RU2758690C1 - Способ комплексной очистки сложных многокомпонентных сточных вод - Google Patents

Способ комплексной очистки сложных многокомпонентных сточных вод Download PDF

Info

Publication number
RU2758690C1
RU2758690C1 RU2020132586A RU2020132586A RU2758690C1 RU 2758690 C1 RU2758690 C1 RU 2758690C1 RU 2020132586 A RU2020132586 A RU 2020132586A RU 2020132586 A RU2020132586 A RU 2020132586A RU 2758690 C1 RU2758690 C1 RU 2758690C1
Authority
RU
Russia
Prior art keywords
biomodule
waste water
biomodules
wastewater
purification
Prior art date
Application number
RU2020132586A
Other languages
English (en)
Inventor
Марина Ивановна Янкевич
Виктория Владимировна Хадеева
Ирина Анатольевна Афти
Лев Сергеевич Кель
Original Assignee
Общество с ограниченной ответственностью «БИОЭКОПРОМ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью «БИОЭКОПРОМ" filed Critical Общество с ограниченной ответственностью «БИОЭКОПРОМ"
Priority to RU2020132586A priority Critical patent/RU2758690C1/ru
Application granted granted Critical
Publication of RU2758690C1 publication Critical patent/RU2758690C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/14Activated sludge processes using surface aeration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

Изобретение относится к области очистки сточных вод и может быть использовано для очистки сточных вод промышленных предприятий, фильтрационных вод полигонов ТБО и свалок от тяжелых металлов, нефтепродуктов, органических веществ. Способ комплексной очистки сложных многокомпонентных сточных вод включает подачу сточной воды в пространственно разделенный каскадный фильтр, составленный из не менее трех биомодулей. Переток очищаемой воды из биомодуля с нечетным номером в биомодуль с четным номером происходит в нижней части биомодулей, а переток из биомодулей с четным номером в биомодуль с нечетным номером в верхней части биомодулей. Модули представляют собой неглубокие бассейны, в первом из которых размещены загрузки с иммобилизованным бактериальным биоценозом микроорганизмов-деструкторов органических загрязнений, в качестве которых используют штаммы бактерий родов Bacillus и Micrococcus, во втором - загрузки с иммобилизованными ассоциациями микроводорослей родов Chlorella, Scenedesmus и цианобактерии рода Phormidium, в третьем - неприкрепленная плавающая высшая водная растительность, в качестве которой используют роголистник (Ceratophyllum demersum L) и элодею канадскую (Elodea canadensis). Аэрация сточной воды осуществляется естественным образом за счет большой площади зеркала воды бассейнов биомодулей. Заявленный способ обеспечивает повышение эффективности очистки стоков от высоких концентраций загрязнителей, токсичных для биоценоза. 6 з.п. ф-лы, 2 табл., 1 пр.

Description

Изобретение относится к области очистки сточных вод и может быть использовано для очистки сточных вод промышленных предприятий, фильтрационных вод полигонов ТБО и свалок от тяжелых металлов, нефтепродуктов, органических веществ.
Предлагаемая комплексная очистка многокомпонентных сточных вод основана на природных механизмах самоочистки. Принятая в настоящее время концепция самоочищения природных вод обосновывает восстановление качества воды, прежде всего биотическими процессами, протекающими в биоценозах водных экосистем. Биоценотическое самоочищение можно считать важнейшим из механизмов биоремедиации как воды, так и почвы. Безусловно, этот подход имеет и важное прикладное значение - создание искусственных биоценотических цепочек для очистки сточных вод. Важнейшими участниками биоремедиационных процессов в природной водной среде являются гидробионты: гетеротрофные бактерии, грибы, цианобактерии и микроводоросли, простейшие и высшие водные растения.
Для очистки многокомпонентных сточных вод, например, фильтратов полигонов ТБО предложено создавать и использовать искусственные биоценотические цепочки, в которые включаются биоценозы: микроорганизмов-деструкторов широкого круга органических соединений, ассоциации микроводорослей, резистентных к таким водам и осуществляющих как деградацию токсикантов, так и дополнительную фотосинтетическую аэрацию очищаемой воды, а также высшую водную растительность, аккумулирующую в своей биомассе минеральные элементы и тяжелые металлы и активно участвующей в водоочистке за счет своей ризосферной микрофлоры.
Известен ряд технических решений в данной области.
Например, известен способ очистки сточных вод с использованием элементов естественной экологической системы (Патент РФ №2219138). Способ предназначен для очистки вод промпредприятий, фильтратов полигонов ТБО от тяжелых металлов, нефтепродуктов, минеральных и органических веществ, с использованием активного ила и высшей водной растительности в биоинженерном сооружении. К недостаткам указанного способа следует отнести использование активного ила станций биологической очистки коммунальных стоков не предназначенного для очистки сложных и минерализованных стоков (например фильтратов ТБО) и необходимости проведения аэрации очищаемого стока, что усложняет обслуживание биоинженерного сооружения и делает его энергозатратным.
Известен способ доочистки сточных вод (Патент РФ №2530173) с использованием посадок камыша озерного, рогоза усколистного, и элодеи канадской на подготовленной местности-гидробиоплато. Недостатком указанного способа является возможность очистки стоков с невысокими исходными характеристиками (ХПК 20, БПК 3,76 мгO2/л) и большими площадями для организации гидробиоплато.
Известен способ очистки сточных вод (Патент РФ №2312072) биофлокуляцией, в котором в качестве биофлокулянта предлагается использовать суспензию водорослей в количестве 1 весовая часть водорослей (по сухому веществу) на 6-60 весовых частей взвешенных веществ сточной воды и осадок суспензии водорослей со взвешенными веществами отстаивают. Недостатком указанного способа являются необходимость постоянного выращивания водорослевых культур для биофлокуляции и невысокая скорость седиментации флокул.
Наиболее близким по большинству совпадающих существенных признаков является способ аэробного биологического окисления биологически разлагаемых органических соединений в сточных водах (Патент РФ №2552558). Сточные воды подают на вход герметично закрытого каскадного фильтрационного модуля, содержащего, по меньшей мере, три последовательно размещенные камеры, разделенные перегородками, установленными с обеспечением перетока очищаемых стоков из предыдущей камеры в последующую камеру. Причем переток из камеры с нечетным номером в камеру с четным номером происходит в нижней части камер, а переток из камеры с четным номером в камеру с нечетным номером в верхней части камер. В камерах размещена плавающая загрузка с закрепленным на ней сообществом микроорганизмов. Очищаемые стоки пропускают через указанный каскадный фильтровальный модуль при осуществлении принудительной аэрации и поддержании кислотного и ионного режимов, оптимальных для жизнедеятельности микроорганизмов.
Недостатками известного способа являются герметизация всего процесса очистки, которая приводит к существенному усложнению процесса технического обслуживания каскадного фильтрационного модуля (например удаление осадков из камер и аэраторов), сама аэрация требует существенных энергетических затрат и приводит к появлению паро-воздушной газовой среды (практически отдувка воздухом), содержащей легколетучие и полулетучие органические соединения, удаление которых из воздуха требует установки на выводных воздуховодах дополнительных фильтров. Кроме того, использование принудительной аэрации не стерилизованным атмосферным воздухом приводит к существенным изменениям в рабочем биоценозе установки, который формируется не специализированной микрофлорой, а спонтанной, что снижает качество биоочистки в целом. Следует отнести к недостаткам указанного способа использование только бактериального биоценоза, хотя эффективность очистки зависит в большой степени от разнообразия участников биоценотической цепочки в целом.
Решаемая предлагаемым способом задача комплексной очистки многокомпонентных сточных вод состоит в использовании всех основных гидробионтов, участвующих в природном самоочищении воды - бактерий, водорослевых культур и водной высшей растительности для эффективной, низкозатратной и экологически безопасной очистки сточных вод с высокой степенью загрязнения органическими и неорганическими поллютантами.
Технический результат, получаемый при реализации разработанного способа состоит в повышении эффективности очистки сложных производственных стоков, в том числе и фильтратов полигонов ТБО, токсичных для активного ила коммунальных очистных сооружений (КОС), которые имеют значительную минерализацию, высокие индексы ХПК и БПК (сотни мгO2/л) и характеризуются повышенным содержанием биогенных элементов и ионов тяжелых металлов.
Для достижения указанного технического результата предложено использовать разработанный способ комплексной очистки таких сильнозагрязненных и токсичных вод. В соответствии с разработанным способом очистку осуществляют подачей сточной воды на каскадный, пространственно разделенный фильтр, состоящий из последовательно расположенных фильтрующего блока механической очистки и трех модулей биоочистки (биомодули), при обеспечении самотечного перетока очищаемой воды из одного биомодуля в последующий. Причем переток из биомодуля с нечетным номером в биомодуль с четным номером происходит в нижней части биомодулей, а переток из камеры с четным номером в биомодуль с нечетным номером в верхней части биомодулей. Фильтрующий блок механической очистки является стандартным фильтрующим агрегатом, обеспечивающим удаление взвешенных веществ. Три следующих биомодуля представляют собой мелкие, глубиной не более 0,5 м - 0,7 м малопроточные бассейны с нефильтрующим дном, с большим зеркалом воды, обеспечивающим естественную ее аэрацию. В этих трех биомодулях последовательно размещается плавающая загрузка с консорциумом иммобилизированных микроорганизмов, эффективных деструкторов органических загрязнений, в следующем биомодуле иммобилизованный и адаптированный к сточной воде альгоценоз и в последнем модуле -плавающая высшая водная растительность. Количество биомодулей варьируется в зависимости от загрязненности стока. Переток очищаемых стоков из биомодуля с нечетным номером в биомодуль с четным номером происходит в нижней части биомодулей, а переток из биомодуля с четным номером в биомодуль с нечетным номером в верхней части биомодулей указанным образом препятствует смешению поступающего более загрязненного стока со стоком уже прошедшем частично биологическую очистку на каждом биомодуле. Система самотечная, подача стока на очистку осуществляется из первичной емкости, в которую собирается загрязненный сток, очищенный сток собирается во вторую накопительную емкость, предназначенную для очищенного стока, который может быть использован для технических или технологических нужд.
Первый биомодуль представляет собой мелкий «бассейн» (глубиной 0,5-0,7 м) с нефильтрующим дном максимальной площади для обеспечения естественной аэрации сточной воды.
В бассейн первого биомодуля помещается иммобилизованный бактериальный биоценоз, представляющий собой консорциум четырех штаммов бактерий родов Bacillus и Micrococcus, обладающих высоким окислительным потенциалом по отношению к широкому кругу органических соединений и устойчивостью в многокомпонентных сточных водах. В качестве носителя для плавающей загрузки используется керамзит, на котором предварительно осуществляется адсорбционная иммобилизация искусственного консорциума бактерий. Плавающая загрузка занимает не более половины поверхности воды бассейна.
В бассейне второго биомодуля размещаются иммобилизованные на капроновой сетке зеленые микроводоросли родов Chlorella, Scenedesmus, и цианобактерии рода Phormidium, отобранные по признаку резистентности к сточной воде (фильтрату полигонов ТБО), способности к иммобилизации и возможности ассоциации с гетеротрофными бактериями. Иммобилизация выбранных штаммов осуществлялась колонизацией капроновой сетки.
Кроме фотосинтетической аэрации очищаемого стока, сами водоросли в консорциуме с бактериями-деструкторами, являются участниками биоценотических цепочек и основными активаторами процесса очистки.
Третий биомодуль служит для размещения высших водных растений - роголистника (Ceratophyllum demersum L,) и элодеи канадской (Elodea canadensis). Эти растения способны извлекать из воды микровзвеси, которые сорбируются на поверхности растений слизью, покрывающей их корневые части и далее оседают на дно. Таким образом из воды извлекаются биогенные элементы, балластные и токсические вещества, такие как минеральные элементы, соли тяжелых металлов, а также происходит ризосферная деградация органических веществ, в том числе углеводородов различного генезиса.
Способ комплексной очистки сложнокомпонентных сточных вод позволяет, основываясь на природных механизмах самоочистки водоемов, создать малозатратную и экологически безопасную биофитотехнологию нового поколения, способную проводить детоксикацию и очистку сточных вод от широкого круга органических веществ, минеральных элементов и солей тяжелых металлов.
Предложенный способ иллюстрируется следующими примерами работы экспериментальной установки очистки фильтрата ТБО Санкт-Петербургского полигона «Новоселки».
Пример
Фильтрат полигона ТБО, после механической очистки, через песчаный фильтр, направлялся в первый биомодуль, представляющий собой резервуар высотой 150 мм, длиной 280 мм и шириной 180 мм, в нем размещается плавающая загрузка - керамзит с иммобилизованными бактериальными штаммами Bacillus cereus №7-RCAM02553, Bacillus safensis №0-RCAM 02550, Bacillus subtilis ss spizizenii №5-RCAM 02551, Micrococcus luteus №6-RCAM 02552, Bacillus amyloliquefaciens №2005-RCAM 02554 в количестве 1 дм3 и керамзит с иммобилизованными бактериальными штаммами Rhodococcus erythropolis 7 НХ-ВКПМ-S-1267, Acinetobacter oleovorum-ВКПМ-В-7179, так же в количестве 1 дм3. Общий объем плавающей загрузки составил 2 дм3 (400 г). Скорость поступления воды в первый биомодуль после механического фильтра не более 60 мл/час, (в течении трех суток биомодуль постепенно заполняется фильтратом) далее вода самотеком с такой же скоростью начинает поступать во второй биомодуль.
Второй биомодуль заполняется очищаемой водой объемом до 2 дм3 и там размещаются капроновые сетки с иммобилизованными штаммами зеленых микроводорослей и цианобактерий: Chlorella vulgaris CALU-157, Scenedesmus sp. ES-11, Phormidium sp. ES-90 в количестве 400 г (1,5 м2) далее в течении трех суток биомодуль 2 также заполняется очищаемой водой.
В третий биомодуль со скоростью около 60 мл/час начинает поступать очищаемая вода из второго биомодуля и после его частичного заполнения в него помещают высшие водные растения - Роголистник погруженный (Ceratophyllum demersum L) и Элодея канадская (Elodea canadensis) в количестве 10 и 10 штук. После заполнения в течение трех суток третьего биомодуля вода из него самотеком со скоростью 60 мл/час сливается в емкость для очищенной воды. Пуско-наладочные работы завершаются через 9 суток после их начала, пробы воды для проведения аналитических, токсикологических и микробиологических исследований процесса очистки отбираются через 10 и 20 суток работы установки в проточном режиме после окончания пуско-наладочных работ.
Figure 00000001
Figure 00000002
Показано снижение токсичности фильтрата, а также эффективность очистки загрязненного стока биоценотической цепочкой, состоящей из бактериального, водорослевого и фитоценозов.

Claims (7)

1. Способ комплексной очистки сложных многокомпонентных сточных вод, включающий подачу сточной воды в пространственно разделенный каскадный фильтр, составленный из не менее трех биомодулей, причем переток очищаемой воды из биомодуля с нечетным номером в биомодуль с четным номером происходит в нижней части биомодулей, а переток из биомодулей с четным номером в биомодуль с нечетным номером в верхней части биомодулей, отличающийся тем, модули представляют собой неглубокие бассейны, в первом из которых размещены загрузки с иммобилизованным бактериальным биоценозом микроорганизмов-деструкторов органических загрязнений, в качестве которых используют штаммы бактерий родов Bacillus и Micrococcus, во втором - загрузки с иммобилизованными ассоциациями микроводорослей родов Chlorella, Scenedesmus и цианобактерии рода Phormidium, в третьем - неприкрепленная плавающая высшая водная растительность, в качестве которой используют роголистник (Ceratophyllum demersum L) и элодею канадскую (Elodea canadensis), причем аэрация сточной воды осуществляется естественным образом за счет большой площади зеркала воды бассейнов биомодулей.
2. Способ по п.1, отличающийся тем, что перед подачей в каскадный фильтр сточные воды проходят механическую очистку.
3. Способ по п.1, отличающийся тем, что бассейны имеют глубину до 0,5-0,7 м.
4. Способ по п.1, отличающийся тем, что в качестве носителя для плавающей загрузки первого бассейна используется керамзит, на котором предварительно осуществляют адсорбционную иммобилизацию искусственного консорциума бактерий.
5. Способ по п.4, отличающийся тем, что в качестве искусственного консорциума бактерий используют консорциум четырех штаммов бактерий родов Bacillus и Micrococcus, обладающих высоким окислительным потенциалом по отношению к широкому кругу органических соединений и устойчивостью в многокомпонентных сточных водах.
6. Способ по п.1, отличающийся тем, что в качестве загрузки для второго бассейна используют капроновую сетку, на которой осуществляют иммобилизацию ассоциаций микроводорослей методом колонизации.
7. Способ по п.6, отличающийся тем, что в качестве ассоциаций микроводорослей используют зеленые микроводоросли родов Chlorella, Scenedesmus и цианобактерии рода Phormidium, отобранные по признаку резистентности к сточной воде, способности к иммобилизации и возможности ассоциации с гетеротрофными бактериями.
RU2020132586A 2020-10-02 2020-10-02 Способ комплексной очистки сложных многокомпонентных сточных вод RU2758690C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020132586A RU2758690C1 (ru) 2020-10-02 2020-10-02 Способ комплексной очистки сложных многокомпонентных сточных вод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020132586A RU2758690C1 (ru) 2020-10-02 2020-10-02 Способ комплексной очистки сложных многокомпонентных сточных вод

Publications (1)

Publication Number Publication Date
RU2758690C1 true RU2758690C1 (ru) 2021-11-01

Family

ID=78466769

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020132586A RU2758690C1 (ru) 2020-10-02 2020-10-02 Способ комплексной очистки сложных многокомпонентных сточных вод

Country Status (1)

Country Link
RU (1) RU2758690C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796677C1 (ru) * 2022-09-28 2023-05-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ биологической очистки сточных вод

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2120419C1 (ru) * 1997-10-28 1998-10-20 Коркин Андрей Михайлович Комплекс сооружений для биологической очистки сточных вод
RU2219138C1 (ru) * 2002-05-22 2003-12-20 Хмыз Олег Николаевич Способ очистки сточных вод с использованием элементов естественной экологической системы
RU2530173C2 (ru) * 2012-08-14 2014-10-10 Общество с ограниченной ответственностью "Акватория-Сервис" Способ доочистки сточных вод
RU2552558C1 (ru) * 2014-03-13 2015-06-10 Общество с ограниченной ответственностью "Инновационные биотехнологии" (ООО "ИНБИ") Способ аэробного биологического окисления биологически разлагаемых органических соединений в сточных водах
US9416036B2 (en) * 2011-01-05 2016-08-16 Pacific Advanced Civil Engineering, Inc. Method for treating contaminated water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2120419C1 (ru) * 1997-10-28 1998-10-20 Коркин Андрей Михайлович Комплекс сооружений для биологической очистки сточных вод
RU2219138C1 (ru) * 2002-05-22 2003-12-20 Хмыз Олег Николаевич Способ очистки сточных вод с использованием элементов естественной экологической системы
US9416036B2 (en) * 2011-01-05 2016-08-16 Pacific Advanced Civil Engineering, Inc. Method for treating contaminated water
RU2530173C2 (ru) * 2012-08-14 2014-10-10 Общество с ограниченной ответственностью "Акватория-Сервис" Способ доочистки сточных вод
RU2552558C1 (ru) * 2014-03-13 2015-06-10 Общество с ограниченной ответственностью "Инновационные биотехнологии" (ООО "ИНБИ") Способ аэробного биологического окисления биологически разлагаемых органических соединений в сточных водах

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2796677C1 (ru) * 2022-09-28 2023-05-29 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ биологической очистки сточных вод

Similar Documents

Publication Publication Date Title
KR100976262B1 (ko) 바이오 세라믹 담체를 이용한 호소 또는 하천의 생태복원 및 비점오염 방지를 위한 지중정화장치 및 시스템
EA018087B1 (ru) Способ и станция очистки сточных вод с регулированием концентрации растворенного кислорода
KR20110122953A (ko) 기능성세라믹과 농축미생물을 이용한 자연정화습지
WO2011016027A1 (en) Phytoremediation for desalinated water post-processing
Rahmadyanti et al. Integrated system of biofilter and constructed wetland for sustainable batik industry
Kaya et al. Reuse of lagoon effluents in agriculture by post-treatment in a step feed dual treatment process
CN103265145A (zh) 利用自然生物膜反应器净化低负荷低温河水的方法
KR20130019164A (ko) 흡착팩을 이용한 연속식 수질정화장치
RU2758690C1 (ru) Способ комплексной очистки сложных многокомпонентных сточных вод
Isiaka et al. Treatment of industrial oily wastewater by advanced technologies: a review
Kulkarni Biological treatment of petroleum wastewater: A review on research and studies
RU2104249C1 (ru) Материал для биологической очистки экосистем, загрязненных нефтью и нефтепродуктами, "ипк-н"
RU2336232C2 (ru) Способ биологической очистки сточных вод и утилизации илового осадка
Sirianuntapiboon et al. Application of granular activated carbon-sequencing batch reactor (GAC-SBR) system for treating wastewater from slaughterhouse
KR200328487Y1 (ko) 기능성 세라믹을 이용한 자연정화 시스템
Costa et al. Consortia of microalgae and bacteria in the performance of a stabilization pond system treating landfill leachate
CN114873864A (zh) 一种高浓度废水处理系统
Chavan et al. Designing and testing of wastewater in constructed wetland using Phragmites karka
Othman et al. The performance of Pilot-scale Constructed Wetland for treating Stormwater
Zaimoglu Treatment of campus wastewater by a pilot-scale constructed wetland utilizing Typha latifolia, Juncus acutus and Iris versicolor
Achi et al. Performance evaluation of a water hyacinth based institutional wastewater treatment plant to mitigate aquatic macrophyte growths at Ibadan, Nigeria
RU49526U1 (ru) Система очистки сточных вод
CN200967776Y (zh) 一种无污泥排放的污水深度处理装置
Farooq et al. Tertiary treatment of sewage effluent via pilot scale slow sand filtration
Dyagelev The review of methods of post-treatment of urban wastewater with a high content of industrial effluents