RU2754202C1 - Многоканальный узел отбора излучения - Google Patents

Многоканальный узел отбора излучения Download PDF

Info

Publication number
RU2754202C1
RU2754202C1 RU2020141876A RU2020141876A RU2754202C1 RU 2754202 C1 RU2754202 C1 RU 2754202C1 RU 2020141876 A RU2020141876 A RU 2020141876A RU 2020141876 A RU2020141876 A RU 2020141876A RU 2754202 C1 RU2754202 C1 RU 2754202C1
Authority
RU
Russia
Prior art keywords
optical elements
optical
optomechanical
radiation
elements
Prior art date
Application number
RU2020141876A
Other languages
English (en)
Inventor
Олег Ярославович Лисовский
Михаил Юрьевич Стрельцов
Александр Николаевич Ильченко
Дмитрий Николаевич Иошкин
Дмитрий Сергеевич Седов
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом")
Priority to RU2020141876A priority Critical patent/RU2754202C1/ru
Application granted granted Critical
Publication of RU2754202C1 publication Critical patent/RU2754202C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light

Abstract

Изобретение относится к области оптического приборостроения и может быть использовано для создания оптомеханических приборов, предназначенных для отведения части излучения от направления распространения основного потока с управлением параметрами отводимого излучения. Многоканальный узел отбора излучения содержит делительные оптические элементы, размещенные под углом к оптической оси основного излучения на опорно-поворотном устройстве с возможностью изменения угла падения и отражающие оптические элементы с угловыми регулировками, размещенные под углом к оптической оси отраженного от делительных оптических элементов излучения. Оснащен юстировочной платформой, на которой размещены опорно-поворотное устройство с делительными оптическими элементами, отражающие оптические элементы и дополнительно поглощающие оптические элементы, установленные с возможностью поглощения бликов от граней делительных и отражающих элементов, оптические элементы сгруппированы по функционалу в оптомеханические сборки, с элементами угловой и линейной регулировок как оптомеханической сборки в целом, так и каждого оптического элемента по отдельности, причем каждый оптический элемент установлен в оправу-контейнер, для монтажа/демонтажа которого в оптомеханическую сборку предусмотрено грузоподъемное устройство, а опорно-поворотное устройство выполнено с возможностью неограниченного поворота вокруг оси и оснащено датчиком положения, при этом оптомеханические сборки с оптическими элементами, опорно-поворотное устройство, грузоподъемное устройство, котировочная платформа размещены в герметичном корпусе с узлами ввода/вывода лазерного излучения, ввода кабелей, трубопроводов и возможностью доступа персонала во внутренний объем. Технический результат - расширение эксплуатационных возможностей за счет расширения возможностей по юстировке как групп оптических элементов, так и каждого оптического элемента по отдельности, расширения возможностей по обслуживанию, диагностике состояния, замене оптических элементов, повышения защищенности оптических элементов и оптомеханичееких сборок от окружающей среды, а также повышения бликозащищенности. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области оптического приборостроения и может быть использовано для создания оптомеханических приборов, предназначенных для отведения части излучения от направления распространения основного потока с управлением параметрами отводимого излучения.
Из уровня техники известен многоканальный узел отбора излучения американской установки NIF [Fusion science and technology. Vol 69, january/february 2016, Spaeth et al. NIF Laser description, p. 34-38], который представляет собой «крупную оптомеханическую сборочную единицу» устанавливаемую в герметичный корпус с использованием специального подъемника-манипулятора. Управление параметрами оптического излучения осуществляется путем его направления на оптические делительные элементы с покрытиями [D.H. Kalantar et. al., An overview of target and diagnostic alignment at the National Ignition Facility. Proc. of SPIE, v. 8505, 850509, 2012 г.]. Оптические элементы выполнены в виде клиньев с диэлектрическим покрытием [E.S. Bliss, A.A. Grey, R.D. Kyker and others. Beam control and laser diagnostic systems. ICE Quarterly Report Livermore National Laboratory UCRL-LR-105821-95-1].
Представленный многоканальный узел отбора имеет следующие недостатки:
- не обеспечен доступ к оптическим элементам на месте эксплуатации для диагностики, обслуживания и замены без демонтажа всей сборки;
- для демонтажа всей сборки необходимо использование спецоборудования;
- относительно низкие возможности по настройке каждого оптического элемента по отдельности;
- отсутствует возможность регулирования коэффициента отражения;
- неравномерность коэффициента отражения по площади оптического элемента и во времени,
- низкая, в сравнении с материалом подложки, лучевая прочность диэлектрического покрытия.
Известен способ отведения части монохроматического линейно-поляризованного лазерного излучения от направления распространения основного потока [патент RU 2707245, публик. 25.11.2019, МПК: G02B 26/02, G02F 1/01, ГК «Росатом», ФГУП «РФЯЦ-ВНИИЭФ», Седов Д.С., Санкин Е.В. и др.], который заключается в отражении части излучения основного потока от наклонной поверхности делительного оптического элемента, установленного в ход основного потока под углом и дальнейшем направлении отраженной части потока дополнительным оптическим элементом назад на свето делительный оптический элемент для повторного отражения. Делительный оптический элемент установлен на опорно-поворотном устройстве с возможностью вращения вокруг оси, ортогональной направлению распространения основного потока излучения с целью изменения угла падения, а соответственно коэффициента отражения. Дополнительный отражающий элемент оснащен угловыми регулировками для изменения направления распространения отраженного излучения. Данный способ к заявляемому изобретению является наиболее близким по технической сущности и выбран в качестве наиболее ближайшего аналога.
Описанное изобретение имеет следующие недостатки:
- отсутствие элементов, позволяющих поглотить блики от передних и задних граней делительных и отражающих оптических элементов, которые прошли через делительные элементы на проход, что может негативно повлиять на работу оптической системы в целом, в том числе привести к повреждению оптических элементов системы.
- относительно низкие возможности по настройке, как групп оптических элементов, так и каждого оптического элемента по отдельности.
- невозможность неограниченного поворота опорно-поворотного устройства, что при плотной компоновке затрудняет доступ к оптическим элементам для диагностики их состояния, обслуживания и замены или приводит к увеличению габаритов узла или дополнительному конструктиву, а кроме того, может затруднить настройку оптических элементов.
- отсутствие датчика положения в составе опорно-поворотного устройства для осуществления дистанционного контроля угла поворота.
- отсутствие грузоподъемного устройства в составе изделия, что приводит к необходимости использования дополнительного оборудования или делает затруднительным монтаж/демонтаж крупногабаритных оптических элементов.
- низкая защищенность оптических элементов и оптомеханических сборок от окружающей среды, обусловленная отсутствием защитных корпусов, кожухов и т.п.
Технический результат изобретения заключается в расширении эксплуатационных возможностей за счет расширения возможностей по юстировке как групп оптических элементов, так и каждого оптического элемента по отдельности, расширения возможностей по обслуживанию, диагностике состояния, замене оптических элементов, повышения защищенности оптических элементов и оптомеханических сборок от окружающей среды, а также повышения бликозащищенности.
Указанный технический результат достигается за счет того, что в многоканальном узле отбора излучения, содержащем делительные оптические элементы, размещенные под углом к оптической оси основного излучения на опорно-поворотном устройстве с возможностью изменения угла падения и отражающие оптические элементы с угловыми регулировками, размещенные под углом к оптической оси отраженного от делительных оптических элементов излучения, новым является то, что оснащен юстировочной платформой, на которой размещены опорно-поворотное устройство с делительными оптическими элементами, отражающие оптические элементы и дополнительно поглощающие оптические элементы, установленные с возможностью поглощения бликов от граней делительных и отражающих элементов, оптические элементы сгруппированы по функционалу в оптомеханические сборки, с элементами угловой и линейной регулировок как олтомеханической сборки в целом, так и каждого оптического элемента по отдельности, причем каждый оптический элемент установлен в оправу-контейнер, для монтажа/демонтажа которого в оптомеханическую сборку предусмотрено грузоподъемное устройство, а опорно-новоротное устройство выполнено с возможностью неограниченного поворота вокруг оси и оснащено датчиком положения, при этом оптомеханические сборки с оптическими элементами, опорно-поворотное устройство, грузоподъемное устройство, юстировочная платформа размещены в герметичном корпусе с узлами ввода/вывода лазерного излучения, ввода кабелей, трубопроводов и возможностью доступа персонала во внутренний объем.
Кроме этого, грузоподъемное устройство в многоканальном узле отбора излучения может быть выполнено в виде подвесного подъемника, установленного стационарно на оптомеханические сборки.
Влияние отличительных признаков патентной формулы многоканального узла отбора излучения на технический результат.
Оснащение юстировочной платформой, на которой размещены опорно-поворотное устройство с делительными оптическими элементами, отражающие оптические элементы, позволяет проводить угловую, линейную юстировку и перемещение изделия в собранном виде (без герметичного корпуса) по горизонтальной поверхности без использования дополнительного оборудования, тем самым расширяя эксплуатационные возможности.
Установка дополнительно поглощающих оптических элементов с возможностью поглощения бликов от граней делительных и отражающих элементов, позволяет увеличить бликозащищенность оптической системы в целом, что положительно влияет на технический результат.
Группировка оптических элементов по функционалу в оптомеханические сборки, с элементами угловой и линейной регулировок как оптомеханической сборки в целом, так и каждого оптического элемента по отдельности, позволяет использовать оптомеханические сборки как самостоятельные изделия, значительно расширяет возможности по настройке оптических элементов, в том числе индивидуальной настройке каждого канала.
Установка каждого оптического элемента в оправу-контейнер, позволяет минимизировать вероятность их повреждения и загрязнения при хранении, перемещении, монтаже, а также позволяет обеспечить удобство и высокую скорость монтажа, замены элементов без использования дополнительного оборудования.
Наличие грузоподъемного устройства для монтажа/демонтажа оправ-контейнеров в/из оптомеханическую сборку/оптомеханической сборки, позволяет увеличить скорость и безопасность, уменьшить трудозатраты при монтаже/демонтаже оправ-контейнеров.
Выполнение опорно-поворотного устройства с возможностью неограниченного поворота вокруг оси, позволяет кроме поворота делительных оптических элементов с целью изменения величины отбираемой энергии, решать ряд технологических задач, возникающих при монтаже, юстировке, диагностике состояния, обслуживании и замене оптических элементов при относительно небольших габаритах изделия в целом.
Оснащение опорно-поворотного устройства датчиком положения, позволяет осуществлять дистанционный контроль угла поворота, что также влияет на технический результат.
Размещение оптомеханических сборок с оптическими элементами, опорно-поворотного устройства, грузоподъемного устройства, юстировочной платформы в герметичном корпусе с узлами ввода/вывода лазерного излучения, ввода кабелей, трубопроводов и возможностью доступа персонала во внутренний объем, позволяет изолировать изделие от основного помещения установки в локальном герметичном объеме, в том числе заполняемом специальным газом, с целью, например, уменьшения рассеивания лазерного излучения, защищенности от взвешенных частиц, термостабилизации и т.п. При этом остается возможность монтажа, юстировки, диагностики состояния, обслуживания и замены оптических элементов без демонтажа крупной оптомеханической сборки и применения дополнительного оборудования.
Выполнение грузоподъемного устройства в виде подвесного подъемника, установленного стационарно на оптомеханические сборки позволяет минимизировать его размеры, а соответственно и размеры изделия в целом, что также положительно влияет на технический результат.
Рассмотрим реализацию предлагаемого изобретения, представленного на фигуре, на котором изображена функциональная оптическая схема, где позициями изображены:
1 - делительный оптический элемент;
2 - отражающий оптический элемент;
3 - поглощающий оптический элемент;
4 - оправа-контейнер;
5 - оптомеханическая сборка;
6 - опорный блок оптомеханической сборки;
7 - механизм индивидуальной угловой и линейной регулировки;
8 - опорно-поворотное устройство;
9 - котировочная платформа;
10 - опорный блок юстировочной платформы;
11 -штанга для крепления грузоподъемного устройства;
12 - герметичный корпус.
Многоканальный узел отбора излучения содержит делительные оптические элементы 1, отражающие оптические элементы 2 и поглощающие оптические элементы 3. В качестве делительных используются кварцевые клинья без покрытия, отражающих - зеркала с диэлектрическим покрытием передней грани, поглощающих - матрицы светофильтров.
Оптические элементы установлены в оправы-контейнеры 4 и сгруппированы по типу в оптомеханические сборки 5. Оправа-контейнер 4 включает в себя быстросъемные защитные экраны, ручки, грузоподъемные элементы, а также элементы, обеспечивающие удобство и однозначность установки в оптомеханическую сборку 5 (направляющие, штифты). Опорные блоки оптомеханических сборок 6 выполнены с элементами угловой и линейной регулировки. Кроме того, оптомеханические сборки 5 оснащены механизмами индивидуальной угловой и линейной регулировки 7 для каждого оптического элемента, в том числе дистанционной.
Оптомеханическая сборка 5, содержащая делительные оптические элементы 1 установлена на опорно-поворотном устройстве 8 с возможностью неограниченного поворота вокруг оси, снабженного приводом и датчиком положения для осуществления дистанционной работы. Оптомеханические сборки 5 с отражающими оптическими элементами 2, поглощающими оптические элементы 3 и оптомеханическая сборка 5 с делительными оптическими элементами 1 на опорно-поворотном устройстве 8 установлены на юстировочную платформу 9. При этом оптомеханическая сборка 5 с делительными оптическими элементами 1 установлена под углом, близким к углу Брюстера, к оптической оси основного излучения. Платформа котировочная 9 снабжена механизмом линейных перемещений в горизонтальной Плоскости (на фиг. не показан), транспортировочными колесами, опорными блоками юстировочной платформы 10 с элементами угловой и линейной регулировки.
На верхнюю часть оптомеханических сборок 5 крепятся штанги для крепления грузоподъемного устройства 11, предназначенного для монтажа/демонтажа оправ-контейнеров 4. Кроме того, штанги для крепления грузоподъемного устройства 11 являются дополнительными элементами жесткости.
Юстировочная платформа 9, опорно-поворотное устройство 8, оптомеханические сборки 5, штанги для крепления грузоподъемного устройства 11, грузоподъемное устройство устанавливаются в герметичный корпус 12. Герметичный корпус 12 включает в себя окна для ввода/вывода лазерного излучения, герметичные панели с электрическими и оптическими разъемами, узлы ввода газов, а также быстро открываемый/закрываемый люк, обеспечивающий доступ персонала во внутренний объем для монтажа, настройки, диагностики состояния оптических элементов, их обслуживания и замены.
Рассмотрим работу многоканального узла отбора излучения. После установки на месте эксплуатации составных частей устройства производится его монтажная настройка с использованием опорных блоков юстировочной платформы 10 и механизма линейных перемещений юстировочной платформы 9, а также опорных блоков оптомеханических сборок 6, ориентируясь при этом на положение оптомеханических сборок 5. Монтажная настройка может осуществляться как с установленными оптическими элементами 1,2, 3, так и без них. При этом оптические элементы 1, 2, 3 заранее устанавливаются в оправы-контейнеры 4 в специализированном чистом помещении и закрываются защитными экранами.
Далее по котировочному лучу с использованием механизмов индивидуальной угловой и линейной регулировки 7 и опорно-поворотного устройства 8 производится точная настройка каждого оптического элемента 1, 2, 3.
Для обеспечения доступа персонала к оптическим элементам 1 2, 3 с целью диагностики их состояния, обслуживания или замены производится поворот оптомеханической сборки 5 с делительными оптическими элементами 1 на опорно-поворотном устройстве 8 в соответствующие положения в зависимости от манипуляций с конкретным оптическим элементом. Замена оправ-контейнеров 4 с оптическими элементами производится при помощи установленного на штанги 11 грузоподъемного устройства.
Основное излучение проходит через делительный оптический элемент 1, отраженный от его передней грани сигнал поступает на отражающий оптический элемент 2 и направляется повторно на делительный оптический элемент 1. Далее прошедшая через него часть этого сигнала падает на поглощающий оптический элемент 3, а часть, повторно отражается от его передней грани, выводится из потока основного излучения и используется в качестве отобранной.
На предприятии была проведена конструкторская разработка и изготовлен опытный образец многоканального узел отбора излучения, проведены испытания его механизмов и систем. По результатам испытаний многоканальный узел отбора излучения подтвердил заявленные технические характеристики и был принят в эксплуатацию. Таким образом, предлагаемое изобретение позволило расширить эксплуатационных возможности за счет расширения возможностей по юстировке как групп оптических элементов, так и каждого оптического элемента по отдельности, расширения возможностей по обслуживанию, диагностике состояния, замене оптических элементов, повышения защищенности оптических элементов и оптомеханических сборок от окружающей среды, а также повышения бликозащищенности.

Claims (2)

1. Многоканальный узел отбора излучения, содержащий делительные оптические элементы, размещенные под углом к оптической оси основного излучения на опорно-поворотном устройстве с возможностью изменения угла падения и отражающие оптические элементы с угловыми регулировками, размещенные под углом к оптической оси отраженного от делительных оптических элементов излучения, отличающийся тем, что оснащен юстировочной платформой, на которой размещены опорно-поворотное устройство с делительными оптическими элементами, отражающие оптические элементы и дополнительно поглощающие оптические элементы, установленные с возможностью поглощения бликов от граней делительных и отражающих элементов, оптические элементы сгруппированы по функционалу в оптомеханические сборки, с элементами угловой и линейной регулировок как оптомеханической сборки в целом, так и каждого оптического элемента по отдельности, причем каждый оптический элемент установлен в оправу-контейнер, для монтажа/демонтажа которого в оптомеханическую сборку предусмотрено грузоподъемное устройство, а опорно-поворотное устройство выполнено с возможностью неограниченного поворота вокруг оси и оснащено датчиком положения, при этом оптомеханические сборки с оптическими элементами, опорно-поворотное устройство, грузоподъемное устройство, юстировочная платформа размещены в герметичном корпусе с узлами ввода/вывода лазерного излучения, ввода кабелей, трубопроводов и возможностью доступа персонала во внутренний объем.
2. Многоканальный узел отбора излучения по п. 1, отличающийся тем, что грузоподъемное устройство выполнено в виде подвесного подъемника, установленного стационарно на оптомеханические сборки.
RU2020141876A 2020-12-17 2020-12-17 Многоканальный узел отбора излучения RU2754202C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020141876A RU2754202C1 (ru) 2020-12-17 2020-12-17 Многоканальный узел отбора излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020141876A RU2754202C1 (ru) 2020-12-17 2020-12-17 Многоканальный узел отбора излучения

Publications (1)

Publication Number Publication Date
RU2754202C1 true RU2754202C1 (ru) 2021-08-30

Family

ID=77669896

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020141876A RU2754202C1 (ru) 2020-12-17 2020-12-17 Многоканальный узел отбора излучения

Country Status (1)

Country Link
RU (1) RU2754202C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2187137C2 (ru) * 2000-08-09 2002-08-10 Федеральное государственное унитарное предприятие "Конструкторское бюро специального машиностроения" Оптическое устройство
CN1641414A (zh) * 2003-12-31 2005-07-20 Asml荷兰有限公司 光学衰减器器件、辐射系统和具有它们的光刻装置以及器件制造方法
US20190310463A1 (en) * 2016-10-27 2019-10-10 Raylase Gmbh Deflector
RU2707245C1 (ru) * 2019-03-11 2019-11-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ отведения части монохроматического линейно-поляризованного лазерного излучения от направления распространения основного потока

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2187137C2 (ru) * 2000-08-09 2002-08-10 Федеральное государственное унитарное предприятие "Конструкторское бюро специального машиностроения" Оптическое устройство
CN1641414A (zh) * 2003-12-31 2005-07-20 Asml荷兰有限公司 光学衰减器器件、辐射系统和具有它们的光刻装置以及器件制造方法
US20190310463A1 (en) * 2016-10-27 2019-10-10 Raylase Gmbh Deflector
RU2707245C1 (ru) * 2019-03-11 2019-11-25 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ отведения части монохроматического линейно-поляризованного лазерного излучения от направления распространения основного потока

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fusion science and technology. Vol 69, january/february 2016, Spaeth et al. NIF Laser description, p. 34-38. *

Similar Documents

Publication Publication Date Title
Ursby et al. BioMAX–the first macromolecular crystallography beamline at MAX IV Laboratory
Adam et al. The DIRC particle identification system for the BaBar experiment
Fabricant et al. Hectospec, the MMT’s 300 Optical Fiber‐Fed Spectrograph
CN101256160A (zh) 用于x射线散射的x射线衍射装置
RU2754202C1 (ru) Многоканальный узел отбора излучения
Weisskopf et al. Calibration of the AXAF observatory: overview
Nicolaizeau et al. LMJ status: fifth bundle commissioning and PW class laser coupling
WO2021224380A1 (en) Laser processing head and laser processing system including the same
Cernaianu et al. Monitoring and control systems for experiments at ELI-NP
de Chambure et al. Status of the X-ray mirror production for the ESA XMM spacecraft
Susini et al. Adaptive x‐ray mirror prototype: First results
Sharples et al. Recent Progress on the KMOS Multi-object Integral Field Spectrometer
Nijenhuis et al. Development of a laser projection system for the ELT
RU2707245C1 (ru) Способ отведения части монохроматического линейно-поляризованного лазерного излучения от направления распространения основного потока
Andrew et al. Contamination, debris, and shrapnel generation arising from large area laser target interactions
Seifert et al. 4MOST: status of the high resolution spectrograph
Lowry III et al. Cryogenic optical system development for AEDC's 10V chamber
Carrasco et al. Tests on the prototype of the Optical Hinge for the Wide Angle Viewing System to ITER gamma radiation conditions
Sharples et al. Recent progress on the KMOS multi-object integral-field spectrograph for ESO VLT
Pohl et al. Development of a beam conditioning and diagnostics system for the Laser Guide Star Facility of the ELT
Fabricant et al. Binospec
Walker et al. Nuclear aspects of diagnostics in RTO/RC ITER
Dudek et al. Mechanical design of the TFTR poloidal rotation diagnostic
Kaiser A LASER BEAM TRANSPORT SYSTEM FOR THE HERA POLARIMETER
Hahn Photoheliograph thermal vacuum optical test chamber, November 1967-June 1968