RU2747951C2 - Мембранный модуль разделения газов и способ замены элемента из полых волокон - Google Patents

Мембранный модуль разделения газов и способ замены элемента из полых волокон Download PDF

Info

Publication number
RU2747951C2
RU2747951C2 RU2017140865A RU2017140865A RU2747951C2 RU 2747951 C2 RU2747951 C2 RU 2747951C2 RU 2017140865 A RU2017140865 A RU 2017140865A RU 2017140865 A RU2017140865 A RU 2017140865A RU 2747951 C2 RU2747951 C2 RU 2747951C2
Authority
RU
Russia
Prior art keywords
hollow fiber
cylindrical body
gas
gas separation
perforated plate
Prior art date
Application number
RU2017140865A
Other languages
English (en)
Other versions
RU2017140865A (ru
RU2017140865A3 (ru
Inventor
Нобухико ФУКУДА
Томохидэ НАКАМУРА
Нодзому ТАНИХАРА
Ютака КАНЭЦУКИ
Манабу ХАЯСИ
Original Assignee
УБЭ Индастриз, Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012181036A external-priority patent/JP5966757B2/ja
Priority claimed from JP2012188912A external-priority patent/JP6051687B2/ja
Application filed by УБЭ Индастриз, Лтд. filed Critical УБЭ Индастриз, Лтд.
Publication of RU2017140865A publication Critical patent/RU2017140865A/ru
Publication of RU2017140865A3 publication Critical patent/RU2017140865A3/ru
Application granted granted Critical
Publication of RU2747951C2 publication Critical patent/RU2747951C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/02Specific tightening or locking mechanisms
    • B01D2313/025Specific membrane holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к мембранному модулю разделения газов. Мембранный модуль разделения газов, содержащий элемент из полых волокон, имеющий пучок полых волокон, состоящих из нескольких полых волоконных мембран, и трубную решетку, предусмотренную на конце пучка полых волокон для скрепления полых волоконных мембран, корпус, имеющий отверстие, через которое вставляется или извлекается элемент из полых волокон, защитный элемент, имеющий образованный в нем выпуск газа и прикрепленный для укрывания отверстия корпуса, и перфорированную плиту, имеющую несколько сквозных отверстий для образования газовых каналов, при этом перфорированная плита установлена между трубной решеткой и защитным элементом, при этом мембранный модуль разделения газов предназначен для разделения газов посредством подачи смешанного газа в полые волоконные мембраны, при этом перфорированная плита имеет (a) плоский участок на поверхности вблизи защитного элемента и плоский участок, в общем, после установки находящийся в контакте с защитным элементом, и (b) углубленный участок, образующий канал, который образован на участке поверхности ближе к защитному элементу, чем плоский участок, для образования газового канала, (c) сквозное отверстие, продолжающееся на плоском участке и углубленном участке для образования канала на виде сверху перфорированной плиты, так чтобы сквозное отверстие могло сообщаться с углубленным участком для образования канала. Технический результат - обеспечение легкой и точной установки съемного элемента из полых волокон. 2 н. и 8 з.п. ф-лы, 9 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к мембранному модулю разделения газов, который обеспечивает разделение газов с помощью полой волоконной мембраны, в частности к мембранному модулю разделения газов, в котором деформация трубной решетки может быть предотвращена посредством сдерживания деформации перфорированной плиты, в результате чего уменьшается риск разрушения трубной решетки и т.п.
Уровень техники
Стандартные модули разделения газов включают в себя модули пластинчатого и рамного типа, модули с полыми волоконными мембранами и т.п. для обеспечения разделения газов (например, разделения кислорода, разделения азота, разделения водорода, разделения пара, разделения двуокиси углерода и разделения органического пара), используя разделительные мембраны, имеющие селективную проницаемость. Из перечисленных модулей мембранный модуль разделения газов, в котором используются полые волоконные трубы, обеспечивает преимущество применения в промышленных масштабах и широко используется не только из-за преимущества получения наибольшей площади на единицу объема, но также и за счет высокого сопротивления давлению и надлежащей самоокупаемости.
Предлагались различные мембранные модули разделения газов, которые включают в себя элемент из полых волокон (подробно описанный ниже), устанавливаемый в корпус с возможностью демонтажа. Такой элемент из полых волокон имеет пучок полых волокон, состоящий из нескольких полых волоконных элементов с селективной проницаемостью, и на одном конце или на обоих концах пучка полых волокон образован выполненный из смолы твердый лист (трубная решетка) и т.п. Элемент из полых волокон является заменяемым компонентом и предназначен для установки в корпус с возможностью демонтажа.
В документе JP2008-178872 раскрыт мембранный модуль разделения газов, в котором подача осуществляется со стороны кожуха и который включает в себя элемент из полых волокон, корпус, имеющий отверстие для вставления элемента из полых волокон в корпус и его извлечения из корпуса, и защитный элемент, прикрепленный для укрытия отверстия. В мембранном модуле разделения газов смешанный газ высокого давления подается в элемент из полых волокон для разделения газов. В частности, элемент, названный перфорированной плитой, имеющей несколько образованных в ней сквозных отверстий, расположен между трубной решеткой элемента из полых волокон и защитным элементом. Перфорированная плита и защитный элемент предназначены для восприятия давления от трубной решетки с целью препятствования деформации трубной решетки.
Патентный документ: JP 2008-178872.
Раскрытие сущности изобретения
(Проблема, которая должна быть решена с помощью изобретения из этого раздела)
Конфигурация, описанная в JP2008-178872, может, по существу, обеспечить надлежащее разделение смешанного газа высокого давления. Со ссылкой на перфорированную плиту, описанную в этом документе, углубленный участок образован в части поверхности ближе к защитному элементу, и сквозное отверстие образовано в более тонком участке без контакта с защитным элементом. Следовательно, этот участок перфорированной плиты может быть деформирован. Для более надежного предотвращения деформации трубной решетки конфигурация должна быть усовершенствована.
Таким образом, задача настоящего изобретения состоит в том, чтобы предложить мембранный модуль разделения газов, в котором деформация трубной решетки может быть предотвращена посредством сдерживания деформации перфорированной плиты, в результате чего уменьшается риск разрушения трубной решетки и т.п.
(Средства решения проблемы)
Для решения задачи настоящее изобретение предлагает:
Мембранный модуль разделения газов, содержащий:
элемент из полых волокон, имеющий пучок полых волокон, состоящих из нескольких полых волоконных мембран, и трубную решетку, предусмотренную на конце пучка полых волокон для скрепления полых волоконных мембран;
корпус, имеющий отверстие, через которое вставляется или извлекается элемент из полых волокон;
защитный элемент, имеющий образованный в нем выпуск газа и прикрепленный для укрывания отверстия корпуса; и
перфорированную плиту, имеющую несколько сквозных отверстий для образования газовых каналов, при этом перфорированная плита установлена между трубной решеткой и защитным элементом;
мембранный модуль разделения газов, выполняющий разделение газов посредством подачи смешанного газа в полые волоконные мембраны,
при этом перфорированная плита имеет
(a) плоский участок на поверхности ближе к защитному элементу, и плоский участок, в общем, после установки должен находиться в контакте защитным элементом; и
(b) углубленный участок, образующий канал, который образован на участке поверхности ближе к защитному элементу, чем плоский участок, для образования газового канала;
(c) вышеуказанное сквозное отверстие, продолжающееся на плоском участке и углубленном участке для образования канала на виде сверху перфорированной плиты, так чтобы сквозное отверстие могло сообщаться с углубленным участком.
Предпочтительно в мембранном модуле разделения газа, по меньшей мере, одно из сквозных отверстий образовано как удлиненное отверстие.
Предпочтительно в мембранном модуле разделения газа все сквозные отверстия являются удлиненными отверстиями, при этом каждое из удлиненных отверстий образовано в радиальном направлении на виде сверху перфорированной плиты.
Предпочтительно в мембранном модуле разделения газа углубленный участок, образующий канал, образован в области, обращенной к выпуску газа в защитном элементе.
Предпочтительно в мембранном модуле разделения газа перфорированная плита также имеет:
(d) углубленный участок, образованный в поверхности ближе к трубной решетке для образования газового канала для направления газа от концевого участка трубной решетки к сквозному отверстию.
Предпочтительно в мембранном модуле разделения газа элемент из полых волокон имеет помимо пучка полых волокон и трубной решетки сердцевинную трубу, расположенную, по существу, в центре пучка полых волокон, при этом первый конец сердцевинной трубы скреплен с трубной решеткой, и второй конец прикреплен к участку внутри корпуса.
В настоящей заявке термин «по существу, центральный» включает в себя как термин «центральный», так и термин «по существу центральный».
Термин «в общем, контактирует с» включает в себя, как термин «контактирует», так и термин «по существу контактирует».
Термин «защитный элемент» предназначен для ссылки на элемент, прикрепленный для укрывания отверстия и т.п. и не обязательно ограничивается до элемента для закрывания этого места.
По настоящему изобретению может быть предусмотрен мембранный модуль разделения газов, в котором деформация трубной решетки может быть предотвращена посредством сдерживания деформации перфорированной плиты, в результате чего уменьшается риск разрушения трубной решетки и т.п.
Краткое описание чертежей
На фиг. 1 показан вид в разрезе примерной конфигурации мембранного модуля разделения газов;
на фиг. 2 – боковой вид элемента из полых волокон, устанавливаемого с возможностью демонтажа в модуле из фиг. 1;
на фиг. 3 A – вид сверху на перфорированную плиту;
на фиг. 3B – вид в разрезе по линии A-A, на котором показана перфорированная плита;
на фиг. 4 – перспективный вид перфорированной плиты с удаленной частью (некоторые из сквозных отверстий опущены);
на фиг. 5 – вид в разрезе, на котором показана взаимосвязь перфорированной плиты, трубной доски и защитного элемента в собранном виде;
на фиг. 6A – вид в разрезе, на котором показана примерная конфигурация других вариантов выполнения изобретения из Раздела 1;
на фиг. 6B – вид в разрезе, на котором показана примерная конфигурация модифицированных вариантов выполнения изобретения из Раздела 1;
на фиг. 7A – вид спереди направляющего элемента для использования во время установки элемента из полых волокон;
на фиг. 7B – вид сбоку справа направляющего элемента для использования во время установки элемента из полых волокон;
на фиг. 7C – вид сверху направляющего элемента для использования во время установки элемента из полых волокон;
на фиг. 8A – вид в разрезе установки элемента из полых волокон;
на фиг. 8B – вид в разрезе установки элемента из полых волокон;
на фиг. 8C – вид в разрезе установки элемента из полых волокон;
на фиг. 9 – вид в разрезе конфигурации мембранного модуля разделения газов по второму варианту выполнения из Раздела II.
Осуществление изобретения
Варианты выполнения мембранных модулей разделения газов будут описаны в Разделах I и II. Следует отметить, что уровень техники и проблема, которая должна быть решена в отношении изобретения по Разделу II, будут описаны в Разделе II. Также следует отметить, что по мере целесообразности один или несколько технических вопросов, раскрытых в одном разделе, могут комбинироваться с техническими вопросами, раскрытыми в другом разделе. Несмотря на то, что в приведенном ниже описании могут использоваться некоторые термины, указывающие направления, такие как правый, левый, верхний и нижний, и эти термины никоим образом не ограничиваются до настоящего изобретения. Например, в этом описании фиг. 3A и 3B могут упоминаться просто как фиг. 3.
Раздел I: Мембранный модуль разделения газов, в котором деформация трубной решетки может быть предотвращена посредством сдерживания деформации перфорированной плиты, в результате чего уменьшается риск разрушения трубной решетки и т.п.
(Конфигурация мембранного модуля разделения газов)
На фиг. 1 показан вид в разрезе мембранного модуля разделения газов по настоящему варианту выполнения. Мембранный модуль 100 разделения газов является модулем, в котором подача осуществляется со стороны кожуха, и в основном выполняет разделение газов таким же образом, как описано в документе JP 2008-178872, представленным автором настоящей заявки. Описания таких же или, по существу, таких же компонентов мембранного модуля 100 разделения газов, как и в JP2008-178872, частично опущены.
Как показано на фиг. 1, мембранный модуль 100 разделения газов включает в себя съемный элемент 140 из полых волокон, цилиндрический корпус 110 для размещения элемента 140 из полых волокон и защитные элементы 125, 127, прикрепленные с обоих концов цилиндрического корпуса 110.
Как показано на фиг. 2, элемент 140 из полых волокон имеет пучок 149 полых волокон, полученный посредством связывания нескольких полых волоконных мембран в пучок. Пучок 149 полых волокон может иметь, к примеру, круглое сечение. Трубные решетки (не показаны) для удерживания полых волоконных мембран образованы с одного конца или обоих концов пучка 149 полых волокон.
Полая волоконная мембрана может быть выполнена из любого материала, который имеет способность к разделению газов. Примеры предпочтительного материала включают в себя полимерный материал, в частности, полимерный материал в виде стекла при комнатной температуре (23°C), такой как полиимид, полисульфон, полиэфиримид, полифениленоксид и поликарбонат, поскольку они имеют требуемую способность к разделению газов. Такая полая волоконная мембрана может быть легко преобразована в петлевидную форму.
Элемент 140 из полых волокон может иметь сердцевинную трубу 142, расположенную, по существу, в центре пучка 149 полых волокон. Сердцевинная труба 142 является полым элементом, в котором образован газовый канал. Один конец сердцевинной трубы 142 (справа на фиг. 2) выступает как участок 143 штуцера от дальней торцевой крышки 148 (подробное описание приводится ниже), расположенной на конце пучка 149 полых волокон. Участок 143 штуцера должен вставляться в держатель 121 сердцевинной трубы внутри корпуса. В этом участке 143 штуцера также образован газовый канал, при этом газовый канал открыт на конце участка штуцера. Участок 143 штуцера имеет конусный участок 143a, образованный на его конце. Участок 143 штуцера также имеет кольцевую канавку 143b, образованную на его наружной периферии для установки уплотнительного кольца круглого сечения. Как сердцевинная труба 142, так и участок 143 штуцера могут быть изготовлены, помимо прочего, к примеру, из металла.
Элемент 140 из полых волокон имеет ближнюю торцевую крышку 146, расположенную на ближнем конце пучка 149 полых волокон, и дальнюю торцевую крышку 148, расположенную на его дальнем конце. Трубная решетка (позиция 10 на фиг. 5) для скрепления полых волоконных мембран расположена внутри ближней торцевой крышки 146. Полые волоконные мембраны скреплены между собой, при этом их концы открыты у наружной торцевой стороны трубной решетки 10. Эта конфигурация позволяет проникшему газу, текущему в полых волоконных мембранах, выходить с торцевой стороны трубной решетки. Следует отметить, что ближняя торцевая крышка 146 не является существенным компонентом настоящего изобретения и поэтому ее описание может быть опущено.
Торцевая крышка 148 может быть предназначена, к примеру, для удерживания концевого участка петлевых полых волоконных мембран. Торцевая крышка 148 может иметь, например, форму диска, и ее передняя сторона 148a является плоской стороной, перпендикулярной осевому направлению сердцевинной трубы 142. Следует отметить, что образование петель из полых волоконных мембран никоим образом не ограничивает настоящее изобретение.
Трубные решетки могут быть предназначены для разделения внутреннего пространства корпуса, так чтобы пространство снаружи полых волоконных мембран могло быть изолировано от пространства, сообщающегося как с газовым каналом, образованным в защитном элементе, так и с внутренней стороной полых волоконных мембран. В настоящем варианте выполнения трубная решетка может иметь, например, круглый профиль, а наружная торцевая сторона может быть плоской. Трубная решетка предпочтительно изготовлена из термопластичной смолы, такой как полиэтилен и полипропилен, или термоотверждающейся смолы, такой как, эпоксидная смола и уретановая смола.
Как показано на фиг. 2, ближняя торцевая крышка 146 может иметь две кольцевые канавки 146a, образованные на наружной периферии для установки уплотнительных колец круглого сечения. Эти уплотнительные кольца круглого сечения обеспечивают уплотнение между наружной периферией ближней торцевой крышки 146 и внутренней периферией корпуса 110. Перфорированная плита 170 может крепиться рядом с ближней торцевой крышкой 146. Несмотря на то, что может быть образована одиночная кольцевая канавка, две и больше кольцевых канавок являются предпочтительными, поскольку могут быть улучшены характеристики уплотнения.
Перфорированная плита 170 расположена между трубной решеткой 10 элемента 140 из полых волокон и защитным элементом 125, как показано на фиг. 5. Перфорированная плита 170 предназначена для восприятия давления, прикладываемого трубной решеткой 10, так чтобы совместно с защитным элементом 125 препятствовать деформации трубной решетки 10. Перфорированная плита может образовывать один или несколько газовых каналов для проникшего газа от открытых концов (не показано) полых волоконных мембран; эти газовые каналы предназначены для направления газа к выпуску 125a газа в защитном элементе 125. Перфорированная плита 170 может быть изготовлена из такого материала, как металл, смола или керамика.
Подробное описание конструкции перфорированной плиты 170 приводится ниже со ссылкой на фиг. 3 – 5. Прежде всего, приводится описание других конструктивных элементов мембранного модуля 100 разделения газов и разделения газов, выполняемого мембранным модулем 100 разделения газов.
Пучок 149 полых волокон может быть обмотан, по существу, газонепроницаемой пленкой 145, как показано на фиг. 2. Такая пленка 145 может укрывать почти всю наружную поверхность пучка 149 полых волокон (в частности, 60% и более и, в частности, 80% и более площади боковой поверхности), за исключением области рядом с трубной решеткой (см., например, «открытый участок A140»). Пленка 145 не имеет специальных ограничений, если она непроницаема для газа и имеет вид пленки, и предпочтительно может использоваться пленка, изготовленная из полимерного материала или металлической фольги. Пленка 145 может быть предназначена для регулирования течения газовой смеси внутри корпуса и для поддержания формы всего пучка полых волокон как единого конструкционного элемента с сердцевинной трубой, расположенной в центре. Следует отметить, что часть дальней торцевой крышки 148 может продолжаться таким образом, чтобы она могла иметь форму, соответствующую пленке 145.
Открытый участок A140, который не укрыт пленкой 145, может быть укрыт сетчатым элементом. Предпочтительным примером сетчатого элемента является листовой элемент, проницаемый для газа, в частности, листовой элемент, имеющий пористость 30% об. и более, более предпочтительно, 50 % об. и более. Сетчатый элемент необязательно должен быть выполнен из сетчатого материала. Сетчатый элемент может быть выполнен из тканого материала, нетканого материала, ситоткани или сетеобразного листа, изготовленного из волокна, полимера, бумаги или металла. В частности, предпочтительно использовать упругий сетчатый материал. Сетчатый материал предназначен для поддержания формы всего пучка полых волокон как единого конструкционного элемента с сердцевинной трубой, расположенной в центре, без замедления проникновения газа и, в частности, для препятствования колебаниям полых волоконных мембран из-за колебаний потока газа. Таким образом, конец сетчатого элемента предпочтительно заделан в трубную решетку и крепится к ней в месте полыми волоконными мембранами.
Сердцевинная труба 142 предназначена для предотвращения деформации элемента 140 из полых волокон и поддержания его формы. Ближний конец сердцевинной трубы 142 (конец слева на фиг. 2, не показан) может быть прикреплен в трубной решетке 10. Крепление может быть выполнено посредством заделывания части самой сердцевинной трубы 142 в трубной решетке 10. Как вариант, сердцевинная труба 142 может быть присоединена посредством ввертывания, например, используя резьбовой пластиковый элемент. В сердцевинной трубе 142 образован газовый канал. Сердцевинная труба 142 имеет несколько отверстий, образованных в ее наружной периферийной поверхности. Соответственно такой конфигурации непроникший газ, который не проник в полые волоконные мембраны, направляется к внутренней стороне сердцевинной трубы через несколько отверстий и затем выпускается через участок 143 штуцера сердцевинной трубы 142.
Цилиндрический корпус 110 имеет цилиндрический участок 111 и фланцевые участки 112, 113, образованные с обоих его концов. В примере, показанном на фиг. 1, цилиндрический корпус 110 может быть расположен горизонтально. Цилиндрический корпус 110 имеет предусмотренный в нем держатель 121 сердцевинной трубы, в который должен быть вставлен участок 143 штуцера элемента 140 из полых волокон. Держатель 121 сердцевинной трубы предназначен для удерживания сердцевинной трубы в центральном отверстии 121a и направления газа из сердцевинной трубы 142 наружу корпуса. Держатель 121 сердцевинной трубы может иметь конусный участок (конусный впуск, не показан) на входе в центральное отверстие для облегчения вставления участка 143 штуцера. Форма конусного участка особо не ограничивается, и могут использоваться различные конусные формы. Разумеется, что мембранный модуль разделения газов по настоящему изобретению не ограничивается до горизонтально ориентированного модуля, и могут использоваться вертикальная и другие ориентации.
На цилиндрическом участке 111 цилиндрического корпуса 110 может быть образован участок 115 для входа смешанного газа. Смешанный газ с наружной стороны вводится в цилиндрический корпус 110 через газовый канал 115a, образованный в участке 115 для входа смешанного газа.
Мембранный модуль 100 разделения газов, скомпонованный как описано выше, может использоваться следующим образом. Прежде всего, смешанный газ подается в цилиндрический сосуд 110 через газовый канал 115a участка 115 для входа смешанного газа. Затем поданный смешанный газ течет по наружной пленке 145 к ближнему концу элемента 140 из полых волокон и вступает в контакт с полыми волоконными мембранами открытого участка A140. Часть смешанного газа, в свою очередь, течет внутри пленки в противоположном направлении к направлению подачи смешанного газа. Смешанный газ течет в контакте с каждой из полых волоконных мембран, при этом конкретный газовый компонент смешанного газа избирательно приникает в полые волоконные мембраны, и после проникновения газ (проникший газ) проходит через полые волоконные мембраны и выпускается через концевой участок трубной решетки. Проникший газ затем выпускается наружу через газовый канал в перфорированной плите 170 и выпуск 125a газа в защитном элементе 125, как описано ниже.
С другой стороны, непроникший газ, который не проник в полые волоконные мембраны, течет в сердцевинную трубу 142 через несколько образованных в нем отверстий, проходит через сердцевинную трубу и направляется наружу через участок 143 штуцера. Непроникший газ из участка 143 штуцера затем проходит через центральное отверстие 121a в держателе 121 сердцевинной трубы и выпускается наружу через газовый канал 127a в защитном элементе 127.
Мембранный модуль 100 разделения газов по настоящему варианту выполнения может использоваться предпочтительно для разделения и сбора конкретного газового компонента от смешанного газа при избыточном давлении приблизительно 0,1 – 30 МПа, предпочтительно 0,2 – 25 МПа и более предпочтительно 1 – 25 МПа. Несмотря на отсутствие ограничений, модуль 100 предпочтительно может использоваться для таких применений, как разделение и сбор обогащенного кислородом воздуха или обогащенного азотом воздуха из воздуха, разделение и сбор водорода или гелия из смешанного газа, содержащего водород или гелий, и избирательное разделение и сбор газообразного метана и двуокиси углерода из смешанного газа, содержащего газообразный метан и двуокись углерода.
(Конфигурация перфорированной плиты)
Ниже приводится описание конфигурации и т.п. перфорированной плиты 170 для мембранного модуля 100 разделения газа по настоящему варианту выполнения со ссылкой на фиг. 3 – 5. На фиг. 3 показана перфорированная плита, при этом на фиг. 3A показан вид сверху, а на фиг. 3B показан вид в разрезе по линии A-A. На фиг. 4 показан перспективный вид перфорированной плиты с отрезанной частью (показано только одно из сквозных отверстий, при этом остальные отверстия опущены). На фиг. 5 показан вид в разрезе, где представлено взаиморасположение перфорированной плиты, трубной решетки и защитного элемента в собранном виде.
Перфорированная плита 170 имеет в целом форму плоского диска и имеет несколько сквозных отверстий 175, проходящих через элемент в направлении его толщины, как показано на фиг. 3 и фиг. 4. Сквозное отверстие 175 может иметь любую форму, которая может образовывать газовый канал для направления проникшего газа от трубной решетки к защитному элементу. В этом примере каждое из сквозных отверстий 175 образовано как удлиненное отверстие. Каждое удлиненное отверстие имеет форму, в которой оба конца прямоугольника образованы в виде полуокружности или дуги, к примеру, с заданным радиусом кривизны, но удлиненное отверстие может иметь другую форму.
Количество или положения сквозных отверстий 175 могут изменяться по обстоятельствам. В примере, показанном на фиг. 3, образовано восемь сквозных отверстий 175, которые продолжаются радиально, по существу, от центра перфорированной плиты 170. Сквозных отверстий 175 может быть семь или менее или девять и более, при этом количество таких отверстий может быть четным или нечетным. Сквозные отверстия 175 могут быть расположены с равными интервалами (с равными углами), так чтобы они могли равномерно принимать проникший газ от торцевого участка трубной решетки.
Как показано на фиг. 3 и фиг. 4, поверхность перфорированной плиты 170 ближе к защитному элементу может быть, в основном, образована плоской поверхностью 171a. Такая плоская поверхность 171a предназначена, в общем, для контакта с защитным элементом 125 после установки. Углубленный участок 171b, образующий канал, имеет заданную глубину для образования газового канала и образован, фактически, в центре поверхности (см. фиг. 4). Углубленный участок 171b, образующий канал, предпочтительно образован напротив отверстия выпуска 125a газа, так чтобы газ внутри газового канала, образованного углубленным участком, мог плавно течь в выпуск 125a газа в защитном элементе 125. Предпочтительно, размер углубленного участка 171b, по существу, равен размеру этого отверстия или превышает его.
Размер внутреннего диаметра и/или глубина углубленного участка 171b, образующего канал, могут быть определены по обстоятельствам в зависимости, например, от расхода проникшего газа. Например, глубина углубленного участка 171b, образующего канал, может составлять 1 – 15 мм, предпочтительно 3 – 8 мм. Углубленный участок 171b, образующий канал, может иметь круглый профиль, и в этом случае внутренний диаметр углубленного участка может составлять 1 – 60%, предпочтительно 1 – 40% диаметра перфорированной плиты 170. Предпочтительно, внутренний диаметр может, по меньшей мере, превышать каждый из диаметров выпуска 125a газа и центрального участка 172c.
Поверхность перфорированной плиты 170 ближе к трубной решетке имеет плоскую поверхность 172a аналогично поверхности ближе к защитному элементу и имеет углубленный участок 172b, образованный в ней участок для образования канала для проникшего газа, выпускаемого из торцевого участка трубной решетки. Углубленный участок 172b имеет кольцевую форму, так чтобы центральный участок 172c с круглым профилем оставался нетронутым. Глубина углубленного участка 172b, обращенного к трубной решетке (т.е. размер от поверхности перфорированной плиты 170 ближе к трубной решетке до нижней поверхности 172e углубленного участка) может составлять, к примеру, 1 – 15 мм, предпочтительно 5 – 10 мм. Центральный участок 172c может быть участком, который должен контактировать с торцевой поверхностью трубной решетки рядом с центром для непосредственной поддержки трубной решетки 10. Таким образом, центральный участок 172c предпочтительно является плоской поверхностью для устойчивой поддержки трубной решетки 10.
Газовый канал, состоящий из углубленного участка в перфорированной плите, предпочтительно расположен в том месте, которое соответствует области в трубной решетке, где расположены отверстия полых волоконных мембран. Перфорированная плита (поверхность рядом с трубной решеткой) предпочтительно контактирует с трубной решеткой в той области, где в трубной решетке отсутствуют отверстия волоконных мембран. Поверхность перфорированной плиты, обращенная к трубной решетке, предпочтительно (i) контактирует с трубной решеткой на 0- 15% общей площади поверхности на центральном участке, (ii) контактирует с трубной решеткой на 35 – 60% общей площади поверхности на наружном периферийном участке, и (iii) углубленный участок предпочтительно занимает 40 – 70% общей площади поверхности.
Как показано на фиг. 3, перфорированная плита 170 имеет ступенчатый участок 171c на наружном периферийном участке. В ступенчатом участке 171с может быть образовано несколько отверстий 179 для вставления крепежного элемента, такого как болт. Перфорированная плита 170 крепится к ближней торцевой крышке 146 с помощью крепежных элементов, таких как болты, проходящих через эти отверстия 179.
В настоящем варианте выполнения, как показан на фиг. 3 и фиг. 4, сквозное отверстие 175 в виде удлиненного отверстия образовано между плоской поверхностью 171a и углубленным участком 172b, другими словами, сквозное отверстие 175 продолжается от плоской поверхности 171a до углубленного участка 172b. Соответственно этой конструкции сквозное отверстие 175 может сообщаться с углубленным участком 171b на поверхности ближе защитному элементу, и также может сообщаться с углубленным участком 172b на поверхности ближе к трубной решетке.
Как показано на фиг. 5, перфорированная плита 170, сконфигурированная как описано выше, имеет несколько газовых каналов 177, состоящих из кольцевого углубленного участка 172b, сквозного отверстия 175 и углубленного участка 171b. Газовый канал 177 позволяет проникшему газу из полых волоконных мембран течь к выпуску газа 125a в защитном элементе 125.
Соответственно конструкции мембранного модуля 100 для разделения газов, включающего в себя перфорированную плиту 170, описанную выше, даже когда смешанный газ высокого давления подается в сосуд 110, и газ посредством высокого давления воздействует на трубную решетку 10, что может деформировать трубную решетку, в направлении ее толщины, деформация трубной решетки 10 может быть предотвращена, поскольку перфорированная плита 170 имеет конструкцию, устойчивую к воздействию деформаций, как описано ниже.
В частности, плоская поверхность 171a перфорированной плиты 170 в этом варианте выполнения (за исключением углубленного участка 171b в поверхности ближе к защитному элементу) контактирует с защитным элементом 125 в относительно широкой области. В частности, как показано на фиг. 3A, плоская поверхность 171a и защитный элемент 125 контактируют друг с другом в области S1 (область, окруженная штрихпунктирной линией с двумя точками на плоской поверхности 171a), где расположены сквозные отверстия. Следовательно, деформация перфорированной плиты 170 может быть предотвращена по сравнению с обычной конфигурацией, в которой сквозное отверстие образовано в более тонкой части без контакта с защитным элементом. В результате может быть предотвращена деформация трубной решетки 10 рядом с перфорированной плитой 170.
Если сквозное отверстие 175 образовано в виде удлиненного отверстия как в настоящем изобретении, каждое сквозное отверстие 175 открыто у большей области в торцевой участок трубной доски, в результате чего может быть получен более широкий газовый канал.
(Вариант)
Несмотря на то, что был описан один вариант выполнения изобретения, настоящее изобретение не ограничивается до этого варианта выполнения. Например, сквозные отверстия 175 необязательно должны быть образованы радиально, и вместо этого, по меньшей мере, некоторые отверстия из нескольких сквозных отверстий 175, к примеру, могут быть образованы параллельно друг другу. Форма удлиненного отверстия не ограничивается до прямого удлиненного отверстия, показанного на фиг. 3, и, как вариант, может использоваться криволинейное удлиненное отверстие. Все сквозные отверстия 175 могут не иметь одинаковую форму. Могут быть образованы два или три типа сквозных отверстий, имеющих различную форму (ширину и/или длину в случае использования удлиненного отверстия).
Углубленный участок 171b, образующий канал в перфорированной плите 170, может иметь овальный или многоугольный профиль, что является более предпочтительным, чем круглый профиль. Как вариант, может быть образовано несколько углубленных участков 171b, образующих каналы, так чтобы каждый из них соединял соответствующее сквозное отверстие 175 с выпуском 125a газа.
Форма сквозного отверстия 175 не ограничивается до равномерной площади сечения, и вместо этого площадь сечения может непрерывно или пошагово уменьшаться от трубной решетки к защитной крышке. Например, сквозное отверстие может иметь конусную внутреннюю периферию.
На фиг. 6 показан вид в разрезе другой примерной конфигурации по настоящему изобретению. На фиг. 6 используются ссылочные номера, такие как 170-1 для перфорированной плиты, и 125-1, 125-2 для защитных элементов, которые пронумерованы, принимая в расчет наличие или отсутствие углубленного участка, образующего канал, или, к примеру, различие в размере выпуска газа. Однако другие участки идентичны участкам перфорированной плиты 170 и защитного элемента 125, описанным выше.
В вышеописанном варианте выполнения углубленный участок 171b, образующий канал, образован в перфорированной плите 170. Однако углубленный участок 125b, образующий канал, может быть образован в защитном элементе 125-1, как показан на фиг. 6A. Углубленный участок 125b, образующий канал, должен образовывать газовый канал, который соединяет сквозные отверстия 175 с выпуском 125a газа. Форма углубленного участка 125b, образующего канал, особо не ограничивается. Углубленный участок 125b может иметь, к примеру, круглый, прямоугольный или многоугольный профиль и может быть образован с глубиной 1 – 15 мм, предпочтительно, к примеру, 5 – 10 мм.
Мембранный модуль разделения газов, как показано на фиг. 6A, включен в изобретение по этому варианту выполнения, как описано ниже.
(Мембранный модуль разделения газов по другому варианту выполнения)
Мембранный модуль разделения газов содержит:
элемент из полых волокон, имеющий пучок полых волокон, состоящий из нескольких полых волоконных мембран и трубной решетки, предусмотренной на конце пучка полых волокон для скрепления полых волоконных мембран;
корпус, имеющий отверстие, через которое вставляется или извлекается элемент из полых волокон;
защитный элемент, имеющий образованный в нем выпуск газа и прикрепленный для укрывания отверстия корпуса; и
перфорированную плиту, имеющую несколько сквозных отверстий для образования каналов; перфорированная плита устанавливается между трубной решеткой и защитным элементом;
мембранный модуль разделения газов, выполняющий разделение газов посредством подачи смешанного газа в полые волоконные мембраны,
при этом:
(a) перфорированная плита имеет плоский участок на поверхности ближе к защитному элементу, причем плоский участок выполнен таким образом, что он после установки, в общем, находится в контакте с защитным элементом, и, в плоском участке образовано, по меньшей мере, одно из сквозных отверстий,
(b) защитный элемент имеет углубленный участок, образующий канал, для образования газового канала, при этом газовый канал сообщается с выпуском газа; и
(c) образовано сквозное отверстие для сообщения с углубленным участком, образующим канал.
Как показано на фиг. 6B, может использоваться конфигурация, в которой углубленный участок, образующий канал, исключен из защитного элемента 125-2 или перфорированной плиты 170-1. В частности, в конфигурации из фиг. 6B выпуск 125a' газа в защитном элементе 125 образован таким образом, что он имеет больший внутренний диаметр и непосредственно сообщается со сквозными отверстиями 175 без углубленного участка, образующего канал 171b, 125b.
Согласно конфигурациям, показанным на фиг. 6A и 6B, перфорированная плита 170-1 во время разделения газов оказывает сопротивление деформации по сравнению с обычной конфигурацией, в которой сквозное отверстие предусмотрено для более тонкого участка без контакта с защитным элементом. В результате трубная решетка рядом с перфорированной плитой 170-1 также может быть защищена от деформации.
Раздел II: мембранный модуль разделения газов, обеспечивающий легкую и точную установку и т.п. съемного элемента из полых волокон, и способ замены элемента из полых волокон
(Область техники, к которой относится изобретение)
Изобретение, описываемое ниже, относится к мембранному модулю для разделения газов, который обеспечивает разделение газов, используя полую волоконную мембрану, в частности, к мембранному модулю для разделения газов, обеспечивающему легкую и точную установку и т.п. съемного элемента из полых волокон, и к способу замены элемента из полых волокон.
(Уровень техники)
В документе JP 2008-178872 описан мембранный модуль для разделения газов, включающий в себя элемент из полых волокон и корпус для размещения элемента из полых волокон, в котором смешанный газ при относительно высоком давлении направляется в элемент из полых волокон для обеспечения разделения газов. В частности, элемент из полых волокон имеет пучок полых волокон, состоящий из нескольких полых волоконных мембран, и сердцевинную трубу, расположенную в центре, при этом часть сердцевинной трубы выступает из пучка полых волокон в виде участка штуцера. Для установки элемента из полых волокон он вставляется в корпус таким образом, что участок штуцера может соединяться с заданным держателем сердцевинной трубы, расположенным внутри корпуса.
(Проблема, которая должна быть решена с помощью изобретения из этого раздела)
В конфигурации, описанной в документе JP 2008-178872, необходимо точно расположить участок штуцера элемента из полых волокон относительно держателя сердцевинной трубы внутри корпуса. Например, в случаях, когда элементы из полых волокон являются относительно длинными, сложно регулировать положение участка штуцера (в частности, положение в радиальном направлении, или положение в направлении, перпендикуляром направлению продольной оси). По этой причине существует проблема, состоящая в том, что вставление участка сопла в держатель сердцевинной трубы требует больше времени. В этом случае отсутствует возможность выполнения надлежащего соединения между участком штуцера и держателем сердцевинной трубы и, таким образом, между этими элементами не может быть обеспечено герметичное соединение, что уменьшает функциональность мембранного модуля разделения газов. С другой стороны, если вставлять элемент с усилием, существует риск разрушения участка штуцера.
Настоящее изобретение из этого раздела осуществлено с учетом описанных выше проблем и, таким образом, задача настоящего изобретения состоит в том, чтобы предложить мембранный модуль разделения газов, обеспечивающий легкую и точную установку и т.п. съемного элемента из полых волокон и способ замены элемента из полых волокон.
(Средства решения проблем)
Для решения задачи по настоящему изобретению предлагается:
Мембранный модуль разделения газов, выполняющий разделение газов посредством подачи смешанного газа в полые волоконные мембраны и содержащий:
(a) съемный элемент из полых волокон, включающий в себя пучок полых волокон, состоящий из нескольких полых волоконных мембран, и сердцевинной трубы, расположенной, в общем, в центре пучка полых волокон, при этом участок сердцевинной трубы выступает в качестве участка штуцера;
(b) цилиндрический корпус, по меньшей мере, имеющий отверстие, через которое вставляется или извлекается элемент из полых волокон, и держатель сердцевинной трубы для удерживания участка штуцера и для образования газового канала, при этом газовый канал сообщается с газовым каналом внутри участка штуцера; и
(c) защитный элемент, прикрепленный к отверстию,
а также содержащий:
направляющий элемент для направления элемента из полых волокон во время позиционирования участка штуцера, при этом направляющий элемент поддерживается в заданном положении во время вставления элемента из полых волокон в цилиндрический корпус или во время извлечения этого элемента из цилиндрического корпуса.
Предпочтительно в мембранном модуле разделения газа направляющий элемент включает в себя:
основной элемент, имеющий образованный в нем опорный участок, при этом опорный участок поддерживает участок штуцера или участок элемента из полых волокон; и
опору, предусмотренную для основного элемента и, в общем опирающуюся на внутреннюю периферийную поверхность цилиндрического корпуса.
Предпочтительно в мембранном модуле разделения газа направляющий элемент содержит две опоры.
Предпочтительно в мембранном модуле разделения газа опора является цилиндрической штангой.
Предпочтительно в мембранном модуле разделения газа цилиндрическая штанговая опора расположена, в общем, перпендикулярно основному элементу и выполнена таким образом, что часть опоры, продолжающаяся в первом направлении от основного элемента, превышает по длине часть опоры, продолжающейся во втором направлении, противоположном первому направлению.
Предпочтительно в мембранном модуле разделения газа элемент из полых волокон содержит два элемента из полых волокон, при этом два элемента из полых волокон расположены на одной и той же оси внутри цилиндрического корпуса.
Предпочтительно в мембранном модуле разделения газа направляющий элемент крепится к части элемента из полых волокон.
Предпочтительно в мембранном модуле разделения газа направляющий элемент крепится или к участку штуцера элемента из полых волокон или к боковому элементу, расположенному рядом с концом пучка полых волокон.
Способ замены элемента из полых волокон внутри цилиндрического корпуса мембранного модуля разделения газов, содержащий, по меньшей мере, следующие этапы:
(a) вставление дальнего конца элемента из полых волокон в цилиндрический корпус через отверстие корпуса;
(b) перемещение элемента из полых волокон в цилиндрический корпус в осевом направлении корпуса; и
(c) соединение участка штуцера на дальнем конце элемента из полых волокон с держателем сердцевинной трубы цилиндрического корпуса,
при этом, по меньшей мере, на этапах (b) и (c) элемент из полых волокон перемещается для соединения участка штуцера с держателем сердцевинной трубы, используя направляющий элемент, поддерживающий в направлении высоты заданное положение участка штуцера.
В настоящей заявке термин «в общем, перпендикулярный» включает в себя как термин «перпендикулярный», так и термин «по существу перпендикулярный». Термин «в общем, центральный» включает в себя как термин «центральный», так и термин «по существу центральный». Термин «в общем, опирающийся» включает в себя как термин «опирающийся», так и термин «по существу опирающийся».
Термин «защитный элемент» предназначен для ссылки на элемент, прикрепленный для укрывания отверстия и т.п. и не обязательно ограничивается до элемента для закрывания этого места.
По настоящему изобретению предлагаются мембранный модуль разделения газов, который обеспечивает легкую и точную установку и т.п. съемного элемента из полых волокон, и способ замены элемента из полых волокон.
(Конфигурация мембранного модуля разделения газов)
Следует отметить, что в приведенном ниже описании опущены такие же пояснения, как и в Разделе 1.
(Первый вариант выполнения изобретения в Разделе II)
Несмотря на то, что в приведенном ниже описании представлены, по существу, варианты выполнения, в которых элемент из полых волокон (описанный ниже) вставляется горизонтально, настоящее изобретение до этого не ограничивается. Вариант выполнения, в котором элемент из полых волокон вставляется вертикально, будет описан в четвертом варианте выполнения.
Перфорированная плита 147 может быть известной стандартной плитой, например, как описано в документе JP 2008-178872. Например, перфорированная плита 147 имеет несколько сквозных отверстий (не показаны) в направлении по толщине и имеет как функцию конструктивного элемента, так и функцию газового канала. Перфорированная плита 147 может быть изготовлена из такого материала, как металл, смола или керамика. Как вариант, также могут использоваться перфорированные плиты, описанные в Разделе I.
Перфорированная плита может быть установлена таким образом, чтобы, по меньшей мере, ее участок мог контактировать с трубной решеткой и поддерживать ее. Перфорированная плита может контактировать с трубной решеткой в ее центральной части и/или на периферийном участке для поддержки трубной решетки. Другая функция перфорированной плиты состоит в том, чтобы образовывать газовый канал для направления проникшего газа, выпускаемого из отверстий полых волоконных мембран, расположенных у поверхности трубной решетки, к газовому каналу, образованному в защитном элементе.
(Установка и т.п. элемента из полых волокон)
Как описано выше, в этом варианте выполнения элемент 140 из полых волокон вставляется горизонтально в цилиндрический корпус 110 и крепится в нем. В случае этой конфигурации необходимо точное позиционирование участка 143 штуцера на дальнем конце элемента 140 из полых волокон относительно центрального отверстия 121a, образованного в держателе 121 сердцевинной трубы. В некоторых случаях элемент 140 из полых волокон может иметь длину более одного метра в зависимости от технических условий. В этом случае более сложно вставлять участок 143 штуцера элемента 140 из полых волокон в центральное отверстие 121a держателя 121 сердцевинной трубы.
Для решения этой проблемы в настоящем варианте выполнения используется направляющий элемент 160, показанный на фиг. 7A – 7C. Направляющий элемент 160 имеет основной элемент 161, как показано на фиг. 7A, имеющий углубленный опорный участок 161s, образованный для поддержки нижней части участка 143 штуцера, и две опоры 163, предусмотренные под основным элементом 161. Несмотря на отсутствие ограничений, как основной элемент 161, так и опоры 163 могут быть изготовлены из металла.
В качестве направляющего элемента 160 может использоваться любой элемент или конструкция, если (i) она может поддерживать участок 143 штуцера на заданной высоте, и если (ii) она может перемещаться вместе с элементом 140 из полых волокон в цилиндрическом корпусе 110 во время вставления элемента. Разумеется, что может использоваться конфигурация, отличающаяся от конфигурации из фиг. 3.
В этом примере основной элемент 161 является плоской плитой и имеет, в общем, трапециевидный профиль, если смотреть спереди, как показано на фиг. 7A. На верхней стороне основного элемента 161 образован опорный участок 161s для поддержки нижней части участка 143 штуцера. Опорный участок 161s может быть образован как дугообразная выемка, соответствующая наружной форме участка 143 штуцера. Это позволяет надежно удерживать участок 143 штуцера. Как вариант, опорный участок 161s может быть образован как V-образная канавка вместо дугообразной выемки.
Каждая из опор 163 крепится перпендикулярно или, по существу, перпендикулярно основному элементу 161, имеющему форму плоской плиты. Опора 3 может быть сплошной или полой цилиндрической штангой. Соответственно таким конструкциям уменьшается площадь контакта между периферийной стороной опоры 163 и внутренней периферийной стороной цилиндрического корпуса 110, как показано на фиг. 7A, и обеспечивается контакт между кривыми, поэтому направляющий элемент 160 может плавно скользить по внутренней поверхности цилиндрического корпуса 110.
Что касается места, где основной элемент 161 крепится к опоре 163 (см. фиг. 7C), основной элемент 161 может быть предусмотрен в центре опоры 163 в направлении ее длины. В настоящем варианте выполнения основной элемент 161 крепится к опоре 163 в том месте, которое смещено от центра. На фиг. 7C показана опора 163, в которой относительно длинный участок является длинным участком 163a, и относительно короткий участок является коротким участком 163b.
Ниже приводится описание установки элемента 140 из полых волокон с помощью направляющего элемента 160.
Прежде всего, как показано на фиг. 8A, направляющий элемент 160 устанавливается в цилиндрический корпус 110 рядом с его отверстием без прикрепленного защитного элемента 125. Направляющий элемент 160 ориентирован таким образом, что длинный участок 163a опоры 163 обращен к передней стороне в направлении вставления. Затем элемент 140 с полыми волокнами вставляется в цилиндрический корпус 110 через отверстие 110a, так чтобы участок 143 штуцера элемента 140 с полыми волокнами опирался на опорный участок 161s направляющего элемента 160.
Далее, как показано на фиг. 8B, продолжается вставление элемента 140 из полых волокон в цилиндрический корпус 110. На этом этапе участок 143 штуцера поддерживается на опорном участке 161s направляющего элемента 160. Передняя сторона 148a дальней торцевой крышки элемента 140 из полых волокон упирается в поверхность основного элемента 161. Таким образом, во время вставления элемента 140 из полых волокон направляющий элемент 160 толкается элементом 140 из полых волокон и перемещается со скольжением.
Направляющий элемент 160 перемещается со скольжением следующим образом. В настоящем варианте выполнения, поскольку опоры 163 имеют форму цилиндрической штанги, как показано на фиг. 7, опоры 163 плавно скользят внутри цилиндрического корпуса 110. Кроме того, направляющий элемент 160 имеет две опоры 163, предназначенные для опирания на внутреннюю поверхность цилиндрического корпус 110, и, следовательно, участок 143 штуцера может надежно поддерживаться внутри цилиндрического корпуса 110. Кроме того, поскольку направляющий элемент 160 ориентирован таким образом, что длинный участок 163a опоры 163 обращен к передней стороне в направлении вставления, предотвращается падение направляющего элемента 160 в направлении вставления во время скольжения.
Затем элемент 140 из полых волокон перемещается в положение, показанное на фиг. 8C, так чтобы участок 143 штуцера мог быть вставлен в центральное отверстие 121a, образованное в держателе 121 сердцевинной трубы. Поскольку высота участка 143 штуцера поддерживается в заданном положении (т.е. в положении, где осевая линия участка 143 штуцера выровнена c осевой линией центрального отверстия 121a держателя 121 сердцевинной трубы) с помощью направляющего элемента 160, участок 143 штуцера может плавно вставляться в центральное отверстие 121a.
В состоянии, показанном на фиг. 8C, уплотнительное кольцо круглого сечения (не показано) на наружной периферии участка 143 штуцера может образовывать уплотнение между участком 143 штуцера и внутренней периферией держателя 121 сердцевинной трубы. Кроме того, уплотнительные кольца круглого сечения (не показаны) на наружной периферии ближней торцевой крышки 146 образуют уплотнения между ближней торцевой крышкой 146 элемента 140 из полых волокон и внутренней периферией цилиндрического корпуса 110.
И, наконец, защитный элемент обычным способом крепится к фланцевому участку 112 цилиндрического корпуса 110, например, с помощью нескольких болтов и гаек. После этого показанный на фиг. 1 мембранный модуль 100 разделения газа, в котором подача осуществляется со стороны кожуха, считается собранным.
Соответственно конструкции мембранного модуля 100 разделения газов по настоящему изобретению, сконфигурированного, как описано выше, вставление элемента 140 из полых волокон в цилиндрический корпус 110 может выполняться на заданной высоте участка 143 штуцера элемента 140 из полых волокон, поддерживаемой с помощью направляющего элемента 160, что обеспечивает точное позиционирование по высоте участка 143 штуцера. Как результат, участок 143 штуцера может быть плавно вставлен в центральное отверстие 121a держателя 121 сердцевинной трубы.
(Второй вариант выполнения)
В мембранном модуле разделения газов по настоящему изобретению два элемента 140 из полых волокон могут быть установлены, как показано на фиг. 9. Мембранный модуль 100' разделения газов включает в себя цилиндрический корпус 110' большей длины по сравнению с корпусом по первому варианту выполнения, и защитные элементы 125-1, 125-2, прикрепленные к обоим его концам. Два элемента из полых волокон расположены на одной оси внутри цилиндрического корпуса 110'.
Держатель 121' сердцевинной трубы расположен, в общем, в центре цилиндрического корпуса 110'. Держатель 121' сердцевинной трубы открыт с обоих концов, так чтобы участок 143 штуцера одного из элементов 140 из полых волокон вставлялся в отверстие, в то время как участок 143 штуцера другого элемента 140 из полых волокон вставлялся в другое боковое отверстие. Участок 117 выпуска непроникшего газа соединен с держателем 121' сердцевинной трубы, так чтобы непроникший газ мог выходить наружу через участок 117 выпуска.
В конфигурации, где два элемента 140 из полых волокон установлены в цилиндрическом корпусе 110, как описано выше, могут быть обеспечены такие же функционирование и эффект, как и по первому варианту выполнения, за счет использования двух направляющих элементов 160 для каждого из элементов 140 из полых волокон и вставления элементов 140 из полых волокон, используя направляющий элемент 160, аналогично первому варианту выполнения.
(Третий вариант выполнения)
В другом варианте выполнения настоящего изобретения направляющий элемент 160 может быть прикреплен к элементу 140 из полых волокон. Это обеспечивает преимущество не только в отношении установки элемента 140 из полых волокон, но также и в отношении демонтажа элемента 140, поскольку извлечение элемента 140 может выполняться с использованием поддержки точного положения участка штуцера (направление высоты).
Средство крепления направляющего элемента 160 к элементу 140 из полых волокон специально не ограничивается. Крепление может выполняться, к примеру, с помощью такого крепежного элемента, как болт, посредством сварки или механического контакта. Направляющий элемент 160 может крепиться с возможностью разборки, однако направляющий элемент может крепиться и с помощью неразъемного соединения. Кроме того, направляющий элемент 160 может быть объединен с любым из элементов, составляющих элемент 140 из полых волокон. В этом случае следует отметить, что направляющий элемент 160 составляет часть какого-либо элемента и не является отдельным элементом.
(Четвертый вариант выполнения)
В мембранном модуле разделения газов по настоящему изобретению один или несколько элементов из полых волокон могут быть расположены в корпусе вертикально. В таком случае требуется, чтобы направляющий элемент имел функцию поддерживания участка штуцера элемента из полых волокон в заданном положении, например, в центральном положении в направлении диаметра в цилиндрическом корпусе. Таким образом, направляющий элемент может иметь три, четыре или пять и более опор, предназначенных, в общем, для опирания на внутреннюю периферию цилиндрического корпуса. В этом случае опоры могут быть расположены равномерно в направлении по окружности. Вместо опор могут использоваться вращающиеся элементы, такие как ролик или шина, предназначенные для вращения в цилиндрическом корпусе, в общем, в контакте с корпусом.
(Дополнительные замечания по конфигурации каждого компонента)
Несмотря на то, что несколько вариантов выполнения настоящего изобретения были описаны со ссылкой на чертежи, настоящее изобретение не ограничивается до конкретных конфигураций, описанных выше. В частности, приведенная ниже информация может использоваться при конфигурировании каждого компонента мембранного модуля разделения газов.
Настоящее изобретение применимо для любого мембранного модуля разделения газов, который включает в себя съемный элемент из полых волокон и требует вставления элемента из полых волокон в горизонтальном/вертикальном направлении для соединения участка штуцера с заданным держателем. Следует отметить, что, несмотря на то, что варианты выполнения были описаны, главным образом, со ссылкой на модуль, в котором подача осуществляется со стороны кожуха, настоящее изобретение, разумеется, применимо к модулю, в котором подача осуществляется со стороны отверстия.
Что касается направляющего элемента, количество опор 163 (см. фиг. 3) не ограничивается до двух, и направляющий элемент может иметь три и более опор. Для обеспечения более плавного скольжения опоры 163 один или несколько концов участка опоры 163 могут иметь более узкую форму (т.е. конусную форму или полусферическую форму). Имеется возможность использовать частично скошенную форму с нижней стороны опоры. Несмотря на то, что на фиг. 7 показан направляющий элемент 160, поддерживающий участок 143 штуцера, положение, в котором обеспечивается поддержка с помощью направляющего элемента 160, не ограничивается. Направляющий элемент может поддерживать часть элемента 140 из полых волокон для обеспечения заданного положения участка 143 штуцера.
Отверстие для подачи смешанного газа предпочтительно расположено на противоположной стороне относительно стороны, где расположена трубная решетка элемента из полых волокон во время установки элемента (т.е. на стороне дальнего конца элемента из полых волокон). В частности, смешанный газ, поступающий через отверстие для подачи смешанного газа, предпочтительно не продувается непосредственно в полую волоконную мембрану. Это связано с тем, что такая предпочтительная конфигурация может уменьшать возможность разрушения полой волоконной мембраны, а также обеспечивать равномерное течение смешанного газа.
Соединение между участком сопла сердцевинной трубы и держателем сердцевинной трубы не ограничивается до соединения, выполненного, как описано выше. Например, соединение может быть выполнено посредством соединения промежуточного соединительного элемента соответствующей формы с держателем сердцевинной трубы. Кроме того, держатель сердцевинной трубы может быть элементом, объединенным с корпусом, вместо элемента, выполненного от корпуса. Другими словами, некоторая часть корпуса может иметь функцию держателя сердцевинной трубы.
Ссылочные номера
10 Трубная решетка
100, 100' Мембранный модуль разделения газов
110 Цилиндрический корпус
110a Отверстие
111 Цилиндрический участок
112, 113 Фланцевый участок
115 Отверстие для подачи смешанного газа
115a Канал для подачи смешанного газа
117 Участок выпуска непроникшего газа
121, 121' Участок фиксации сердцевинной трубы
121a Центральное отверстие
125, 125-1, 125-2 Защитный элемент
125a, 127a Выпуск газа
125b Углубленный участок, образующий канал
127 Защитный элемент
140 Элемент из полых волокон
142 Сердцевинная труба
143 Участок штуцера
143a Конусный участок
143b Кольцевая канавка
145 Пленка
146 Ближняя торцевая крышка
146a Кольцевая канавка
147 Перфорированная плита
148 Дальняя торцевая крышка
148a Передняя сторона
149 Пучок полых волокон
160 Направляющий элемент
161 Основной элемент
161s Опорный участок
163 Опора
163a Длинный участок
163b Короткий участок
170, 170-1 Перфорированная плита
171a Плоская поверхность
171b Углубленный участок, образующий канал
171c Ступенчатый участок
172a Плоская сторона
172b Углубленный участок
172c Центральный участок
172e Нижняя поверхность
175 Сквозное отверстие
177 Газовый канал
179 Отверстие
A140 Открытый участок
S1 Область, где образованы сквозные отверстия

Claims (21)

1. Мембранный модуль разделения газов, предназначенный для разделения газов посредством подачи смешанного газа в полые волоконные мембраны и содержащий
(a) съемный элемент из полых волокон, включающий в себя пучок полых волокон, состоящий из нескольких полых волоконных мембран, и сердцевинную трубу, расположенную, в общем, в центре пучка полых волокон, при этом участок сердцевинной трубы выступает в качестве участка штуцера;
(b) цилиндрический корпус, по меньшей мере, имеющий отверстие, через которое вставляется или извлекается элемент из полых волокон, и держатель сердцевинной трубы для удерживания участка штуцера и для образования газового канала, при этом газовый канал сообщен с газовым каналом внутри участка штуцера; и
(c) защитный элемент, прикрепленный к отверстию,
дополнительно содержащий
направляющий элемент для направления элемента из полых волокон во время позиционирования участка штуцера, при этом направляющий элемент поддерживается в заданном положении во время вставления элемента из полых волокон в цилиндрический корпус или во время извлечения этого элемента из цилиндрического корпуса.
2. Модуль по п. 1, в котором направляющий элемент включает в себя
основной элемент, имеющий образованный в нем опорный участок, при этом опорный участок поддерживает участок штуцера или участок элемента из полых волокон; и
опору, предусмотренную для основного элемента и, в общем, опирающуюся на внутреннюю периферийную поверхность цилиндрического корпуса.
3. Модуль по п. 2, в котором направляющий элемент содержит две опоры.
4. Модуль по любому из пп. 1 или 2, в котором опора является цилиндрической штангой.
5. Модуль по п. 4, в котором цилиндрическая штанговая опора расположена, в общем, перпендикулярно основному элементу и выполнена таким образом, что часть опоры, продолжающаяся в первом направлении от основного элемента, превышает по длине часть опоры, продолжающейся во втором направлении, противоположном первому направлению.
6. Модуль по любому из пп. 1-3, в котором элемент из полых волокон содержит два элемента из полых волокон, при этом два элемента из полых волокон расположены на одной и той же оси внутри цилиндрического корпуса.
7. Модуль по п. 6, в котором цилиндрический корпус имеет первое и второе отверстия на обоих концах, при этом один из двух элементов из полых волокон вставлен в цилиндрический корпус через первое отверстие, в то время как другой элемент из полых волокон вставлен в цилиндрический корпус через второе отверстие.
8. Модуль по любому из пп. 1-3, в котором направляющий элемент прикреплен к части элемента из полых волокон.
9. Модуль по п. 8, в котором направляющий элемент прикреплен или к участку штуцера элемента из полых волокон, или к боковому элементу, расположенному рядом с концом пучка полых волокон.
10. Способ замены элемента из полых волокон внутри цилиндрического корпуса мембранного модуля разделения газов, содержащий, по меньшей мере, следующие этапы:
(a) вставление дальнего конца элемента из полых волокон в цилиндрический корпус через отверстие корпуса;
(b) перемещение элемента из полых волокон в цилиндрический корпус в осевом направлении корпуса; и
(c) соединение участка штуцера на дальнем конце элемента из полых волокон с держателем сердцевинной трубы цилиндрического корпуса,
при этом, по меньшей мере, на этапах (b) и (c) элемент из полых волокон перемещают для соединения участка штуцера с держателем сердцевинной трубы, используя направляющий элемент, поддерживающий в направлении высоты заданное положение участка штуцера.
RU2017140865A 2012-08-17 2013-08-16 Мембранный модуль разделения газов и способ замены элемента из полых волокон RU2747951C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-181036 2012-08-17
JP2012181036A JP5966757B2 (ja) 2012-08-17 2012-08-17 ガス分離膜モジュールおよび中空糸エレメントの交換方法
JP2012-188912 2012-08-29
JP2012188912A JP6051687B2 (ja) 2012-08-29 2012-08-29 ガス分離膜モジュール

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2013138424A Division RU2637329C2 (ru) 2012-08-17 2013-08-16 Мембранный модуль разделения газов и способ замены элемента из полых волокон

Publications (3)

Publication Number Publication Date
RU2017140865A RU2017140865A (ru) 2019-05-23
RU2017140865A3 RU2017140865A3 (ru) 2021-03-22
RU2747951C2 true RU2747951C2 (ru) 2021-05-17

Family

ID=50076329

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2013138424A RU2637329C2 (ru) 2012-08-17 2013-08-16 Мембранный модуль разделения газов и способ замены элемента из полых волокон
RU2017140865A RU2747951C2 (ru) 2012-08-17 2013-08-16 Мембранный модуль разделения газов и способ замены элемента из полых волокон

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2013138424A RU2637329C2 (ru) 2012-08-17 2013-08-16 Мембранный модуль разделения газов и способ замены элемента из полых волокон

Country Status (3)

Country Link
US (1) US9199191B2 (ru)
CN (1) CN103585889B (ru)
RU (2) RU2637329C2 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9718023B2 (en) * 2010-11-04 2017-08-01 Ube Industries, Ltd. Gas separation membrane module and gas separation method
US9566553B2 (en) * 2011-06-08 2017-02-14 The Boeing Company Fluid separation assembly and method
US20140217007A1 (en) * 2013-02-06 2014-08-07 Hsin Tien Chiu Filtering apparatus with hollow membrane module for draining off debris
EP3102313B1 (en) * 2014-02-03 2021-04-21 Eurosider S.a.S. di Milli Ottavio & C. Module for separating nitrogen with hollow-fibre membrane
CN104941394B (zh) 2014-03-31 2020-03-03 宇部兴产株式会社 气体分离系统及富化气体的制造方法
US9962659B2 (en) * 2015-06-30 2018-05-08 Air Liquide Advanced Technologies U.S. Llc Gas separation membrane module for reactive gas service
US20170001147A1 (en) * 2015-06-30 2017-01-05 Air Liquide Advanced Technologies U.S. Llc Gas separation membrane module for reactive gas service
US10016728B2 (en) * 2015-06-30 2018-07-10 L'Air Liquide Societe Anonyme Pour L'Etude Et L'Etude Et L'Exploitation Des Procedes Georges Claude Gas separation membrane module for reactive gas service
US20170001148A1 (en) * 2015-06-30 2017-01-05 Air Liquide Advanced Technologies U.S. Llc Gas separation membrane module for reactive gas service
KR101745784B1 (ko) * 2015-09-03 2017-06-20 씨제이제일제당 (주) 전통 메주에서 분리한 신균주와 이를 이용한 콩곡자 제조방법 및 그 제조방법에 의해 제조된 콩곡자
US10086326B2 (en) 2016-03-31 2018-10-02 Membrane Technology And Research, Inc. Gas separation module and assembly
US9579605B1 (en) * 2016-03-31 2017-02-28 Membrane Technology And Research, Inc. Gas separation module and assembly
JP6973074B2 (ja) * 2016-05-25 2021-11-24 東レ株式会社 分離膜モジュール
CN115531963A (zh) * 2017-09-19 2022-12-30 株式会社村田制作所 过滤装置以及过滤方法
HUE062426T2 (hu) * 2017-11-13 2023-11-28 Micropore Tech Ltd Keresztáramú szerelvény és eljárás membrán emulzifikálással szabályozott cseppek elõállítására
WO2020117762A1 (en) 2018-12-03 2020-06-11 Carrier Corporation Enhanced refrigeration purge system
US11686515B2 (en) 2018-12-03 2023-06-27 Carrier Corporation Membrane purge system
US11913693B2 (en) 2018-12-03 2024-02-27 Carrier Corporation Enhanced refrigeration purge system
WO2020117592A1 (en) 2018-12-03 2020-06-11 Carrier Corporation Enhanced refrigeration purge system
US11344841B2 (en) 2020-03-09 2022-05-31 Hamilton Sundstrand Corporation Air separation modules and methods of making air separation modules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2042409C1 (ru) * 1991-07-26 1995-08-27 Эр Продактс Энд Кемикалз, Инк. Сепарационный модуль
US20100326278A1 (en) * 2006-12-29 2010-12-30 Ube Industries ,Ltd. Shell feed type gas separation membrane module
US20140014568A1 (en) * 2007-11-30 2014-01-16 Baxter Healthcare S.A. Multizone polymer membrane and dialyzer
US20140047981A1 (en) * 2011-04-27 2014-02-20 Nitto Denko Corporation Ventilation unit
US20140208947A1 (en) * 2013-01-30 2014-07-31 Honeywell International, Inc., Patent Services M/S Ab/2B Air separation module with clam shell axial support

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3422008A (en) * 1963-10-24 1969-01-14 Dow Chemical Co Wound hollow fiber permeability apparatus and process of making the same
US4220489A (en) * 1978-10-30 1980-09-02 Albany International Corporation Method of fabricating a hollow filament separator module
US4207192A (en) * 1978-09-19 1980-06-10 Albany International Corp. Hollow filament separatory module and method of fabrication
US4368124A (en) * 1979-04-09 1983-01-11 Brumfield Robert C Method of winding a mass transfer device and product
US4358377A (en) * 1980-09-02 1982-11-09 The Dow Chemical Company Shear-vectoring design for composite casing end and removable, pressure-locking closure therefor
US4352736A (en) * 1980-12-08 1982-10-05 Toyo Boseki Kabushiki Kaisha Wound flattened hollow fiber assembly having plural spaced core sections
US5188801A (en) * 1988-06-07 1993-02-23 Cortek S.P.A. Device for the treatment of blood
US5470469A (en) * 1994-09-16 1995-11-28 E. I. Du Pont De Nemours And Company Hollow fiber cartridge
US5914154A (en) * 1997-05-30 1999-06-22 Compact Membrane Systems, Inc. Non-porous gas permeable membrane
US6224763B1 (en) * 1999-05-05 2001-05-01 Alberta Res Council Hollow-fiber membrane device including a split disk tube sheet support
CN100423814C (zh) * 2004-02-19 2008-10-08 宇部兴产株式会社 从空气中分离/回收富氧空气的方法、其装置和气体分离膜组件
US7918921B2 (en) * 2005-02-04 2011-04-05 Membrane Technology And Research, Inc Gas separation membrane module assembly with residue manifold
US7404843B2 (en) * 2005-02-04 2008-07-29 Membrane Technology & Research Inc Gas separation membrane module assembly
US7758670B2 (en) * 2006-07-11 2010-07-20 Membrane Technology And Research, Inc Four-port gas separation membrane module assembly
JP5701473B2 (ja) 2006-12-29 2015-04-15 宇部興産株式会社 シェルフィード型ガス分離膜モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2042409C1 (ru) * 1991-07-26 1995-08-27 Эр Продактс Энд Кемикалз, Инк. Сепарационный модуль
US20100326278A1 (en) * 2006-12-29 2010-12-30 Ube Industries ,Ltd. Shell feed type gas separation membrane module
US20140014568A1 (en) * 2007-11-30 2014-01-16 Baxter Healthcare S.A. Multizone polymer membrane and dialyzer
US20140047981A1 (en) * 2011-04-27 2014-02-20 Nitto Denko Corporation Ventilation unit
US20140208947A1 (en) * 2013-01-30 2014-07-31 Honeywell International, Inc., Patent Services M/S Ab/2B Air separation module with clam shell axial support

Also Published As

Publication number Publication date
RU2637329C2 (ru) 2017-12-04
CN103585889B (zh) 2017-06-23
RU2013138424A (ru) 2015-02-27
RU2017140865A (ru) 2019-05-23
RU2017140865A3 (ru) 2021-03-22
US9199191B2 (en) 2015-12-01
CN103585889A (zh) 2014-02-19
US20140047982A1 (en) 2014-02-20

Similar Documents

Publication Publication Date Title
RU2747951C2 (ru) Мембранный модуль разделения газов и способ замены элемента из полых волокон
EP2883592A1 (en) Gas-separating membrane module
US4929259A (en) Hollow fiber membrane fluid separation module for boreside feed
EP1582252B1 (en) Three-port high performance mini hollow fiber membrane contactor
US5059374A (en) Method for sealing a hollow fiber membrane module in a case
CA2986833C (en) Hollow fibre membrane cartridge and module for the separation of fluids
JPH04235720A (ja) 中空糸膜流体分離装置
US9186628B2 (en) Air separation module with clam shell axial support
KR102502797B1 (ko) 유체들의 분리를 위한 유연하게 조정가능한 막 카트리지들
JP5966757B2 (ja) ガス分離膜モジュールおよび中空糸エレメントの交換方法
JP5742913B2 (ja) シェルフィード型ガス分離膜モジュール
US11274380B2 (en) Nozzle plate for fiber formation
JP3972528B2 (ja) 流体分離膜モジュールおよび分離方法
JP6051687B2 (ja) ガス分離膜モジュール
WO1990009224A1 (en) Membrane separation device and method of manufacture
US12121864B2 (en) Flexibly adaptable membrane cartridges for the separation of fluids
JP6540229B2 (ja) 中空糸膜モジュール
JP2003010648A (ja) 中空糸分離膜モジュールおよびガス分離方法

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant