RU2757974C2 - Установка для вибрационных испытаний быстровращающихся роторов - Google Patents

Установка для вибрационных испытаний быстровращающихся роторов Download PDF

Info

Publication number
RU2757974C2
RU2757974C2 RU2019123915A RU2019123915A RU2757974C2 RU 2757974 C2 RU2757974 C2 RU 2757974C2 RU 2019123915 A RU2019123915 A RU 2019123915A RU 2019123915 A RU2019123915 A RU 2019123915A RU 2757974 C2 RU2757974 C2 RU 2757974C2
Authority
RU
Russia
Prior art keywords
vibration
disk
rotor
windows
load
Prior art date
Application number
RU2019123915A
Other languages
English (en)
Other versions
RU2019123915A3 (ru
RU2019123915A (ru
Inventor
Владимир Александрович Антипов
Владимир Леонидович Берсенев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный университет путей сообщения" (СамГУПС)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный университет путей сообщения" (СамГУПС) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный университет путей сообщения" (СамГУПС)
Priority to RU2019123915A priority Critical patent/RU2757974C2/ru
Publication of RU2019123915A3 publication Critical patent/RU2019123915A3/ru
Publication of RU2019123915A publication Critical patent/RU2019123915A/ru
Application granted granted Critical
Publication of RU2757974C2 publication Critical patent/RU2757974C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements

Abstract

Изобретение относится к испытательной технике. Предлагается установка для вибрационных испытаний быстровращающихся роторов, включающая станину, электродвигатель, опорные узлы, в которых установлен испытуемый вал с нагрузочным диском радиальной вибрации, датчики измерения вибрации, аналого-цифровой преобразователь с выводом информации на ЭВМ, отличающаяся тем, что в установку дополнительно введены приводной ротор с диском, в котором выполнены окна, сильфонная муфта, установленная на валу приводного ротора, взаимодействующая с приводным электродвигателем, сопловые аппараты, установленные на статоре приводного ротора и связанные с внешним источником сжатого воздуха, внешний источник сжатого воздуха выполнен с возможностью создания бегущей волны, воздействующей на лопатки нагрузочного диска испытуемого вала через сопловые аппараты и вращающиеся окна приводного ротора, испытуемый вал выполнен с возможностью вращения и нагружения его продольной и крутильной вибрационной нагрузкой, параметры которой определяются углом сдвига окон диска, где m - число окон в диске; n - порядковый номер окна, а число сопловых аппаратов равно числу окон, скоростью вращения приводного ротора, параметрами струи сжатого воздуха и геометрическими характеристиками лопаток нагрузочного диска испытуемого вала, сигналы от датчиков осевой, крутильной и радиальной вибрации ротора поступают в аналого-цифровой преобразователь, связанный с ЭВМ, с помощью которой анализируют взаимное влияние вибраций различных типов с выводом результатов анализа на печать. Технический результат - создание возможности возбуждения и измерения радиальной, продольной и крутильной вибраций ротора в различных сочетаниях, а также определения взаимного влияния вибраций различных типов. 1 ил.

Description

Изобретение относится к испытательной технике, а именно к методам и средствам вибрационных испытаний, и может быть использовано для вибрационных испытаний быстровращающихся изделий, например роторов.
Известен стенд для вибрационной диагностики роторных систем, содержащий возбудитель механических колебаний и приемник колебаний, установленные на общее основание и соединенные между собой, и измерительную систему, состоящую из датчиков измерения вибрации, установленных на опорах подшипников качения и фотоэлектрического датчика, измеряющего число оборотов роторной системы, а также содержащий аналого-цифровой преобразователь (АЦП) и ЭВМ на базе персонального компьютера, содержащего программные блоки обработки сигналов, отличающийся тем, что приемник колебаний выполнен в виде вала с двумя дисками, один из датчиков измерения вибрации виброизмерительного комплекса соединен через фильтр с двухканальным анализатором сигналов и измерительным магнитофоном, соединенным через аналого-цифровой преобразователь с блоком управления ЭВМ, а второй датчик измерения вибрации соединен двухканальным анализатором сигналов, виброметром, фазометром и магнитофоном, также соединенным через АЦП с блоком управления ЭВМ, а фотоэлектрический датчик через частотомер и фазометр связан с АЦП и ЭВМ [Патент РФ №2340882 МПК G01M 13/00. Стенд для вибрационной диагностики роторных систем. Захезин Альберт Михайлович, Малышева Татьяна Васильевна. Опубл. 10.12.2008 г.].
Недостатками указанной конструкции является отсутствие средств возбуждения и измерения продольной и крутильной вибрации ротора в различных сочетаниях, в том числе и с радиальной вибрацией ротора, а также возможности изучения взаимного влияния вибрации различных типов (радиальной, продольной и крутильной) на персональном компьютере с использованием специальных программных средств.
Известна экспериментальная установка, состоящая из станины, электродвигателя и двух опорных узлов, в которых установлен исследуемый вал с нагрузочным диском, отличающаяся тем, что позволяет изменять жесткость вала путем изменения межопорного расстояния за счет перемещения одного из опорных узлов и установок вала другой длины, позволяет использовать компоновочную схему роторно-опорного узла с консольным расположением нагрузочного диска, позволяет использовать в качестве опорных узлов гидродинамические подшипники скольжения с масляной смазкой или подшипники качения различных типоразмеров, позволяет автоматизировано осуществлять сбор и обработку результатов измерения путем съема информации с первичных преобразователей через аналогово-цифровой преобразователь с выводом результатов на персональный компьютер [Патент на полезную модель №96685 МПК G09B. Экспериментальная установка «роторно-опорные узлы». Савин Леонид Алексеевич. Опубл. 10.08.2010 г.].
Недостатками экспериментальной установки является отсутствие средств возбуждения и измерения продольной и крутильной вибрации ротора в различных сочетаниях, а также возможности изучения взаимного влияния вибрации различных типов.
Подтверждением важности изучения взаимного влияния вибрации подтверждают, например, данные, приведенные в работе: [Ерофеев В.И. Изгибно-крутильные, продольно изгибные и продольно-крутильные волны в стержнях. - Вестник научно-технического развития №5(57). - Нижегородский филиал Института машиноведения РАН, Нижний Новгород, 2012 г., С. 3-17].
Данное техническое решение выбрано в качестве прототипа.
Техническим результатом является создание возможности возбуждения и измерения радиальной, продольной и крутильной вибрации ротора в различных сочетаниях, а также определения взаимного влияния вибрации различных типов.
Технический результат достигается тем, что установка для вибрационных испытаний быстровращающихся роторов, состоящая из станины, электродвигателя, опорных узлов, в которых установлен испытуемый вал с нагрузочным диском радиальной вибрации, датчиков измерения вибрации, аналого-цифрового преобразователя с выводом информации на ЭВМ, отличается тем, что в установку дополнительно введены приводной ротор с диском, в котором выполнены окна, сильфонная муфта, установленная на валу приводного ротора, взаимодействующая с приводным электродвигателем, сопловые аппараты, установленные на статоре приводного ротора и связанные с внешним источником сжатого воздуха, внешний источник сжатого воздуха выполнен с возможностью создания бегущей волны, воздействующей на лопатки нагрузочного диска испытуемого вала через сопловые аппараты и вращающиеся окна приводного ротора, испытуемый вал выполнен с возможностью вращения и нагружения его продольной и крутильной вибрационной нагрузкой, параметры которой определяются углом сдвига окон диска
Figure 00000001
где m - число окон в диске; n - порядковый номер окна, а число сопловых аппаратов равно числу окон, скоростью вращения приводного ротора, параметрами струи сжатого воздуха и геометрическими характеристиками лопаток нагрузочного диска испытуемого вала, сигналы от датчиков осевой, крутильной и радиальной вибрации ротора поступают в аналого-цифровой преобразователь, связанный с ЭВМ, с помощью которой анализируют взаимное влияние вибраций различных типов с выводом результатов анализа на печать.
На фиг. 1 показана принципиальная схема установки. Установка включает испытуемый ротор 1, опоры 2, диск 3 с турбинными лопатками 4 и резьбовыми отверстиями 5, ротор 6, опоры 7, сильфонную муфту 8, приводной двигатель 9 (электрический двигатель асинхронного типа), диск 10 с окнами 11, сопловые аппараты 12, а также датчики вибрации 13, 14 и 15, измеряющие радиальную, осевую и крутильную вибрации ротора, а также частоту вращения ротора.
Установка работает следующим образом. Ротор 6, установленный в опорах 7, приводится во вращение приводным электродвигателем 9 через сильфонную муфту 8. При этом через сопловые отверстия 12 от внешнего источника сжатого воздуха подается струя, возбуждающая бегущую волну на лопатках турбины 4 через вращающиеся окна 11 диска 10. При этом, если окна на диске выполнены с углом сдвига
Figure 00000002
где m - число окон в диске; n - порядковый номер окна, а число сопловых аппаратов равно числу окон. На турбинных лопатках 4 диска 3 ротора 1, вращающегося в опорах 2, возникает бегущая волна с частотой возбуждения f=(k±P) m, где k - число оборотов ротора 1; Ρ - число оборотов ротора 6.
Путем установки в резьбовые отверстия 5 диска 3 грузиков задают дисбаланс ротора 1, возбуждая тем самым радиальную вибрацию ротора 1. Путем изменения частоты вращения ротора 6, давления и пульсации сжатого воздуха, подаваемого через сопла 12, раскручивают ротор 1 до заданных оборотов. При этом за счет бегущей волны возбуждают крутильную вибрацию ротора 1, а за счет прерывистости подачи сжатого воздуха на турбинные лопатки 4 создают осевую вибрацию ротора 1.
Для измерения крутильной вибрации ротора можно использовать, в частности, дискретно-фазовый метод (ДФМ), предназначенный для определения деформаций динамически нагруженных лопаток вращающихся колес турбогенераторов посредством определения угловых положений торцов лопаток. Измерения колебаний производятся в трех местах (13, 14 и 15) с использованием токовихревых или индуктивных датчиков вибрации. Все элементы конструкции ротора при их вращении совершают угловые статические (в виде закрутки) и динамические (в виде колебаний) перемещения относительно оси ротора, а также линейные перемещения в направлениях вдоль оси и в радиальном направлении относительно оси ротора. Расстояния между датчиками назначают таким образом, чтобы при возникновении срывных или дисковых колебаний показания были близки к максимальным. Снимаемый с датчиков сигнал позволяет зафиксировать крутильные, радиальные и осевые перемещения ротора. Программной обработкой результатов измерений предусмотрена также возможность определения числа оборотов ротора с помощью датчика ДФМ, для чего при измерениях учитывается сигнал, поступающий только от одной лопатки. Частотный модулированный сигнал от ДФМ датчиков поступает в демодулятор ЧМ-сигналов, затем в блок, определяющий временную диаграмму и далее в блок записи и анализа поступающей деформации (персональный компьютер). Сигналы от других датчиков вибрации 14 и 15 также через виброизмерительный комплекс поступают к блоку записи и анализа информации (тип датчиков вибрации и состав виброизмерительного комплекса не являются предметом изобретения). Изменяя величину и (или) частоту возбуждающей нагрузки одной из вибраций фиксируют степень ее влияния на вибрации других направлений путем аналитического сопоставления показаний датчиков измерения вибрации и частоты вращения ротора на персональном компьютере с помощью специально разработанной программы для определения интенсивности взаимного влияния вибрации различных типов. Таким путем исследуют взаимное влияние вибраций, существенность которого показана, например, в теоретической работе Ерофеева В.И.: Изгибно-крутильные, продольно изгибные и продольно-крутильные волны в стержнях. - Вестник научно-технического развития №5(57). - Нижегородский филиал Института машиноведения РАН, Нижний Новгород, 2012 г., С. 3-17.
Использование предложенного технического решения, например, при доводке энергетических установок транспортных систем, дает возможность уменьшить интенсивность вибрационной нагрузки на агрегаты и системы энергетической установки, избежать возникновения дополнительных резонансов, расширения зон неустойчивой работы энергетической установки и т.п.и тем самым повысить ее качество, существенно увеличить ресурс, привести в соответствие санитарным нормам по уровню вибрации рабочее место человека-оператора (машиниста), тем самым существенно улучшить условия его работы и избежать аварийных ситуаций, причиной которых является человеческий фактор и др.
Промышленная применимость полезной модели подтверждается тем, что в настоящее время существуют десятки тысяч измерителей параметров радиальной, осевой и крутильной вибрации роторов (датчиков вибрации) различных принципов работы и конструктивного исполнения, аналогово-цифровых преобразователей с выводом результатов на персональный компьютер, а взаимное влияние вибрации, в частности, например, амплитудночастотных характеристик вибрации, фиксируют сопоставлением данных, полученных с помощью вышеуказанных датчиков вибрации на персональном компьютере с помощью специально разработанной программы. Никаких дополнительных средств при проверке промышленной применимости данного технического решения не требуется.
Новизна полезной модели заключается в возможности одновременного возбуждения и измерения вибраций различных типов, аналитическом сопоставлении параметров вибрации различных типов существующими средствами и выявлении взаимного влияния вибраций на вибрационную прочность и надежность машины.
Установка позволяет на стадии доводки роторной машины выявить причины возникновения нерасчетных резонансных явлений, возникающих из-за взаимного влияния вибраций различных типов, путем конструкторской доработки предотвратить возникновение резонансных режимов, возможным последствием которых является разрушение машины в целом и, тем самым, повысить вибрационную прочность и надежность работы машины. Эффективность от внедрения полезной модели не поддается численной оценке, так как по сути предотвращает возможность разрушения машины.

Claims (1)

  1. Установка для вибрационных испытаний быстровращающихся роторов, состоящая из станины, электродвигателя, опорных узлов, в которых установлен испытуемый вал с нагрузочным диском радиальной вибрации, датчиков измерения вибрации, аналого-цифрового преобразователя с выводом информации на ЭВМ, отличающаяся тем, что в установку дополнительно введены приводной ротор с диском, в котором выполнены окна, сильфонная муфта, установленная на валу приводного ротора, взаимодействующая с приводным электродвигателем, сопловые аппараты, установленные на статоре приводного ротора и связанные с внешним источником сжатого воздуха, внешний источник сжатого воздуха выполнен с возможностью создания бегущей волны, воздействующей на лопатки нагрузочного диска испытуемого вала через сопловые аппараты и вращающиеся окна приводного ротора, испытуемый вал выполнен с возможностью вращения и нагружения его продольной и крутильной вибрационной нагрузкой, параметры которой определяются углом сдвига окон диска
    Figure 00000003
    где m - число окон в диске; n - порядковый номер окна, а число сопловых аппаратов равно числу окон, скоростью вращения приводного ротора, параметрами струи сжатого воздуха и геометрическими характеристиками лопаток нагрузочного диска испытуемого вала, сигналы от датчиков осевой, крутильной и радиальной вибраций ротора поступают в аналого-цифровой преобразователь, связанный с ЭВМ, с помощью которой анализируют взаимное влияние вибраций различных типов с выводом результатов анализа на печать.
RU2019123915A 2019-07-23 2019-07-23 Установка для вибрационных испытаний быстровращающихся роторов RU2757974C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019123915A RU2757974C2 (ru) 2019-07-23 2019-07-23 Установка для вибрационных испытаний быстровращающихся роторов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019123915A RU2757974C2 (ru) 2019-07-23 2019-07-23 Установка для вибрационных испытаний быстровращающихся роторов

Publications (3)

Publication Number Publication Date
RU2019123915A3 RU2019123915A3 (ru) 2021-01-26
RU2019123915A RU2019123915A (ru) 2021-01-26
RU2757974C2 true RU2757974C2 (ru) 2021-10-25

Family

ID=74212723

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019123915A RU2757974C2 (ru) 2019-07-23 2019-07-23 Установка для вибрационных испытаний быстровращающихся роторов

Country Status (1)

Country Link
RU (1) RU2757974C2 (ru)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU357490A1 (ru) * Стенд для испытаний ротора турбомашины на вибрацию
FR1057182A (fr) * 1951-05-05 1954-03-05 Canadian Patents Dev Appareil pour induire des vibrations contrôlées dans un spécimen
SU408185A1 (ru) * 1971-08-24 1973-12-10 Высокочастотный пневматический возбудитель колебаний деталей
SU988359A1 (ru) * 1981-07-13 1983-01-15 Куйбышевский Ордена Трудового Красного Знамени Авиационный Институт Им.Акад.С.П.Королева Возбудитель колебаний
SU1762145A1 (ru) * 1990-01-02 1992-09-15 Опытное конструкторское бюро "Радуга" Стенд дл испытаний шарикоподшипников
DE4334799A1 (de) * 1993-10-13 1995-04-20 Mtu Muenchen Gmbh Einrichtung zur Prüfung von Laufschaufeln
RU96685U1 (ru) * 2008-07-09 2010-08-10 Леонид Алексеевич Савин Экспериментальная установка "роторно-опорные узлы"
RU2016105740A (ru) * 2016-02-18 2017-08-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный университет путей сообщения" (СамГУПС) Способ вибрационных испытаний быстровращающихся роторов и стенд для его осуществления
RU177846U1 (ru) * 2017-05-03 2018-03-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Экспериментальная установка "мехатронный подшипник качения"

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU357490A1 (ru) * Стенд для испытаний ротора турбомашины на вибрацию
SU335565A1 (ru) * В. П. Иванов, В. А. Письменов , В. С. Таранов Высокочастотный пневматический возбудитель колебаний деталей
FR1057182A (fr) * 1951-05-05 1954-03-05 Canadian Patents Dev Appareil pour induire des vibrations contrôlées dans un spécimen
SU408185A1 (ru) * 1971-08-24 1973-12-10 Высокочастотный пневматический возбудитель колебаний деталей
SU988359A1 (ru) * 1981-07-13 1983-01-15 Куйбышевский Ордена Трудового Красного Знамени Авиационный Институт Им.Акад.С.П.Королева Возбудитель колебаний
SU1762145A1 (ru) * 1990-01-02 1992-09-15 Опытное конструкторское бюро "Радуга" Стенд дл испытаний шарикоподшипников
DE4334799A1 (de) * 1993-10-13 1995-04-20 Mtu Muenchen Gmbh Einrichtung zur Prüfung von Laufschaufeln
RU96685U1 (ru) * 2008-07-09 2010-08-10 Леонид Алексеевич Савин Экспериментальная установка "роторно-опорные узлы"
RU2016105740A (ru) * 2016-02-18 2017-08-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный университет путей сообщения" (СамГУПС) Способ вибрационных испытаний быстровращающихся роторов и стенд для его осуществления
RU177846U1 (ru) * 2017-05-03 2018-03-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени И.С. ТУРГЕНЕВА" (ОГУ им. И.С. Тургенева) Экспериментальная установка "мехатронный подшипник качения"

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
В. А. Антипов Стенд для исследования взаимовлияния вибраций и силовых факторов различного направления на вибрационные характеристики модельных роторов турбомашин //Вестник СамГУПС N 2 (32). 2016. *
Семенов А.Д., Будаговский Д.А. Исследование взаимного влияния поперечных и крутильных колебаний ротора, вращающегося в упругих опорах. - Известия высших учебных заведений. Поволжский регион. Технические науки; Машиностроение и машиноведение. - 2017. - 4 (44). - С. 81 - 93. *

Also Published As

Publication number Publication date
RU2019123915A3 (ru) 2021-01-26
RU2019123915A (ru) 2021-01-26

Similar Documents

Publication Publication Date Title
Reddy et al. Detection and monitoring of coupling misalignment in rotors using torque measurements
CN101639395B (zh) 一种改进的高速主轴全息动平衡方法
CN101487756B (zh) 旋转机械振动分析中的谐分量转速平衡方法
AU622018B2 (en) Shaft crack detection method
JP2824523B2 (ja) 振動部材の疲れ測定方法および装置
US6789422B1 (en) Method and system for balancing a rotating machinery operating at resonance
CN110118632A (zh) 借助位移传感器测量轴弹性转子的不平衡度的方法
CN104101464B (zh) 一种基于旋转坐标系的多轮盘转子动平衡检测方法
RU2757974C2 (ru) Установка для вибрационных испытаний быстровращающихся роторов
Jagadeesha et al. Investigation of Crack Detection Technique in a Rotating Shaft by Using Vibration Measurement
Gubran et al. Comparison between long and short blade vibration using shaft instantaneous angular speed in rotating machine
Braut et al. Rotor-stator partial rub detection based on Teager-Huang transform
Sunar et al. Vibration measurement of rotating blades using a root embedded PZT sensor
Chen et al. Torsional vibration feature extraction method from lateral vibrations based on decomposed forward and backward whirl motions
Braut et al. Light rotor-stator partial rub characterization using instantaneous angular speed measurement
Cory Overview of condition monitoring methods with emphasis on industrial fans
Ab Ghani et al. Detection of Shaft Misalignment Using Machinery Fault Simulator (MFS)
Hassan et al. Diagnosing the Effect of Misalignment on a Rotating System using Simulation and Experimental Study
Bastakoti Analyzing and interpreting condition of the rotating machine system by processing measured vibration parameters
Benti et al. Experimental Investigation on Dynamics of a Flexible Rotor
KR100310905B1 (ko) 현장 불평형 응답 측정에 의한 시스템 동특성 매개 변수를 추출하는 방법
Habetler et al. BEARING FAULT DETECTION IN INDUCTION MOTORS USING VIBRATION ANALYSIS FOR CONDITION MONITORING
Novikov et al. Method for automated diagnostics of the technical condition of a feed crusher
Braut et al. Rotor-stator partial rub diagnosis using Hilbert Huang transform
Szolc et al. Model Based Identification of the Measured Vibration Multi-fault Diagnostic Signals Generated by a Large Rotating Machine

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20210519

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20210722