RU2751941C1 - Композиционный материал на основе вторичного полиэтилентерефталата - Google Patents

Композиционный материал на основе вторичного полиэтилентерефталата Download PDF

Info

Publication number
RU2751941C1
RU2751941C1 RU2020124845A RU2020124845A RU2751941C1 RU 2751941 C1 RU2751941 C1 RU 2751941C1 RU 2020124845 A RU2020124845 A RU 2020124845A RU 2020124845 A RU2020124845 A RU 2020124845A RU 2751941 C1 RU2751941 C1 RU 2751941C1
Authority
RU
Russia
Prior art keywords
polyethylene terephthalate
composite material
material based
molecular weight
molybdenum disulfide
Prior art date
Application number
RU2020124845A
Other languages
English (en)
Inventor
Виктор Владимирович Стрельников
Галина Алексеевна Данюшина
Михаил Семенович Липкин
Василий Григорьевич Шишка
Светлана Александровна Пожидаева
Original Assignee
Виктор Владимирович Стрельников
Галина Алексеевна Данюшина
Михаил Семенович Липкин
Василий Григорьевич Шишка
Светлана Александровна Пожидаева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Владимирович Стрельников, Галина Алексеевна Данюшина, Михаил Семенович Липкин, Василий Григорьевич Шишка, Светлана Александровна Пожидаева filed Critical Виктор Владимирович Стрельников
Priority to RU2020124845A priority Critical patent/RU2751941C1/ru
Application granted granted Critical
Publication of RU2751941C1 publication Critical patent/RU2751941C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к области переработки отходов полимеров, в частности при получении композиционных материалов с применением вторичного сырья - полиэтилентерефталата, и может быть использовано в различных отраслях промышленности. Описан композиционный материал на основе вторичного полиэтилентерефталата, в качестве функциональных добавок использованы низкомолекулярный полиизобутилен и базальтовая мука, дисульфид молибдена при следующем соотношении компонентов, мас.%: 70 вторичный полиэтилентерефталат, 15 низкомолекулярный полиизобутилен, 10 базальтовая мука, 5 дисульфид молибдена. Технический результат - разработка состава композиционного материала на основе вторичного полиэтилентерефталата для получения материала с улучшенными физико-механическими свойствами, такими как коэффициент трения, износостойкость, твердость, за счет введения модифицирующих функциональных добавок. 1 табл., 7 пр.

Description

Изобретение относится к области переработки отходов полимеров, в частности, получению композиционных материалов с применением вторичного сырья - полиэтилентерефталата, и может быть использовано в различных отраслях промышленности (строительстве, машиностроении и др.).
Мировое производство полимерных материалов и их использование в качестве тары и упаковки ежегодно возрастает. Все это сопряжено с накоплением отходов, в которых значительную долю занимает использованная тара из полиэтилентерефталата (ПЭТФ). В последнее время появилось много предложений по разработке технологий рециклинга отходов ПЭТФ, которые подразделяют на три основных направления, получивших наиболее широкое промышленное применение: механический, химический, термический.
В основном в России ПЭТФ перерабатывается по технологии механического рециклинга, т.к. этот способ переработки не требует дорогостоящего специального оборудования и может быть реализован на любом месте накопления отходов. Химический рециклинг является перспективным и относится к более наукоемким производствам и позволяет получать продукты высокого качества. С помощью химической деструкции можно получать исходное сырье, используемое в качестве добавок для композиционных материалов.
Известен способ рециклинга (патент US №5503790) при производстве изделий из ПЭТФ с использованием вторичного сырья в котором предлагается в массу формуемого материала вводить 40÷90% отходов. Эта технология предусматривает получение изделий из смеси исходного ПЭТФ и вторичного сырья. Переработку такой массы осуществляют при 290-340°С под вакуумом с целью удаления паров из формуемой массы. Полученные по предлагаемой технологии листы используются для изготовления различной тары для технических целей.
Рассматриваемый способ отличается сложностью технологического процесса и требует введения дополнительной операции вакуумирования массы, а соответственно и дополнительного оборудования. Материалы, полученные данным способом, отличаются повышенной хрупкостью, низкой прочностью на изгиб, повышенным коэффициентом трения и износом. Все эти недостатки связаны с повышенным содержанием влаги и частичной деструкцией, окислением материала при термическом воздействии в процессе переработки.
Получить качественные изделия из вторичного сырья без дополнительной модификации поверхности ПЭТФ не удается. Поэтому для повышения пластичности материала проводится модификация отходов, вводятся функциональные добавки во вторичное сырье ПЭТФ, что способствует улучшению свойств получаемого композиционного материала. Модификация поверхности отходов путем обработки различными реагентами значительно расширяет возможности их использования за счет придания совершенно новых свойств.
Наиболее близким по технической сущности и достигаемому результату является состав (патент RU №2623754), в котором предлагается смесь для получения композиции. Смесь включает измельченные предварительно термомеханически обработанный вторичный полиэтилентерефталат (ВПЭТФ) и вторичный полипропилен (ВПП), сополимер этилена и винил-ацетата, тонкодисперсный наполнитель, модифицированный сополимер Этатилен EVA-g-GMA, тонкодисперсный наполнитель с содержанием карбонатов кальция и магния не менее 80% и дополнительно - коротковолокнистый хризотил с характеристическим отношением длины к диаметру 300÷400. Смесь получена термомеханической обработкой ВПЭТФ плавлением при 280°С с последующим охлаждением расплава в воде, сушкой при 80°С и измельчением, с последующим плавлением при 210÷240°С, введением в расплав измельченного ВПП в соотношении, мас. %: ВПЭТФ 73,7 и ВПП 26,3, а затем указанных сополимера, наполнителя и хризотила при следующем соотношении компонентов, мас. %:
ВПЭТФ и ВПП 19÷38
наполнитель 60÷80
сополимер 1÷2
хризотил 0÷3,5.
Изделия из предлагаемого материала обладают повышенной твердостью, а истираемость составляет 0,09÷0,04 г/см2. Однако к недостаткам данного состава следует отнести высокое содержание в наполнителе вторичного сырья (60÷80%), что приводит к снижению механической прочности (растрескиванию, охрупчиванию) изделий, и снижению пластичности, вызывающей сложности при экструзии. Также наличие большого количества компонентов наполнителя, требующего предварительной подготовки, усложняет технологический процесс. Кроме того, применяемый хризотил -гидросиликат магния (асбест) относится к канцерогенным материалам, запрещенным к применению в большинстве стран.
Технической задачей, на решение которой направлено данное изобретение, является разработка состава композиционного материала на основе вторичного ПЭТФ для получения материала с улучшенными физико-механическими свойствами (коэффициент трения, износостойкость, твердость) за счет введения модифицирующих функциональных добавок.
Указанный технический результат в предложенном композиционном материале на основе вторичного полиэтилентерефталата достигается введением в качестве функциональных добавок низкомолекулярного полиизобутилена, базальтовой муки и дисульфида молибдена, при следующем соотношении компонентов, взятых, масс %:
ВПТФ - 65÷75;
низкомолекулярный полиизобутилен - 10÷15;
базальтовая мука - 10÷15;
дисульфид молибдена - 8÷10.
Использование в качестве добавки дисульфида молибдена способствует значительному улучшению антифрикционных характеристик за счет его смазывающего действия. Низкомолекулярный полиизобутилен при переработке методом экструзии не образует с ПЭТФ химическую связь, но значительно повышает пластичность разработанного композиционного материала и упрощает его переработку. Полученные волокна из таких композиций имеют высокую пластичность и не ломаются, в то время как из композиций, не содержащих полиизобутилен, волокна получаются хрупкими.
Существенным и новым является то, что в предложенном композиционном материале на основе вторичного полиэтилентерефталата используют в качестве функциональных добавок низкомолекулярный полиизобутилен, базальтовую муку и дисульфид молибдена в определенном соотношении компонентов, взятых, масс %: ВПТФ - 65÷75; низкомолекулярный полиизобутилен - 10÷15; базальтовая мука - 10÷15; дисульфид молибдена - 8÷10.
Технический результат предлагаемого изобретения заключается в получении материала с улучшенными физико-механическими свойствами, а именно: снижается коэффициент трения; повышаются износостойкость и твердость, позволяющие улучшить прочностные и эксплуатационные характеристики.
Сущность изобретения поясняется примерами, сведенными в Таблицу.
Процесс получения композиционного материала на основе вторичного полиэтилентерефталата состоит из следующих стадий: дробление, очистка, смешение, экструзия, формование. В качестве вторичного сырья использовалась пластиковая тара - бутылки из-под различных напитков. Вторичное сырье ПЭТФ измельчали на флексы (10÷5 мм) с помощью дробилки с ножами типа «ласточкин хвост». Полученные флексы очищали от грязи, клея и этикеток. Очистку проводили при температуре 18÷25°С с использованием щелочных растворов при постоянном перемешивании, а затем промывали проточной водой. Для удаления влаги очищенные флексы сушили в сушильном шкафу при температуре 70÷80°С в течение 4÷5 часов.
Из подготовленных таким образом флексов и функциональных добавок составляли композиции, основные составы которых представлены в Табл., и смешивали с выбранными добавками в специальном смесителе в течение 30÷40 минут. Переработку предлагаемых композиций осуществляли методом экструзии, при этом температура не превышала 210÷220°С.
Испытания были проведены для композиций, содержащих вторичный полиэтилентерефталат (ВПТФ), низкомолекулярный полиизобутилен, базальтовую муку и дисульфид молибдена при различном соотношении компонентов в соответствии с описанной выше технологией. Исследована зависимость свойств полученного композиционного материала от состава компонентов. Составы и свойства полученных композиционных материалов представлены в Табл.
Формование образцов для осуществления физико-механических испытаний проводили в смазанных пресс-формах. Образцы для испытаний представляли собой шайбу диаметром 22÷23 мм и высотой 10 мм. В ходе испытаний определяли коэффициенты трения, линейный износ (износостойкость), твердость по Бринеллю. Испытания проводили на торцевой машине трения при скорости относительного скольжения 0,075 м/с и нагрузках 0,5÷5 МПа без наличия смазки. Линейный износ определяли после шестичасовой работы при нагрузке 3 МПа.
Результаты испытаний показали, что введенные функциональные добавки положительно влияют на коэффициент трения и износ, даже, несмотря на то, что введение дисульфида молибдена несколько снижает твердость. В целом эксплуатационные характеристики, предлагаемого композиционного материала, остаются достаточно высокими. Таким образом, можно сделать вывод, что выбранные функциональные добавки в соответствии с предлагаемыми соотношениями компонентов помогают улучшить эксплуатационные свойства материала, расширяя сферы его промышленного использования.
Figure 00000001

Claims (2)

  1. Композиционный материал на основе вторичного полиэтилентерефталата, отличающийся тем, что в качестве функциональных добавок содержит низкомолекулярный полиизобутилен и базальтовую муку, дисульфид молибдена при следующем соотношении компонентов, мас.%:
  2. вторичный полиэтилентерефталат 70 низкомолекулярный полиизобутилен 15 базальтовая мука 10 дисульфид молибдена 5
RU2020124845A 2020-07-17 2020-07-17 Композиционный материал на основе вторичного полиэтилентерефталата RU2751941C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020124845A RU2751941C1 (ru) 2020-07-17 2020-07-17 Композиционный материал на основе вторичного полиэтилентерефталата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020124845A RU2751941C1 (ru) 2020-07-17 2020-07-17 Композиционный материал на основе вторичного полиэтилентерефталата

Publications (1)

Publication Number Publication Date
RU2751941C1 true RU2751941C1 (ru) 2021-07-21

Family

ID=76989360

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020124845A RU2751941C1 (ru) 2020-07-17 2020-07-17 Композиционный материал на основе вторичного полиэтилентерефталата

Country Status (1)

Country Link
RU (1) RU2751941C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1692996A1 (ru) * 1989-05-22 1991-11-23 Днепродзержинское Производственное Объединение "Азот" Антифрикционна композици
US5503790A (en) * 1989-10-05 1996-04-02 Solo Cup Company Method of producing disposable articles utilizing regrind polyethylene terephthalate (PET)
RU2623754C1 (ru) * 2016-03-29 2017-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Смесь для получения композиционных строительных материалов
RU2688718C1 (ru) * 2018-09-27 2019-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Смесь для получения композиционных строительных материалов, содержащая компоненты коммунальных отходов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1692996A1 (ru) * 1989-05-22 1991-11-23 Днепродзержинское Производственное Объединение "Азот" Антифрикционна композици
US5503790A (en) * 1989-10-05 1996-04-02 Solo Cup Company Method of producing disposable articles utilizing regrind polyethylene terephthalate (PET)
RU2623754C1 (ru) * 2016-03-29 2017-06-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Смесь для получения композиционных строительных материалов
RU2688718C1 (ru) * 2018-09-27 2019-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Смесь для получения композиционных строительных материалов, содержащая компоненты коммунальных отходов

Similar Documents

Publication Publication Date Title
Aydın et al. Effects of alkali treatment on the properties of short flax fiber–poly (lactic acid) eco-composites
Goulart et al. Mechanical behaviour of polypropylene reinforced palm fibers composites
Chen et al. Biocomposites based on rice husk flour and recycled polymer blend: effects of interfacial modification and high fibre loading
EP3998311A1 (en) Biodegradable product and preparation method therefor
CN107619584A (zh) 聚乳酸复合材料、餐具及其制备方法
Hassan et al. Study on the performance of hybrid jute/betel nut fiber reinforced polypropylene composites
Kuram Advances in development of green composites based on natural fibers: A review
Jose et al. Processing and characterization of recycled polypropylene and acrylonitrile butadiene rubber blends
Fakhrul et al. Properties of wood sawdust and wheat Flour Reinforced Polypropylene Composites
El Abbassi et al. Effect of recycling cycles on the mechanical and damping properties of short alfa fibre reinforced polypropylene composite
Mendez-Hernandez et al. Preparation and characterization of composites from copolymer styrene-butadiene and chicken feathers
CN111777845A (zh) 一种食品级抗菌抗静电pla材料和制备方法
Gomez‐Caturla et al. Improvement of poly (lactide) ductile properties by plasticization with biobased tartaric acid ester
de Araujo et al. Combined effect of copolymers and of the mixing sequence on the rheological properties and morphology of poly (lactic acid) matrix blends
RU2751941C1 (ru) Композиционный материал на основе вторичного полиэтилентерефталата
Murariu et al. Polylactide (PLA) and highly filled PLA‐calcium sulfate composites with improved impact properties
CN1300236C (zh) 一种矿物/晶须增强聚丙烯组合物
Santiagoo et al. The compatibilizing effect of polypropylene maleic anhydride (PPMAH) on polypropylene (PP)/acrylonitrile butadiene rubber (NBR)/palm kernel shell (PKS) composites
CN112094487B (zh) 一种用于环保餐具的易清洁耐高温聚乳酸复合材料
Agrawal et al. Rheological and mechanical properties of poly (lactic acid)/bio-based polyethylene/clay biocomposites containing montmorillonite and vermiculite clays
Daud et al. Soil burial study of palm kernel shell-filled natural rubber composites: The effect of filler loading and presence of silane coupling agent
DE102020121552A1 (de) Verfahren zur herstellung von biobasierten verbundwerkstoffen unter verwendung von palm-biomassepulver als rohmaterial
Khemakhem et al. Composites based on (ethylene–propylene) copolymer and olive solid waste: Rheological, thermal, mechanical, and morphological behaviors
RU2773845C2 (ru) Способ получения композиционных материалов на основе вторичного полиэтилентерефталата и хелатных комплексов эрбия
Lubis et al. Mechanical properties of oil palm frond wood filled thermoplastic polyurethane