RU2751200C2 - Способ получения диоксида углерода для содового производства аммиачным методом - Google Patents

Способ получения диоксида углерода для содового производства аммиачным методом Download PDF

Info

Publication number
RU2751200C2
RU2751200C2 RU2018143195A RU2018143195A RU2751200C2 RU 2751200 C2 RU2751200 C2 RU 2751200C2 RU 2018143195 A RU2018143195 A RU 2018143195A RU 2018143195 A RU2018143195 A RU 2018143195A RU 2751200 C2 RU2751200 C2 RU 2751200C2
Authority
RU
Russia
Prior art keywords
carbon dioxide
vol
production
mea
volume
Prior art date
Application number
RU2018143195A
Other languages
English (en)
Other versions
RU2018143195A (ru
RU2018143195A3 (ru
Inventor
Раис Нуриевич Загидуллин
Анатолий Васильевич Воронин
Рифат Иншарович Загидуллин
Эльмира Курбангалиевна Аминова
Аскат Ахиярович Мухаметов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет"
Priority to RU2018143195A priority Critical patent/RU2751200C2/ru
Publication of RU2018143195A publication Critical patent/RU2018143195A/ru
Publication of RU2018143195A3 publication Critical patent/RU2018143195A3/ru
Application granted granted Critical
Publication of RU2751200C2 publication Critical patent/RU2751200C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Изобретение относится к области получения диоксида углерода для поизводства кальцинированной соды аммиачным методом. Отходящие газы цементного производства, содержащие 16-22% об. диоксида углерода, концентрируют путем абсорбции-десорбции водными растворами моноэтаноламина и моноэтанолбензиламина в мольном соотношении 1-3:1, или моноэтанолдиметиламина и этилендиамина в мольном соотношении 3:1, или их смесью под давлением 0,1-1,6 Мпа и при температуре от 50-132°С до минус 25-45°С. Получаемый при этом диоксид углерода, с содержанием не менее 50% об., смешивают с газом, содержащим 35-38% об. диоксида углерода, получаемого при обжиге известняка, содержащего не менее 90% об. карбоната кальция. В результате получают диоксид углерода с содержанием не менее 40-44% об. Обеспечивается разработка способа получения диоксида углерода, применяемого в производстве кальцинированной соды из отходящих газов цементного производства и тепловых электростанций, повышение концентрации СО2 и его качества, снижение энергетических затрат. 1 з.п. ф-лы, 3 пр., 3 ил.

Description

Изобретение относится к области получения углекислого газа (далее диоксид углерода, СО2) для производства карбоната натрия (кальцинированная сода), последний находит широкое применение в химической и нефтехимической промышленностях, в производстве стекла, моющих средств, целлюлозы, алюминия и др.
Известен способ выделения жидкого диоксида углерода из технологических и энергетических газов путем абсорбции СО2 водным раствором моноэтаноламина (МЭА) с последующим компремированием углекислоты [Т.Ф. Пименова производство и применение сухого льда, жидкого и газообразного диоксида углерода. М.: легкая и пищевая промышленность, 1982 г.].
Известный процесс выделения диоксида углерода из дымовых газов включает следующие стадии:
1) охлаждение дымовых газов в водяном скруббере;
2) извлечение диоксида углерода из дымовых газов путем его абсорбции водным раствором МЭА при температуре 40-50°С;
3) регенерацию циркулирующего раствора МЭА при 110-130°С и давлении 0,17-0,2 МПа с десорбцией CO2 из раствора абсорбента;
4) сжижение CO2 путем сжатия в механическом компрессоре с дальнейшим охлаждением. В промышленных установках сжижение СО2, полученного из дымовых газов, используют обычно сжатие газообразного диоксида углерода до давления 7,1 МПа (71 кг/см3) в 4-х ступенчатом поршневом компрессоре с дальнейшим охлаждением продукта до 15-20°С либо сжатие в 2-х ступенчатом компрессоре до давления 1,5 МПа с охлаждением до температуры минус 30°С. Недостатком этих процессов являются высокие затраты электроэнергии на компремирование СО2 перед сжижением и значительные потери МЭА за счет уноса из регенератора.
Известен способ очистки газов от диоксида углерода путем абсорбции водным раствором аминов с последующей регенерацией абсорбента при давлении 0,5-9,5 МПа. В этом способе используют одноступенчатую схему абсорбции-десорбции СО2 водным раствором одного абсорбента - МЭА, который в высоких температурах (129-160°С) регенерации под давлением подвергается повышенной деградации [А.с. 512785 СССР / Лейтес И.Л., Мурзин В.И. и др. Опубл. 05.05.76. Бюл. №17].
Известно, что при повышении температуры на каждые 10°С скорость деградации МЭА увеличивается 1,6-1,8 раза, что приводит к увеличению потерь абсорбента. При этом упругость паров МЭА при указанных температурах высокая, что значительно увеличивает физические потери МЭА за счет уноса из регенератора. Разумеется, резко возрастает расходный коэффициент абсорбента в процессе выделения диоксида углерода.
Наиболее близкой по совокупности признаков является способ выделения диоксида углерода из газов (см. Пат. 2275231 РФ; Опубл. 27.04.2006 г.) В этом способе применяют абсорбционно-десорбционное выделение углекислоты, где из него извлекается диоксид углерода. Установка состоит из двух ступеней: на первой ступени осуществляется выделение газообразного CO2 из газов цементного производства, на второй сжатие СО2 от 0,23 до 0,9-1,5 Мпа. В первой ступени для орошения абсорбера 1 применяют 10-15%-ные растворы моноэтаноламина, на второй ступени в качестве абсорбента применяют метилдиэтаноламин МДЭА и диизопропаноламин.
Недостатком способа является применение МЭА термохимически менее устойчивого и более летучего абсорбента, значительно увеличиваются физические потери за счет уноса из регенератора и в результате чего резко возрастает расходный коэффициент МЭА в процессе выделения диоксида углерода. Кроме того, абсорбенты, применяемые в первой и второй ступени, обладают довольно высокой коррозионной активностью.
Задача, на решение которой направлено заявляемое изобретение, заключается в разработке способа получения диоксида углерода, применяемого в производстве кальцинированной соды из отходящих газов цементного производства и тепловых электростанций, повышение концентрации СО2 и его качества, снижение энергетических затрат.
Технический результат при использовании изобретения выражается в разработке комбинированного способа получения диоксида углерода из газов цементного производства с последующим концентрированием путем абсорбции-десорбции аминоспиртами и аминами и смешением с основным потоком диоксида углерода, получаемого обжигом известняка.
Вышеуказанный технический результат достигается способом получения диоксида углерода с концентрацией не менее 38-42% путем концентрирования диоксида углерода, содержащегося в отходящих газах клинкерных печей цементного производства с концентрацией 16-22% (об). Процесс абсорбции и десорбции (регенерация абсорбентов) осуществляется с использованием в качестве абсорбентов моноэтаноламина (МЭА) и моноэтанолбензиламина (МЭБА) в мольном соотношении МЭА:МЭБА = 1-3:1 или моноэтанолдиметиламина (МЭДМА) и этилендиамина (ЭДА) в мольном соотношении равном 3:1 в системе абсорбции-десорбции под давлением 0,1-1,6 Мпа и температуре 50-132°С до минус 25-45°С получают диоксид углерода с содержанием не менее 50% (об.), который смешивают с газом, содержащим 35-38% (об.) диоксида углерода, получаемого при обжиге известняка, содержащего не менее 90% (об.) карбоната кальция с получением диоксида углерода не менее 40-44% (об.). Диоксид углерода после печей обжига известняка поступает в цех карбонизации аммонизированного рассола содового производства. Для поглощения диоксида углерода берут 32-40%-ные водные растворы абсорбентов.
Расчетами установлено, что при получении 1 т портландцементного клинкера расходуется ~1,6 т сырьевой смеси, содержащей около 75% карбоната кальция (СаСО3) и 1-3% карбоната магния (MgCO3), при этом выделяется 520 кг CO2 (в пересчете на 100%) за счет декарбонизации сырьевой смеси и 600 кг СО2 за счет сгорания топлива. Таким образом, в производстве 1 т клинкера выбросы CO2 составляют 1,12 т. При средней производительности цементного завода 1 млн т клинкера/год выбросы СО2 могут достигать 1,12 млн т/год. Мощность цементного производства в г. Стерлитамаке в настоящее время составляет 1,5 млн т/год, то количество СО2 выбрасываемого в атмосферу составляет 1,68 млн т/год. Отсюда получим: 1,68 млн т/год СО2: 540000 т/год = 3,11, т.е. количество выбросов цементного завода достаточно для трехкратного объема кальцинированной соды (мощность кальцинированной соды 1,5 млн т/год). Годовая потребность содового производства в CO2 - 540000 т/год. Отсюда получим 1,5 млн т (год)*3,11=4,665 млн т соды, который соответствует годовому выбросу CO2 цементного завода.
Необходимо отметить, что во всем мире сегодня борются с парниковыми газами (основным из которых является диоксид углерода), придумывают способы, как утилизировать СО2 из выбросов промышленных предприятий, как использовать эти выбросы в качестве сырья для производства, а тут CO2 получают сжиганием памятников природы (Стерлитамакских шиханов).
С другой стороны запасы известняка карьеры Шахтау хватит до 2020 г и в дальнейшем проблема обеспечения содового производства сырьем - диоксидом углерода остается открытой. Цементное производство является высочайшим по объемам выброса диоксида углерода на единицу массы продукта и по сравнению с выбросами других промышленных предприятий в мире. При этом для получения цемента не требуется известняк той чистоты, которые требуют в настоящее время содовые производства.
Необходимо отметить, что до настоящего времени выбросы цементных заводов и других промышленных предприятий, включая ТЭЦ, содержащие CO2 никогда не применялись для получения соды, ввиду того, что содержание CO2 в них низкое, в пределах 18-20% об. и 7-14% об. соответственно. А для содовых заводов содержание CO2 должно быть не менее 38% об.
Принципиальная комплексная схема извлечения диоксида углерода из отходящих газов цементного производства, содержащих 16-22% об. CO2 с последующим концентрированием и получением CO2 более 50% об. на установке абсорбции-десорбции с применением абсорбентов и направлением на смешение с основным потоком CO2 37-38% (об.), получаемого после обжига карбонатного сырья приведена на фиг. 1-3.
Описание принципиальной комплексной схемы извлечения диоксида углерода из отходящих газов цементного производства.
Принципиальная комплексная схема извлечения диоксида углерода из отходящих газов, содержащих 18-20% об. CO2 цементного производства (сухой способ) (фиг. 1) путем концентрирования с получением CO2 более 50% об. на установке абсорбции CO2 и десорбции (регенерация абсорбентов) с использованием абсорбентов (фиг. 2) с последующим направлением CO2 на смешение с основным потоком диоксида углерода (37-38% об.), получаемого после обжига карбонатного сырья (фиг. 3).
На Фиг. 1. представлена принципиальная технологическая схема извлечения CO2 из отходящих газов цементного производства, где: 1 - сушилка-мельница ударно-отражательная; 2 - сепаратор; 3 - циклонный теплообменник (3-4 ступень); 4 - кальцинатор типа «Пироклон»; 5 - вращающаяся печь; 6 - холодильник; 7 - вентилятор; 8 - дымосос; 9 - электрофильтр.
На Фиг. 2. представлена принципиальная схема выделения диоксида углерода методом абсорбции-десорбции с применением абсорбентов из газов цементного производства, где: 10 - абсорбер первой ступени; 11 - регенератор первой ступени; 12 - абсорбер второй ступени; 13 - регенератор второй ступени; 14 - угольный фильтр; 15, 18 - центробежные насосы; 16, 19 - теплообменники; 17, 20 - холодильники.
На Фиг. 3. представлена принципиальная технологическая схема печного отделения обжига карбонатного сырья: 21 - известковая печь; 22 - загрузочный механизм; 23 - выгрузное устройство; 24 - пластинчатый конвейер; 25 - ковшевой конвейер; 26 - труба Вентури; 27 - вытяжной вентилятор; 28 - дымососы; 29 - электрофильтры; 30 - бункера/силоса; 31 - санитарная труба; 32 - рукавные фильтры; 33 - горизонтальный ковшевой конвейер; 34 - ленточный конвейер; 35 - дутьевые вентиляторы.
Отходящие газы цементного производства, содержащие 16-22% об. CO2 проходят стадию охлаждения в водном скруббере до температуры 35-38°С, поступают на установку извлечения CO2 из газов (фиг. 2). Газ с температурой около 36-39°С и давлении 0.1 Мпа направляется на абсорбер первой ступени 10, орошаемый смесью 15-18%-ного раствора моноэтаноламина (МЭА) и моноэтанолбензиламина (МЭБА) в мольном соотношении МЭА : МЭБА = 1:1. На выходе из абсорбера CO2 в газе снижается до 0,95% об. Насыщенный раствор МЭА и МЭБА, нагретый за счет теплоты абсорбции до температуры 46-48°С, подается центробежным насосом в кожухотрубчатый теплообменник-рекуператор 16, где нагревается до 110-115°С и затем поступает в регенератор 11. Регенерация осуществляется в аппарате с выносным кипятильником под давлением 0,25-0,28 МПа. Регенерированный раствор, содержащий 0,12-0,15 моль CO2/моль МЭА + МЭБА, при 122-124°С проходит в межтрубное пространство теплообменника-рекуператора 16, отдавая тепло насыщенному раствору МЭА + МБЭА, охлаждается оборотной водой в холодильнике до 40°С и подается на орошение абсорбера 10. Паро-газовая смесь из регенератора с температурой 102-104°С поступает в выносной холодильник дефлегматор 17, охлаждаемый водой до температуры 40°С, где происходит конденсация водяных паров. Конденсат в виде флегмы подается на орошение верхних тарелок регенератора. Газ после регенератора содержит около 97-97,5% об. CO2 и 2,5-3% воды с давлением 0,20 МПа и температурой 38-40°С направляется на вторую ступень абсорбера 12. На второй ступени абсорбции 12 могут быть использованы в качестве абсорбента МЭА : МБЭА в мольном соотношении МЭА + МЭБА = 1:1.
Пример 1. Диоксид углерода из регенератора 11 первой ступени поступает в абсорбер 12 второй ступени установки, где поглощается 32-35%-ным водным раствором МЭА : МЭБА в мольном соотношении 1:1 в абсорбере 12. Затем насыщенный раствор с концентрацией 0,6-0,65 моля CO2/моль аминоспирта при 55-60°С и давлении 0,24 МПа сжимается центробежным насосом 18 до давления 0,95-1,0 МПа и подается в теплообменник-рекуператор 19, где нагревается до температуры 130-132°С, затем направляется в регенератор 13 и при этом CO2 выделяется при давлении 0,93-1,0 МПа. Регенерированный 35-36%-ный раствор смеси МЭА и МЭБА поступает в теплообменник-рекуператор 19, отдает тепло насыщенному раствору, охлаждается оборотной водой в холодильнике 11 с температурой 50-52°С подается на орошение абсорбера 12. Полученный CO2 под давлением 0,9-1,0 МПа поступает на установку ожижения, где охлаждается до температуры минус 45°С, давления 1.6 Мпа.
Пример 2. Газ из регенератора 11 первой ступени, полученный по примеру 1, поступает на угольный фильтр 14, предназначенный для очистки от паров МЭА и МЭБА, направляется на вторую ступень технологической схемы, где происходит сжатие CO2 до 1,0 МПа. На второй ступени в качестве абсорбента используют смесь МЭА и МЭБА в мольном соотношении = МЭА : МЭБА = 2:1.
Диоксид углерода, поступающий в абсорбер 12 второй ступени поглощается 38-40%-ным раствором МЭА + МЭБА в мольном соотношении МЭА : МЭБА = 3:1. Затем насыщенный раствор с концентрацией 0,13-0,65 моль CO2/моль (МЭА + МЭБА = 3:1) с температурой 55-58°С давлении 0,24 МПа сжимается центробежным насосом 18 до давления 1,0 МПа и подается в теплообменник-рекуператор 19, нагретый до 103-104°С, затем раствор поступает в регенератор 13, где происходит выделение CO2 с давлением 1,0 МПа. Регенерированный раствор МЭА : МЭБА в мольном соотношении, равном 2:1 с концентрацией 0,56-0,58 моля/моль смеси аминоспиртов поступает в аппарат 19, отдает тепло насыщенному раствору проходя через холодильник 20, охлаждаемый оборотной водой с температурой 54-56°С подается на орошение абсорбера 12. Полученный газообразный CO2 поступает на установку охлаждения в условиях примера 1.
Пример 3. В условиях примера 1 и 2 газ из регенератора 11 первой ступени поступает на угольный фильтр 14. Затем направляется на вторую ступень технологической схемы, где происходит сжатие CO2 до 0,1 МПа. На второй ступени в качестве абсорбента применяют водный раствор моноэтанолдиметиламина (МЭДМА) и этилендиамина (ЭДА) в мольном соотношении МЭДМА : ЭДА = 3:1. Концентрированный раствор с концентрацией 0,70-0,72 моля CO2/моль аминоспиртов и первичного диамина при температуре 54-55°С и давлении 0,24 МПа сжимается насосом 18 до давления 1,2-1,5 МПа и подается в аппарат 19, где нагревается до температуры 105-110°С и направляется в регенератор 13, где из него выделяется CO2 с давлением 1,2-1,5 МПа. Регенерированный раствор с концентрацией 42-44% аминоспирта и диамина поступает в теплообменник рекуператор 19 отдает тепло насыщенному раствору, после охлаждения в холодильник 20 до температуры 50°С подается на орошение абсорбера 12, затем CO2 поступает на установку ожижения. Далее CO2 охлаждается до температуры минус 25°С, так как в результате абсорбционно-десорбционного сжатия давление его составляет 1,4 МПа.
Преимуществами предложенного способа являются использование новых абсорбентов моноэтанолбензиламина, моноэтанолдиметиламина, этилендиамина эффективных поглотителей CO2 в различных соотношениях, значительное уменьшение уноса абсорбентов из регенератора. Применяемый в этом процессе МЭА подвергается в большей степени к деградации и поэтому возрастает расходный коэффициент его в процессе выделения CO2. Кроме того в описанных нами случаях замена приема механического сжатия на сжатие и использование при этом двухступенчатой абсорбционно-десорбционной технологической схемы и дешевого низкопотенциального тепла взамен дорогостоящей электроэнергии.
Применение МЭБА в первой и второй ступенях установки приводит к снижению деструктивного разложения МЭА, а сам МЭБА подвергается разложению незначительно, кроме того, он обладает антикоррозионным эффектом и облегчает поглощение CO2 из газа. НО(СН2)2NH-СН2С6Н5. Бензольное ядро МЭБА обладает сильным электронопритягивающим свойством, в результате чего положительный заряд на атоме азота увеличивается за счет смещения электронной плотности на атоме азота к фенильной группе.
Figure 00000001
Применение на второй ступени в качестве абсорбентов раствора моноэтанолдиметиламина (МЭДМА) и первичного диамина-этилендиамина
Figure 00000002
в мольном соотношении (3:1) приводит к повышению абсорбционных показателей абсорбентов. В данном случае ЭДА является довольно сильным поглотителем СО2, он активирует поглотительную способность МЭДМА легко присоединяет CO2 из газов и растворов.
Figure 00000003
МЭДМА был получен нами в условиях работы [см. А.с. 615672 СССР. Способ получения 1-метил-4-диметиламиноэтилпиперазина / Загидуллин Р.Н., Толстиков Г.А. и др, 1978, Б.И. №26.].

Claims (2)

1. Способ получения диоксида углерода для содового производства аммиачным методом путем обжига кальцийсодержащего сырья, включающего карбонат кальция, отличающийся тем, что отходящие газы цементного производства, содержащие 16-22% об. диоксида углерода, концентрируют путем абсорбции-десорбции водными растворами моноэтаноламина и моноэтанолбензиламина в мольном соотношении, равном 1-3:1, или моноэтанолдиметиламина и этилендиамина в мольном соотношении, равном 3:1, или их смесью под давлением 0,1-1,6 Мпа и при температуре от 50-132°С до минус 25-45°С, получают диоксид углерода с содержанием не менее 50% об., который смешивают с газом, содержащим 35-38% об. диоксида углерода, получаемого при обжиге известняка, содержащего не менее 90% об. карбоната кальция с получением диоксида углерода не менее 40-44% об.
2. Способ по п. 1, отличающийся тем, что диоксид углерода поглощают 32-40% водным раствором абсорбентов.
RU2018143195A 2018-12-05 2018-12-05 Способ получения диоксида углерода для содового производства аммиачным методом RU2751200C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018143195A RU2751200C2 (ru) 2018-12-05 2018-12-05 Способ получения диоксида углерода для содового производства аммиачным методом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018143195A RU2751200C2 (ru) 2018-12-05 2018-12-05 Способ получения диоксида углерода для содового производства аммиачным методом

Publications (3)

Publication Number Publication Date
RU2018143195A RU2018143195A (ru) 2020-06-05
RU2018143195A3 RU2018143195A3 (ru) 2020-12-22
RU2751200C2 true RU2751200C2 (ru) 2021-07-12

Family

ID=71067119

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018143195A RU2751200C2 (ru) 2018-12-05 2018-12-05 Способ получения диоксида углерода для содового производства аммиачным методом

Country Status (1)

Country Link
RU (1) RU2751200C2 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1567251A1 (ru) * 1987-08-12 1990-05-30 Предприятие П/Я А-3732 Способ концентрировани диоксида углерода из газов
RU2275231C2 (ru) * 2003-04-02 2006-04-27 Федеральное государственное унитарное предприятие Государственный научный центр РФ "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" Способ выделения диоксида углерода из газов
CN102233224A (zh) * 2010-05-07 2011-11-09 上海建筑材料集团水泥有限公司 从水泥回转窑烟气中回收co2的方法
WO2015190936A1 (en) * 2014-06-13 2015-12-17 Sintef Tto As Absorbent system and method for capturing co2 from gas stream
RU2600379C1 (ru) * 2015-04-16 2016-10-20 Общество с ограниченной ответственностью Научно-производственное предприятие "Экология мегаполиса" Способ разделения биогаза

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1567251A1 (ru) * 1987-08-12 1990-05-30 Предприятие П/Я А-3732 Способ концентрировани диоксида углерода из газов
RU2275231C2 (ru) * 2003-04-02 2006-04-27 Федеральное государственное унитарное предприятие Государственный научный центр РФ "Научно-исследовательский физико-химический институт им. Л.Я. Карпова" Способ выделения диоксида углерода из газов
CN102233224A (zh) * 2010-05-07 2011-11-09 上海建筑材料集团水泥有限公司 从水泥回转窑烟气中回收co2的方法
WO2015190936A1 (en) * 2014-06-13 2015-12-17 Sintef Tto As Absorbent system and method for capturing co2 from gas stream
RU2600379C1 (ru) * 2015-04-16 2016-10-20 Общество с ограниченной ответственностью Научно-производственное предприятие "Экология мегаполиса" Способ разделения биогаза

Also Published As

Publication number Publication date
RU2018143195A (ru) 2020-06-05
RU2018143195A3 (ru) 2020-12-22

Similar Documents

Publication Publication Date Title
JP7145530B2 (ja) 空気を冷媒とする深冷凝縮によるVOCs回収システム
EP3384973A1 (en) Process of recovering carbon dioxide for enriching the gas streams used for producing sodium carbonate and sodium hydrogen carbonate by solvay process
CN101343061B (zh) 利用烟气制备食品级液体二氧化碳的方法及装置
CN102786236B (zh) 一种实现石灰生产过程中二氧化碳捕集的设备及方法
AU2013288758B2 (en) Process and apparatus for the separation of a stream containing carbon dioxide, water and at least one light impurity including a separation step at subambient temperature
CN103391802A (zh) 一种含二氧化碳的流体的压缩
JP2015150500A (ja) 二酸化炭素捕捉材及びこれを用いた二酸化炭素回収装置
RU2371238C2 (ru) Комплексный способ и устройство для очистки дымовых газов с утилизацией тепла, вредных примесей и диоксида углерода
US8535630B2 (en) Method and apparatus for SOx and CO2 removal from flue gas
CN103912385B (zh) 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统
RU2751200C2 (ru) Способ получения диоксида углерода для содового производства аммиачным методом
RU2296793C2 (ru) Установка подготовки углеводородного газа к транспорту
CN113587665A (zh) 一种水泥窑炉烟气循环用碳基富氧燃烧方法
US20230125750A1 (en) Process for treating a carbon dioxide-rich gas containing water
EP3363523B1 (en) A method for limiting the emissions of co2 in soda processes
RU2275231C2 (ru) Способ выделения диоксида углерода из газов
CN202808618U (zh) 一种实现石灰生产过程中二氧化碳捕集的装置
CN216159654U (zh) 一种水泥窑炉烟气循环用碳基富氧燃烧系统
CN210544174U (zh) 一种同时脱除烟气中二氧化碳和二氧化硫的系统
RU2396106C1 (ru) Способ утилизации низкопотенциальных газов
EP3010623B1 (en) Method for combined sox and co2 removal from flue gas
CN114459236A (zh) 一种大幅节能的水泥窑烟气碳捕集方法
CN107512717B (zh) 与硅酸盐水泥煅烧相结合的高纯度二氧化碳制取工艺及设备
CN102080920B (zh) 低温冷箱分离工业废气中氮氧化物的方法
RU2725319C2 (ru) Способ получения диоксида углерода для производства кальцинированной соды аммиачным методом