RU2749928C1 - Космический аппарат - Google Patents

Космический аппарат Download PDF

Info

Publication number
RU2749928C1
RU2749928C1 RU2020115711A RU2020115711A RU2749928C1 RU 2749928 C1 RU2749928 C1 RU 2749928C1 RU 2020115711 A RU2020115711 A RU 2020115711A RU 2020115711 A RU2020115711 A RU 2020115711A RU 2749928 C1 RU2749928 C1 RU 2749928C1
Authority
RU
Russia
Prior art keywords
spacecraft
heat
devices
complex
mass
Prior art date
Application number
RU2020115711A
Other languages
English (en)
Inventor
Олег Валентинович Шилкин
Александр Юрьевич Вшивков
Михаил Михайлович Попугаев
Федор Константинович Синьковский
Владимир Петрович Акчурин
Original Assignee
Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва» filed Critical Акционерное общество «Информационные спутниковые системы» имени академика М.Ф. Решетнёва»
Priority to RU2020115711A priority Critical patent/RU2749928C1/ru
Application granted granted Critical
Publication of RU2749928C1 publication Critical patent/RU2749928C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/42Arrangements or adaptations of power supply systems
    • B64G1/44Arrangements or adaptations of power supply systems using radiation, e.g. deployable solar arrays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/02Devices for producing mechanical power from solar energy using a single state working fluid
    • F03G6/04Devices for producing mechanical power from solar energy using a single state working fluid gaseous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

Изобретение относится к области космической техники, а более конкретно к космическим аппаратам (КА). КА содержит систему терморегулирования с приборами для отбора, подвода и сброса тепла. Кроме того, КА включает систему электропитания с солнечными батареями, комплексом автоматики и стабилизации напряжения, аккумуляторными батареями. Имеется бортовой комплекс управления с бортовой вычислительной машиной. Между приборами подвода тепла и приборами сброса тепла системы терморегулирования введена микротурбина. К ней подключён электрогенератор, выходные клеммы которого с помощью кабеля соединены с комплексом автоматики и стабилизации напряжения системы электропитания. Достигается уменьшение массы КА.

Description

Изобретение относится к космической технике и может быть использовано, например, при создании телекоммуникационных космических аппаратов (КА).
Известно (см. патент RU № 2574499 [1]), что для обеспечения работоспособности любого элемента КА в космических условиях эксплуатации на орбите необходимо, в первую очередь, обеспечить поддержание их температур в требуемых рабочих диапазонах (в том числе системы электропитания (СЭП)), что в составе КА функционально обеспечивает СТР КА, и в связи с этим СТР является главной обеспечивающей работоспособность КА системой, определяющей его оптимальную конфигурацию и, следовательно, минимально возможную массу: в среднем СТР КА занимают 9% массы КА и удельные массовые затраты на отвод в космическое пространство 1 кВт тепловой выходной нагрузки - 22 кг/кВт.
Также важной обеспечивающей работоспособность КА системой, определяющей минимально возможную массу КА, является СЭП КА (см. патент RU № 2509691 [2]): СЭП в среднем занимают 20% массы КА и удельные массовые затраты на генерацию выходной электрической мощности - 207 кг/кВт.
Анализ, проведенный при создании мощного, например, КА с тепловой нагрузкой ≈18 кВт и соответственно с электрической мощностью СЭП 27÷30 кВт, показал: как СЭП, так и СТР имеют такие конструкции, которые обуславливают относительно повышенные массы их в общей массе КА (и из-за этого отсутствует возможность установки в составе полезной нагрузки дополнительной целевой аппаратуры, что существенно важно для телекоммуникационных КА).
Наиболее близким прототипом предлагаемого изобретения является [2].
Известный космический аппарат содержит СТР с приборами для отбора, подвода и сброса тепла, (например, в случае использования [1] – см. там фигуру 2 - испарители с капиллярными насосами выполняют функции приборов подвода тепла, а раскрываемые панели с их коллекторами выполняют функции приборов сброса тепла), СЭП, включающей солнечные батареи, комплекс автоматики и стабилизации напряжения (КАС), аккумуляторные батареи с устройством их контроля, аппарат также включает бортовой комплекс управления с бортовой вычислительной машиной.
Как выше показано, как СЭП, так и СТР имеют такие конструктивные особенности, которые обуславливают (в первую очередь – СЭП) относительно повышенные массы их в общей массе КА, что является существенным недостатком известного технического решения [2].
Технической проблемой изобретения является устранение вышеуказанного существенного недостатка.
Указанная техническая проблема решается за счет того, что в космический аппарат, содержащий систему терморегулирования с приборами для отбора, подвода и сброса тепла, систему электропитания, включающую солнечные батареи, комплекс автоматики и стабилизации напряжения, аккумуляторные батареи с устройством их контроля, бортовой комплекс управления с бортовой вычислительной машиной, между приборами подвода тепла и приборами отвода тепла системы терморегулирования введена микротурбина с подключённым к её ротору электрогенератором, выходные клеммы которого с помощью кабеля соединены с комплексом автоматики и стабилизации напряжения системы электропитания.
В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляет тех же свойств, что в заявляемом изобретении.
В настоящее время авторами разработан физический макет, и проведены его экспериментальные исследования. В соответствии с предложенным авторами изобретением применительно к КА с электрической мощностью СЭП 30 кВт, из них израсходуется в виде полезной выходной мощности полезной нагрузки в количестве не менее 12 кВт, а остальная мощность – 18 кВт превращается в тепловую нагрузку на СТР: в опытном образце физического макета КА согласно предложенному авторами изобретению в качестве СТР использована СТР, соответствующая фигуре 2 патента [1], в которой в результате циркуляции теплоносителя по замкнутому жидкостному контуру с помощью ЭНА 11 кВт излучается поверхностями панелей «+Z» и «-Z» МПН и МСС (см. фигуру 2 [1]), а 7 кВт тепла (аккумулированный в теплоносителе ЛЗ-ТК-2 при температуре не менее 60°С) поступает в испарители с капиллярными насосами - приборы подвода тепла (согласно принятому в [2] термину). В испарителях с капиллярными насосами - приборах подвода тепла циркулирующий в двухфазном контуре теплоноситель (ЛЗ-ТК-2) передает 3,5 кВт тепла рабочему телу (аммиаку), циркулирующему в контуре в результате функционирования капиллярного насоса (расход жидкого аммиака ≈ 4 г/с). При этом аммиак нагревается, затем испаряется и превращается полностью в пар высокого давления (≈ 2,31 МПа) с температурой, равной не менее 55°С. Далее вышеуказанный горячий пар аммиака из двух испарителей поступает на микротурбину и совершает работу, раскручивая ротор микротурбины и подключенного к ней электрогенератора, где происходит генерация электрического тока с выходным напряжением не менее 27 В, и по кабелю, соединяющему выходные клеммы электрогенератора с КАС, осуществляется передача электрической мощности, выработанной СТР, СЭП. После микротурбины парообразный аммиак поступает в коллекторы двух раскрываемых панелей - приборы сброса тепла (согласно принятому в [2] термину), где полностью конденсируется в результате излучения остаточного тепла с поверхностей раскрываемых панелей в космическое пространство. Далее полностью сконденсировавшийся аммиак поступает в капиллярные насосы, и в испарителях происходит снова кипение аммиака, и цикл заново повторяется.
Анализ предварительных опытных данных показывает, что реализация предложенных авторами изобретения обеспечивает:
1) из подведенных к двум раскрываемым панелям радиатора 7 кВт тепла, на выходе электрогенератора получена электрическая мощность ≈ 0,6 кВт с напряжением не менее 27 В и осуществлена подача этой мощности СЭП, т.е. коэффициент полезного действия предложенного технического решения обеспечивает не менее 8%;
2) при этом масса турбины с электрогенератором и кабелем, соединяющим его с СЭП, составляет не более 12 кг;
3) в результате уменьшения отводимой в космическое пространство двумя раскрываемыми панелями радиатора тепловой мощности с 7 кВт до (7 - 0,6) = 6,4 кВт уменьшается требуемая площадь раскрываемых панелей и, следовательно, уменьшается их масса суммарно на 14 кг;
4) в результате подвода к СЭП 0,6 кВт электрической мощности обеспечивается снижение требуемой площади СБ: согласно данным таблицы 4 источника информации “УДК 629.783. М.В.Лукьяненко, В.С.Кудряшов. Энерговооруженность космических аппаратов и бортовые источники электроэнергии” для существующих в настоящее время СЭП при К.П.Д. фотогенерирующей части СБ (26,5 - 29)% 1 кг массы СБ (фотогенерирующая часть и каркас панелей) обеспечивает ≈104 Вт/кг, т.е. обеспечивается снижение массы СЭП на (600 : 104) ≈ 6 кг. (Cледует отметить: из-за уменьшения нагрузки на СЭП также дополнительно уменьшится масса кабелей в составе СЭП).
Таким образом достигается технический результат, заключающийся в общем снижении массы КА: обеспечивается снижение массы СЭП на 6 кг, и массы СТР на 2 кг, и обеспечит повышение массы МПН на 8 кг, что существенно для телекоммуникационных КА.

Claims (1)

  1. Космический аппарат, содержащий систему терморегулирования с приборами для отбора, подвода и сброса тепла, систему электропитания, включающую солнечные батареи, комплекс автоматики и стабилизации напряжения, аккумуляторные батареи с устройством их контроля, бортовой комплекс управления с бортовой вычислительной машиной, отличающийся тем, что между приборами подвода тепла и приборами сброса тепла системы терморегулирования введена микротурбина с подключённым к её ротору электрогенератором, выходные клеммы которого с помощью кабеля соединены с комплексом автоматики и стабилизации напряжения системы электропитания.
RU2020115711A 2020-05-13 2020-05-13 Космический аппарат RU2749928C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020115711A RU2749928C1 (ru) 2020-05-13 2020-05-13 Космический аппарат

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020115711A RU2749928C1 (ru) 2020-05-13 2020-05-13 Космический аппарат

Publications (1)

Publication Number Publication Date
RU2749928C1 true RU2749928C1 (ru) 2021-06-21

Family

ID=76504749

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020115711A RU2749928C1 (ru) 2020-05-13 2020-05-13 Космический аппарат

Country Status (1)

Country Link
RU (1) RU2749928C1 (ru)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2376693C2 (ru) * 2004-12-16 2009-12-20 Анил Ласанта Майкл ПЕРЕРА Снижение себестоимости многовариантной выработки электроэнергии путем использования наиболее выгодного на данный момент варианта выработки
US7893390B2 (en) * 2008-03-13 2011-02-22 Diehl Bgt Defence Gmbh & Co. Kg Guided missile
RU2446362C2 (ru) * 2010-02-25 2012-03-27 Георгий Михайлович Межлумов Способ и устройство получения электроэнергии
RU2509691C2 (ru) * 2012-03-23 2014-03-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Космический аппарат
RU2012158326A (ru) * 2012-01-04 2014-07-10 Дженерал Электрик Компании Капсулирование генератора системы использования отходящего тепла
RU2548992C2 (ru) * 2013-03-27 2015-04-20 Василий Иванович Котельников Способ и устройство для генерирования электрической энергии в полевых условиях
RU2614242C1 (ru) * 2015-12-22 2017-03-24 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Электрохимический генератор

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2376693C2 (ru) * 2004-12-16 2009-12-20 Анил Ласанта Майкл ПЕРЕРА Снижение себестоимости многовариантной выработки электроэнергии путем использования наиболее выгодного на данный момент варианта выработки
US7893390B2 (en) * 2008-03-13 2011-02-22 Diehl Bgt Defence Gmbh & Co. Kg Guided missile
RU2446362C2 (ru) * 2010-02-25 2012-03-27 Георгий Михайлович Межлумов Способ и устройство получения электроэнергии
RU2012158326A (ru) * 2012-01-04 2014-07-10 Дженерал Электрик Компании Капсулирование генератора системы использования отходящего тепла
RU2509691C2 (ru) * 2012-03-23 2014-03-20 Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Космический аппарат
RU2548992C2 (ru) * 2013-03-27 2015-04-20 Василий Иванович Котельников Способ и устройство для генерирования электрической энергии в полевых условиях
RU2614242C1 (ru) * 2015-12-22 2017-03-24 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева" Электрохимический генератор

Similar Documents

Publication Publication Date Title
JP6179984B2 (ja) 熱エネルギ蓄積装置
JPH03181302A (ja) 蒸留装置
CN107180657A (zh) 一种核电站多样化热阱系统传热性能试验系统和方法
RU2749928C1 (ru) Космический аппарат
JP2015516532A (ja) ガスタービンにより加熱される高温バッテリー
JP6812252B2 (ja) 水素製造設備、発電システム及び水素製造方法
CN204552849U (zh) 带有抽气回热的卡琳娜和有机郎肯热电联合循环系统
US20150303524A1 (en) Electrochemical storage of thermal energy
RU2614242C1 (ru) Электрохимический генератор
US20020139409A1 (en) Hybrid combustion power system
RU2522971C1 (ru) Ядерная энергодвигательная установка
CN204967540U (zh) 一种发电电动机的外蒸发式冷却系统
RU2584607C1 (ru) Автономная система энергоснабжения космических аппаратов
KR20200128594A (ko) 증발 시의 잠열을 리사이클링하여 고효율 에너지 변환 사이클을 위한 시스템
RU2441818C1 (ru) Система терморегулирования космического аппарата
RU2282905C2 (ru) Способ эксплуатации космической двухрежимной ядерно-энергетической установки с термоэмиссионным реактором-преобразователем и дополнительным преобразователем тепловой энергии в электрическую
KR102159718B1 (ko) 가스-및-스팀 복합 사이클 전력 스테이션을 동작시키기 위한 방법
CN107110571B (zh) 用于循环运行热电式电池布置系统的方法和装置
RU2806344C1 (ru) Способ магнитогидродинамического преобразования тепловой энергии в электрическую замкнутого цикла и варианты устройств для его осуществления
CN204923541U (zh) 一种利用发电电动机的余热制冷的冷却系统
RU2086035C1 (ru) Адиабатически изолированная атомная электростанция
CN220629303U (zh) 基于离网光伏的热交换系统
CN213602170U (zh) 一种冷却装置
RU2384491C2 (ru) Система терморегулирования космического аппарата
KR20220114308A (ko) 나노유체를 이용한 복합 발전시스템