RU2757404C1 - Кислородно-топливная энергоустановка с газификацией угля - Google Patents

Кислородно-топливная энергоустановка с газификацией угля Download PDF

Info

Publication number
RU2757404C1
RU2757404C1 RU2021114047A RU2021114047A RU2757404C1 RU 2757404 C1 RU2757404 C1 RU 2757404C1 RU 2021114047 A RU2021114047 A RU 2021114047A RU 2021114047 A RU2021114047 A RU 2021114047A RU 2757404 C1 RU2757404 C1 RU 2757404C1
Authority
RU
Russia
Prior art keywords
outlet
inlet
compressor
hot
coolant circuit
Prior art date
Application number
RU2021114047A
Other languages
English (en)
Inventor
Иван Игоревич Комаров
Николай Дмитриевич Рогалев
Владимир Петрович Соколов
Дарья Михайловна Харламова
Денис Борисович Куроптев
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority to RU2021114047A priority Critical patent/RU2757404C1/ru
Application granted granted Critical
Publication of RU2757404C1 publication Critical patent/RU2757404C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/08Semi-closed cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к области электроэнергетики, может быть использовано при разработке электрических станций с нулевыми выбросами вредных веществ в атмосферу и направлено на повышение электрического КПД энергоустановки. Кислородно-топливная энергоустановка с газификацией угля содержит многоступенчатый компрессор (1), насос (2), кислородный компрессор (3), воздухоразделительную установку (4), регенератор (5), содержащий горячие (6), (7) и холодные (8), (9) контуры теплоносителей, камеру сгорания (10), топливный компрессор (11), газовую турбину (12), охладитель-сепаратор (13), многоступенчатый компрессор с промежуточным охлаждением (14), блок газификации угля (15), первый поверхностный теплообменник (16) с горячим (17) и холодным (18) контурами теплоносителя, первые компрессор (19) и турбину (20), второй поверхностный теплообменник (21) с горячим (22) и холодным (23) контурами теплоносителя, вторые компрессор (24) и турбину (25), парогенератор (26) с холодным (27) и горячим (28) контурами теплоносителя, при этом второй выход охладителя-сепаратора (13) соединен с холодным контуром теплоносителя парогенератора (27), соединенным с входом блока газификации угля (15), выход которого соединен с входом горячего контура теплоносителя первого поверхностного теплообменника (17), а его выход соединен с входом горячего контура теплоносителя второго поверхностного теплообменника (22), выход которого соединен с входом топливного компрессора (11), а выход воздухоразделительной установки (4) параллельно соединен с входами первого (19) и второго (24) компрессоров, выход первого компрессора (19) соединен с входом горячего контура теплоносителя парогенератора (28), выход которого соединен с входом холодного контура теплоносителя первого поверхностного теплообменника (18), а его выход соединен с первой турбиной (20), выход второго компрессора (24) соединен с входом холодного контура теплоносителя второго поверхностного теплообменника (23), а его выход соединен со второй турбиной (25). 1 ил.

Description

Изобретение относится к области электроэнергетики и может быть использовано при разработке электрических станций с нулевыми выбросами вредных веществ в атмосферу.
Известна энергоустановка, работающая по полузакрытому циклу с кислородным сжиганием топлива (Weiland N. et al. Performance baseline for direct-fired sCO2 cycles //Fifth International Supercritical CO2 Power Cycles Symposium, held. - 2016. - C. 29-31), содержащая блок газификации угля, многоступенчатый компрессор, насос, кислородный компрессор, воздухоразделительную установку, рекуператор, камеру сгорания, топливный компрессор, газовую турбину, охладитель-сепаратор, многоступенчатый компрессор с промежуточным охлаждением, электрогенератор.
Недостатком данного технического решения являются большие потери тепла, связанные с охлаждением синтез-газа.
Наиболее близкой по технической сущности к предлагаемому изобретению является энергоустановка, работающая по полузакрытому циклу с кислородным сжиганием топлива, раскрытая в патенте US №8596075, МПК F02C 1/00, опубл. 03.12.2013 и содержащая блок газификации угля, многоступенчатый компрессор, насос, кислородный компрессор, воздухоразделительную установку, регенератор, камеру сгорания, топливный компрессор, газовую турбину, охладитель-сепаратор, многоступенчатый компрессор с промежуточным охлаждением, электрогенератор.
Недостатком данного технического решения являются большие потери тепла, связанные с охлаждением синтез-газа.
Техническая задача, решаемая предлагаемым изобретением, заключается в полезной утилизации теплоты синтез-газа на выходе из блока газификации.
Технический результат заключается в повышении электрического КПД энергоустановки.
Это достигается тем, что кислородно-топливная энергоустановка с газификацией угля, содержащая многоступенчатый компрессор, выход которого последовательно соединен с насосом и холодным контуром теплоносителя регенератора, выход которого соединен с первым входом камеры сгорания, выход которой последовательно соединен с газовой турбиной, горячим контуром теплоносителя регенератора, охладителем-сепаратором, первый выход которого параллельно соединен с входом многоступенчатого компрессора с промежуточным охлаждением и с входом многоступенчатого компрессора, топливный компрессор, выход которого соединен со вторым входом камеры сгорания, воздухоразделительную установку, первый выход которой соединен с другим горячим контуром теплоносителя регенератора, соединенным с входом воздухоразделительной установки, второй выход которой параллельно соединен с входом блока газификации угля и с входом кислородного компрессора, который соединен с другим холодным контуром теплоносителя регенератора, соединенным с третьим входом камеры сгорания, электрогенератор, расположенный на одном валу с газовой турбиной, снабжена первой дополнительной азотной газотурбинной установкой, выполненной в виде первого поверхностного теплообменника с горячим и холодным контурами теплоносителя, первого компрессора и первой турбины, второй дополнительной азотной газотурбинной установкой, выполненной в виде второго поверхностного теплообменника с собственными горячим и холодным контурами теплоносителя, второго компрессора и второй турбины, парогенератором с горячим и холодным контуром теплоносителя и дополнительным электрогенератором, при этом второй выход охладителя-сепаратора соединен с холодным контуром теплоносителя парогенератора, выход которого соединен с другим входом блока газификации угля, выход блока газификации угля соединен с входом горячего контура теплоносителя первого поверхностного теплообменника, а его выход соединен с входом горячего контура теплоносителя второго поверхностного теплообменника, выход которого соединен с входом топливного компрессора, третий выход воздухоразделительной установки параллельно соединен с входами первого и второго компрессоров, выход первого компрессора соединен с входом горячего контура теплоносителя парогенератора, выход которого соединен с входом холодного контура теплоносителя первого поверхностного теплообменника, а его выход соединен с первой турбиной, выход второго компрессора соединен с входом холодного контура теплоносителя второго поверхностного теплообменника, а его выход соединен со второй турбиной, первые и вторые компрессоры и турбины расположены на одном валу с дополнительным электрогенератором.
Сущность изобретения поясняется чертежом, на котором представлена принципиальная тепловая схема кислородно-топливной энергоустановки с газификацией угля.
Кислородно-топливная энергоустановка с газификацией угля содержит многоступенчатый компрессор 1, насос 2, кислородный компрессор 3, воздухоразделительную установку 4, регенератор 5, содержащий горячие контуры теплоносителей 6, 7 и холодные контуры теплоносителей 8, 9, камеру сгорания 10, топливный компрессор 11, газовую турбину 12, охладитель-сепаратор 13, многоступенчатый компрессор с промежуточным охлаждением 14, блок газификации угля 15, первый поверхностный теплообменник 16 с горячим контуром теплоносителя 17 и холодным контуром теплоносителя 18, первый компрессор 19, первую турбину 20, второй поверхностный теплообменник 21 с горячим контуром теплоносителя 22 и холодным контуром теплоносителя 23, второй компрессор 24, вторую турбину 25, парогенератор 26 с холодным контуром теплоносителя 27 и горячим контуром теплоносителя 28, электрогенератор 29 при этом первый компрессор 19, первая турбина 20, второй компрессор 24 и вторая турбина 25 расположены на одном валу, который связан механически с дополнительным электрогенератором 30.
Вход многоступенчатого компрессора 1 выполнен с возможностью подачи диоксида углерода, а выход многоступенчатого компрессора 1 соединен с входом насоса 2. Выход насоса 2 соединен с входом холодного контура теплоносителя 8 регенератора 5. Выход холодного контура теплоносителя 8 регенератора 5 соединен с первым входом камеры сгорания 10. Ко второму входу камеры сгорания 10 подключен выход топливного компрессора 11. Первый вход воздухоразделительной установки 4 выполнен с возможностью подачи воздуха, а первый выход воздухоразделительной установки 4 соединен с входом горячего контура теплоносителя 7 регенератора 5. Выход горячего контура теплоносителя 7 соединен со вторым входом воздухоразделительной установки 4. Второй выход воздухоразделительной установки 4 параллельно соединен с входом кислородного компрессора 3 и с первым входом блока газификации угля 15, второй вход которого выполнен с возможностью подачи угля. Выход компрессора 3 соединен с входом холодного контура теплоносителя 9 регенератора 5. Выход холодного контура теплоносителя 9 соединен с третьим входом камеры сгорания 10. Выход камеры сгорания 10 соединен с входом газовой турбины 12, которая механически соединена с электрогенератором 29. Выход газовой турбины 12 соединен с входом горячего контура теплоносителя 6 регенератора 5. Выход горячего контура теплоносителя 6 соединен с входом охладителя-сепаратора 13. Первый выход охладителя-сепаратора 13 параллельно соединен с входом многоступенчатого компрессора 1 и входом многоступенчатого компрессора с промежуточным охлаждением 14. Второй выход охладителя-сепаратора 13 соединен с входом холодного контура теплоносителя 27 парогенератора 26. Выход холодного контура теплоносителя 27 соединен с третьим входом блока газификации 15. Выход блока газификации 15 соединен с входом горячего контура теплоносителя 17 первого поверхностного теплообменника 16. Выход горячего контура теплоносителя 17 первого поверхностного теплообменника 16 соединен с входом горячего контура теплоносителя 22 второго поверхностного 21. Выход горячего контура теплоносителя 22 второго поверхностного теплообменника 21 соединен с входом топливного компрессора 11. Третий выход воздухоразделительной установки 4 параллельно соединен с входом первого компрессора 19 и второго компрессора 24. Выход первого компрессора 19 соединен с входом горячего контура теплоносителя 28 парогенератора 26. Выход горячего контура теплоносителя 28 соединен с входом холодного контура теплоносителя 18 первого поверхностного теплообменника 16. Выход холодного контура теплоносителя 18 первого поверхностного теплообменника 16 соединен с входом первой турбины 20. Выход второго компрессора 24 соединен с входом холодного контура теплоносителя 23 второго поверхностного теплообменника 21. Выход холодного контура теплоносителя 23 второго поверхностного теплообменника 21 соединен с входом второй турбины 25.
Кислородно-топливная энергоустановка с газификацией угля работает следующим образом.
В многоступенчатый компрессор 1 подается диоксид углерода, который после сжатия направляется в насос 2. Далее сжатый поток направляется в холодный контур теплоносителя 8 регенератора 5, где он нагревается потоком выхлопных газов газовой турбины 12, проходящим через горячий контур теплоносителя 6, и потоком воздуха из первого выхода воздухоразделительной установки 4, проходящим через горячий контур теплоносителя 7 регенератора 5. После нагрева поток диоксида углерода направляется в первый вход камеры сгорания 10. Поток кислорода, выходящий из второго выхода воздухоразделительной установки 4, разделяется на две части. Первый поток направляется в кислородный компрессор 3, после которого попадает в холодный контур теплоносителя 9 регенератора 5, где нагревается потоком выхлопных газов газовой турбины 12, проходящим через горячий контур теплоносителя 6, и потоком воздуха из воздухоразделительной установки 4, проходящим через горячий контур теплоносителя 7 регенератора 5. Во второй вход камеры сгорания 10 поступает сжатый топливным компрессором 11 синтез-газ. После нагрева поток кислорода направляется в третий вход камеры сгорания 10. После сгорания горячей смеси в камере сгорания 10 и выработки полезной работы в газовой турбине 12 выхлопные газы поступают в горячий контур теплоносителя 6 регенератора 5. После регенератора 5 выхлопные газы, проходящие через горячий контур теплоносителя 6, направляются в охладитель-сепаратор 13, в котором они охлаждаются и из них удаляются водяные пары. Избыток углекислого газа, образовавшийся в результате сжигания синтез-газа в кислороде удаляется с помощью многоступенчатого компрессора с промежуточным охлаждением 14. Оставшаяся рабочая среда снова направляется на вход многоступенчатого компрессора 1. Вода из охладителя-сепаратора 13 направляется в холодный контур теплоносителя 27 парогенератора 26, в котором происходит ее нагрев сжатым в первом компрессоре 19 азотом, проходящим через горячий контур теплоносителя 28. Далее пар, образовавшийся в результате нагрева воды в парогенераторе 26, направляется в третий вход блока газификации 15. В первый вход блока газификации 15 поступает вторая часть потока кислорода из второго выхода воздухоразделительной установки 4. Во второй вход блока газификации 15 подается уголь. Образовавшийся в результате физико-химических процессов в блоке газификации 15 синтез-газ поступает в горячий контур теплоносителя 17 первого поверхностного теплообменника 16, где отдает свое тепло азоту, проходящему через холодный контур теплоносителя 18 первого поверхностного теплообменника 16. Далее синтез-газ поступает в горячий контур теплоносителя 22 второго поверхностного теплообменника 21, где отдает свое тепло азоту, проходящему через холодный контур теплоносителя 23 второго поверхностного теплообменника 21. После второго поверхностного теплообменника 21 охлажденный синтез-газ поступает на сжатие в топливный компрессор 11. Поток азота из третьего выхода воздухоразделительной установки 4 разделяется на две части. Первый поток азота направляется в первый компрессор 19, в котором происходит его сжатие. После нагретый при сжатии азот поступает в горячий контур теплоносителя 28 парогенератора 26, где отдает свое тепло воде, проходящей через холодный контур теплоносителя 27 парогенератора 26. Далее поток азота направляется в холодный контур теплоносителя 18 первого поверхностного теплообменника 16, где происходит его нагрев синтез-газом после блока газификации 15, проходящим через горячий контур теплоносителя 17 первого поверхностного теплообменника 16. После первого поверхностного теплообменника 16 горячий азот поступает в первую турбину 20, в которой вырабатывает полезную работу, после чего азот выбрасывается в атмосферу. Второй поток азота направляется во второй компрессор 24, в котором происходит его сжатие. Далее поток азота направляется в холодный контур теплоносителя 23 второго поверхностного теплообменника 21, где происходит его нагрев синтез-газом после блока газификации 15, проходящим через горячий контур теплоносителя 22 второго поверхностного теплообменника 21. После второго поверхностного теплообменника 21 горячий поток азота поступает во вторую турбину 25, в которой вырабатывает полезную работу, после чего азот выбрасывается в атмосферу.
Результаты моделирования кислородно-топливной энергоустановки с газификацией угля показали, что электрический КПД нетто вырос на 2,5% по сравнению с прототипом при одинаковых термодинамических параметрах цикла - начальная температура цикла 1083°С, начальное давление 30 МПа, давление на выхлопе газовой турбины 3 МПа.
Использование изобретения позволяет повысить электрический КПД нетто кислородно-топливной энергоустановки с газификацией угля за счет полезной утилизации теплоты синтез-газа после блока газификации в двух дополнительных азотных газотурбинных установках.

Claims (1)

  1. Кислородно-топливная энергоустановка с газификацией угля, содержащая многоступенчатый компрессор, выход которого последовательно соединен с насосом и холодным контуром теплоносителя регенератора, выход которого соединен с первым входом камеры сгорания, выход которой последовательно соединен с газовой турбиной, горячим контуром теплоносителя регенератора, охладителем-сепаратором, первый выход которого параллельно соединен с входом многоступенчатого компрессора с промежуточным охлаждением и с входом многоступенчатого компрессора, топливный компрессор, выход которого соединен со вторым входом камеры сгорания, воздухоразделительную установку, первый выход которой соединен с другим горячим контуром теплоносителя регенератора, соединенным с входом воздухоразделительной установки, второй выход которой параллельно соединен с входом блока газификации угля и с входом кислородного компрессора, который соединен с другим холодным контуром теплоносителя регенератора, соединенным с третьим входом камеры сгорания, электрогенератор, расположенный на одном валу с газовой турбиной, отличающаяся тем, что снабжена первой дополнительной азотной газотурбинной установкой, выполненной в виде первого поверхностного теплообменника с горячим и холодным контурами теплоносителя, первого компрессора и первой турбины, второй дополнительной азотной газотурбинной установкой, выполненной в виде второго поверхностного теплообменника с собственными горячим и холодным контурами теплоносителя, второго компрессора и второй турбины, парогенератором с горячим и холодным контуром теплоносителя и дополнительным электрогенератором, при этом второй выход охладителя-сепаратора соединен с холодным контуром теплоносителя парогенератора, выход которого соединен с другим входом блока газификации угля, выход блока газификации угля соединен с входом горячего контура теплоносителя первого поверхностного теплообменника, а его выход соединен с входом горячего контура теплоносителя второго поверхностного теплообменника, выход которого соединен с входом топливного компрессора, третий выход воздухоразделительной установки параллельно соединен с входами первого и второго компрессоров, выход первого компрессора соединен с входом горячего контура теплоносителя парогенератора, выход которого соединен с входом холодного контура теплоносителя первого поверхностного теплообменника, а его выход соединен с первой турбиной, выход второго компрессора соединен с входом холодного контура теплоносителя второго поверхностного теплообменника, а его выход соединен со второй турбиной, первые и вторые компрессоры и турбины расположены на одном валу с дополнительным электрогенератором.
RU2021114047A 2021-05-18 2021-05-18 Кислородно-топливная энергоустановка с газификацией угля RU2757404C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021114047A RU2757404C1 (ru) 2021-05-18 2021-05-18 Кислородно-топливная энергоустановка с газификацией угля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021114047A RU2757404C1 (ru) 2021-05-18 2021-05-18 Кислородно-топливная энергоустановка с газификацией угля

Publications (1)

Publication Number Publication Date
RU2757404C1 true RU2757404C1 (ru) 2021-10-15

Family

ID=78286590

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021114047A RU2757404C1 (ru) 2021-05-18 2021-05-18 Кислородно-топливная энергоустановка с газификацией угля

Country Status (1)

Country Link
RU (1) RU2757404C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775732C1 (ru) * 2021-11-22 2022-07-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Кислородно-топливная энергоустановка

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1571281A1 (ru) * 1987-09-01 1990-06-15 Всесоюзный государственный научно-исследовательский и проектно-конструкторский институт "Внипиэнергопром" Замкнута система дальнего теплоснабжени
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
RU2747704C1 (ru) * 2020-10-02 2021-05-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Когенерационная газотурбинная энергетическая установка

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1571281A1 (ru) * 1987-09-01 1990-06-15 Всесоюзный государственный научно-исследовательский и проектно-конструкторский институт "Внипиэнергопром" Замкнута система дальнего теплоснабжени
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
RU2747704C1 (ru) * 2020-10-02 2021-05-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Когенерационная газотурбинная энергетическая установка

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2775732C1 (ru) * 2021-11-22 2022-07-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Кислородно-топливная энергоустановка
RU2811228C1 (ru) * 2023-10-13 2024-01-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Кислородно-топливная энергоустановка для совместного производства аммиака и электроэнергии

Similar Documents

Publication Publication Date Title
US20090193809A1 (en) Method and system to facilitate combined cycle working fluid modification and combustion thereof
US20110016870A1 (en) Method and apparatus for improved gas turbine efficiency and augmented power output
RU2757404C1 (ru) Кислородно-топливная энергоустановка с газификацией угля
JP2015536396A (ja) 熱機関
RU2749081C1 (ru) Кислородно-топливная энергоустановка
RU2409746C2 (ru) Парогазовая установка с паротурбинным приводом компрессора и регенеративной газовой турбиной
RU2369808C2 (ru) Тригенерационная газотурбинная установка
RU2747704C1 (ru) Когенерационная газотурбинная энергетическая установка
RU2611138C1 (ru) Способ работы парогазовой установки электростанции
RU2743480C1 (ru) Кислородно-топливная энергоустановка
RU2599082C1 (ru) Газотурбодетандерная энергетическая установка компрессорной станции магистрального газопровода
RU2727274C1 (ru) Когенерационная газотурбинная энергетическая установка
RU2751420C1 (ru) Кислородно-топливная энергоустановка
RU2671264C1 (ru) Стехиометрическая парогазотурбинная установка
RU2791638C1 (ru) Газопаровая энергетическая установка
RU2775732C1 (ru) Кислородно-топливная энергоустановка
US8347634B1 (en) Combined cycle power plant
RU2811729C2 (ru) Парогазовая энергетическая установка
RU2712339C1 (ru) Комбинированная энергетическая газотурбодетандерная установка компрессорной станции магистрального газопровода
RU2740670C1 (ru) Способ работы парогазовой установки электростанции
RU2795803C1 (ru) Компрессорная станция магистрального газопровода с газотурбодетандерной установкой
RU2576556C2 (ru) Компрессорная станция магистрального газопровода с газотурбодетандерной энергетической установкой
RU2814174C1 (ru) Кислородно-топливная энергоустановка для совместного производства электроэнергии и водорода
RU2795147C1 (ru) Парогазовая установка с полузамкнутой газотурбинной установкой
RU2811448C2 (ru) Газопаровая энергетическая установка