 1991, Pages 173-271, ISSN 0167-7837, ISBN 9780444884541, https://doi.org/10.1016/B978-0-444-88454-1.50012-7].
Таблица 1.
Потенциал ионизации, Id, мэВ Источник: Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices ; John Wiley & Sons, 2006; http://onlinelibrary.wiley.com/book/10.1002/0470068329. |
Прозрачность τ | L, нм | n, *1012 см-2 |
54 (мышьяк,As) | 0,01 | 4,9 | 4,2 |
54 (мышьяк,As) | 0,0001 | 7,5 | 1,8 |
120 (алюминий, Al) | 0,01 | 2,7 | 13 |
120 (алюминий, Al) | 0,0001 | 4,6 | 4,8 |
250 (калий, K) | 0,01 | 1,7 | 34 |
250 (калий, K) | 0,0001 | 2,9 | 12 |
46 (фосфор, P) | 0,01 | 6,25 | 2,6 |
46 (фосфор, P) | 0,0001 | 7,6 | 1,8 |
Claims (9)
1. Электронное устройство на основе одноэлектронного транзистора, включающее подложку с расположенными на ней электродами стока и истока, управляющими электродами затвора, при этом электроды стока и истока выполнены из проводящего материала, расположены в одной плоскости с образованием зазора и соединены с помощью мостика, содержащего примесный атом в его квазидвумерном слое, отличающееся тем, что мостик содержит от 2 до 10 примесных атомов, при этом примесные атомы расположены последовательно на расстоянии друг от друга, обеспечивающем туннелирование электронов и создание отрицательного дифференциального сопротивления при подаче напряжения на электроды стока и истока, где среднее расстояние L между соседними примесными атомами выбрано из условия:
где n – концентрация примесных атомов, L – среднее расстояние между атомами, e – заряд электрона, ε – относительная диэлектрическая проницаемость подложки, I d – потенциал ионизации электронов примесного атома, – постоянная Планка, m * – эффективная масса носителей заряда на дне проводимости материала мостика, τ – прозрачность туннельного барьера между примесными атомами.
2. Электронное устройство по п. 1, отличающееся тем, что в качестве примесных атомов выбирают атомы калия, или атомы мышьяка, или атомы фосфора, или атомы азота, или атомы алюминия, или атомы бора, или атомы золота, или атомы галлия, или атомы лития, или атомы железа, или атомы свинца, или атомы хрома, или атомы углерода.
3. Электронное устройство по п. 1, отличающееся тем, что мостик имеет ширину, длину, высоту не более 50 нм, при этом среднее расстояние между примесными атомами в квазидвумерном слое мостика составляет до 7 нм.
4. Способ получения электронного устройства по п. 1, включающий имплантацию в подложку примесных атомов в поверхностном квазидвумерном слое толщиной 5-10 нм, формирование на подложке электродов стока и истока с обеспечением зазора между ними, формирование мостика между электродами стока и истока, формирование управляющих электродов затвора, отличающийся тем, что мостик между электродами стока и истока формируют с обеспечением концентрации примесных атомов, выбранной из диапазона n = 1012÷5*1013 см-2 в зависимости величин ε, I d , τ по п. 1.
5. Способ по п. 4, отличающийся тем, что электроды на поверхности подложки формируют методом литографии и термического или плазменного напыления.
6. Способ по п. 4, отличающийся тем, что требуемую концентрацию примесных атомов в поверхностном квазидвумерном слое мостика обеспечивают методом ионно-пучковой имплантации, или методом плазменно-иммерсионной ионной имплантации, или методом термического отжига, выполненным после имплантации.
7. Способ реализации отрицательного сопротивления с помощью устройства по п. 1, включающий определение конфигурации напряжений на электродах путем определения диаграммы стабильности электронного устройства методом последовательного измерения вольт-амперных характеристик между электродами стока и истока; выбор области диаграммы стабильности с учетом наличия в этой области участка с отрицательным дифференциальным сопротивлением; подачу на электроды стока и истока и управляющие электроды напряжений, соответствующих выбранным значениям из диаграммы стабильности.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020141652A RU2759243C1 (ru) | 2020-12-16 | 2020-12-16 | Электронное устройство на основе одноэлектронного транзистора, реализующее отрицательное дифференциальное сопротивление |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020141652A RU2759243C1 (ru) | 2020-12-16 | 2020-12-16 | Электронное устройство на основе одноэлектронного транзистора, реализующее отрицательное дифференциальное сопротивление |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2759243C1 true RU2759243C1 (ru) | 2021-11-11 |
Family
ID=78607157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020141652A RU2759243C1 (ru) | 2020-12-16 | 2020-12-16 | Электронное устройство на основе одноэлектронного транзистора, реализующее отрицательное дифференциальное сопротивление |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2759243C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2106041C1 (ru) * | 1996-06-21 | 1998-02-27 | Сергей Павлович Губин | Способ изготовления туннельного прибора |
KR20000007235A (ko) * | 1998-07-01 | 2000-02-07 | 정선종 | 상온 단전자 소자 제작방법 |
JP5841013B2 (ja) * | 2012-06-20 | 2016-01-06 | 日本電信電話株式会社 | 半導体装置 |
RU2694155C1 (ru) * | 2018-05-23 | 2019-07-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Способ изготовления одноэлектронных одноатомных транзисторов с открытым каналом транзистора и транзистор, изготовленный таким способом |
-
2020
- 2020-12-16 RU RU2020141652A patent/RU2759243C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2106041C1 (ru) * | 1996-06-21 | 1998-02-27 | Сергей Павлович Губин | Способ изготовления туннельного прибора |
KR20000007235A (ko) * | 1998-07-01 | 2000-02-07 | 정선종 | 상온 단전자 소자 제작방법 |
JP5841013B2 (ja) * | 2012-06-20 | 2016-01-06 | 日本電信電話株式会社 | 半導体装置 |
RU2694155C1 (ru) * | 2018-05-23 | 2019-07-09 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) | Способ изготовления одноэлектронных одноатомных транзисторов с открытым каналом транзистора и транзистор, изготовленный таким способом |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pashkin et al. | Room-temperature Al single-electron transistor made by electron-beam lithography | |
Tilke et al. | Coulomb blockade in silicon nanostructures | |
WO2018224876A1 (en) | Shadow mask sidewall tunnel junction for quantum computing | |
Tilke et al. | Single-electron tunneling in highly doped silicon nanowires in a dual-gate configuration | |
RU2759243C1 (ru) | Электронное устройство на основе одноэлектронного транзистора, реализующее отрицательное дифференциальное сопротивление | |
RU206166U1 (ru) | Одноэлектронный транзистор с отрицательным дифференциальным сопротивлением | |
Alarabi et al. | Comparison of p-n and p-i-n vertical diodes based on p-PMItz/n-Si, p-PMItz/n-4HSiC and p-PMItz/i-SiO2/n-Si heterojunctions | |
US20240341203A1 (en) | Semiconductor-superconductor hybrid device including an electrode array | |
Baumgartner et al. | Single-electron transistor fabricated by focused laser beam-induced doping of a GaAs/AlGaAs heterostructure | |
Langheinrich et al. | Fabrication of lateral tunnel junctions and measurement of coulomb blockade effects | |
Pok | Atomically abrupt, highly-doped, coplanar nanogaps in silicon | |
van de Sande et al. | Towards transport of topological surface states in Pb1xSnxTe nanowires | |
CN116761439B (zh) | 一种原子级团簇存算器件及其制造方法 | |
Ma et al. | Charge trapping in surface accumulation layer of heavily doped junctionless nanowire transistors | |
Kim et al. | Room-temperature observation of the Coulomb blockade effects in Al two-terminal diodes fabricated using a focused ion-beam nanoparticle process | |
Yang et al. | Manufacturability of split-gate transistor devices—initial results | |
Bjørlig et al. | Transport through quantum dots at the LaAlO3/SrTiO3 interface | |
De Palma | Single Electron Transistor on FD SOI for Spin Qubits Sensing | |
Choi et al. | Temperature dependence electron conduction in horizontally aligned trapezoidal-shaped AlGaN/GaN nanowire wrap-gate transistor | |
Vennberg | Spatial control of electron & hole states in InAs/GaSb heterostructures | |
WO2023030626A1 (en) | Semiconductor-superconductor hybrid device having a tunnel barrier | |
Feng et al. | Quantum wire FETs in δ-doped GaAs | |
Fagiani | Single bismuth atom transistor for solid state atomic clock applications | |
Frye et al. | Surface mobilities in laser-processed polysilicon films | |
Connaughton | Variation of the Electronic Functionality of Self-Seeded Germanium Nanowires through Synthesis Determined Core-Shell Interface States |