RU2747785C1 - Способ управления электроэнергетической системой - Google Patents

Способ управления электроэнергетической системой Download PDF

Info

Publication number
RU2747785C1
RU2747785C1 RU2020131071A RU2020131071A RU2747785C1 RU 2747785 C1 RU2747785 C1 RU 2747785C1 RU 2020131071 A RU2020131071 A RU 2020131071A RU 2020131071 A RU2020131071 A RU 2020131071A RU 2747785 C1 RU2747785 C1 RU 2747785C1
Authority
RU
Russia
Prior art keywords
frequency
generators
electric power
nominal
power system
Prior art date
Application number
RU2020131071A
Other languages
English (en)
Inventor
Евгений Николаевич Коптяев
Original Assignee
Евгений Николаевич Коптяев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Евгений Николаевич Коптяев filed Critical Евгений Николаевич Коптяев
Priority to RU2020131071A priority Critical patent/RU2747785C1/ru
Application granted granted Critical
Publication of RU2747785C1 publication Critical patent/RU2747785C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

Изобретение относится к области электроэнергетики и может быть использовано в разного рода электроэнергетических системах, в том числе в электроэнергетических системах судов. Способ управления электроэнергетической системой включает измерение частоты синхронизируемых генераторов, а также управление их частотой, при этом в начале процесса синхронизации задают частоту принимающих нагрузку генераторов ниже номинальной, а частоту разгружаемых генераторов задают выше номинальной, после чего управляют их частотой таким образом, что частота генераторов непрерывно приближается к номинальной, далее включают генераторы на параллельную работу в момент совпадения их фаз и равенства частот. В предлагаемом решении реализуется задача улучшения процесса синхронизации источников электроэнергии в составе электроэнергетической системы, которая достигается особым алгоритмом управления регуляторами частоты (скорости вращения) первичных тепловых двигателей источников. Техническим результатом предлагаемого решения является снижение уравнительных токов при включении источников параллельно для перевода нагрузки или длительной параллельной работы. 3 ил.

Description

Область техники, к которой относится изобретение. Изобретение относится к области электроэнергетики, и может быть использовано в электроэнергетических системах, в том числе судовых.
Уровень техники. Известна комбинированная энергетическая установка судна [патент РФ на изобретение №2655569], содержащая гребные винты, гребной электрический двигатель, дизель-генератор, газотурбинные двигатели, систему управления энергетической установкой судна. Причем комбинированная энергетическая установка судна содержит три и более гребных винта фиксированного шага, а привод центрального гребного винта осуществляется от гребного электродвигателя, а приводы остальных гребных винтов осуществляются от газотурбинных двигателей, комбинированная энергетическая установка судна дополнительно содержит обратимый электрический преобразователь, вспомогательную электростанцию с дизель-генератором, главный распределительный щит, потребители собственных нужд, два автоматических выключателя и накопитель с согласующим электрическим преобразователем. К дизель-генератору подключены: через первый автоматический выключатель главный распределительный щит с потребителями собственных нужд; накопитель энергии через согласующий электрический преобразователь; гребной электрический двигатель через обратимый электрический преобразователь, а через второй выключатель к главному распределительному щиту подключен электрический генератор дизель-генератора вспомогательной электростанции.
К недостаткам такого решения относится отсутствие уравнительных цепей для сглаживания токов между судовыми источниками электроэнергии, что ухудшает переходные процессы при их синхронизации.
Также из уровня техники известен способ управления активной мощностью электростанции [патент РФ на изобретение №2464438], включающий замер текущего значения активной мощности Ртек, передаваемой в сеть электростанцией, и частоты вращения свободной турбины nст, вычисление отклонения Ртек от заданного Рзад(ΔР), вычисление величины уставки по частоте вращения свободной турбины nст.уст и дальнейшее формирование управляющего воздействия на дозатор топлива, отличающийся тем, что величину nст.уст вычисляют по формуле nст.уст=kc⋅fуст+kp⋅ΔP', где kc - коэффициент, связывающий частоту вращения генератора и частоту вращения свободной турбины nст; fуст - уставка по частоте сети электростанции; kp - коэффициент регулирования по мощности; ΔР' - величина отклонения Ртек от заданного Рзад, равная 0 или ΔР, при этом дополнительно задают величины ΔРвкл.верх, ΔРвыкл.верх, ΔРвкл.низ, ΔРвыкл.низ, а управляющее воздействие на дозатор формируют с учетом ΔР в момент, когда ΔP>ΔРвкл.верх или ΔP<ΔРвкл.низ, и без учета ΔР - в момент, когда ΔP<ΔРвыкл.верх или ΔР>ΔРвыкл.низ, где ΔРвкл.верх - верхнее пороговое значение включения ΔР, при достижении которого ΔР' становится равным ΔР; ΔРвыкл.верх - верхнее пороговое значение выключения ΔР, при достижении которого ΔР' становится равным 0; ΔРвкл.низ - нижнее пороговое значение включения ΔР, при достижении которого ΔР' становится равным ΔР; ΔРвыкл.низ - нижнее пороговое значение выключения ΔР, при достижении которого ΔР' становится равным 0.
К недостаткам такого решения можно отнести отсутствие алгоритмов для сглаживания переходных процессов при подключении генераторов в электроэнергетической системе для перевода нагрузки с одного источника на другой, либо при включении источников на параллельную работу, что ведет к износу коммутационной аппаратуры и нарушению требований стандартов на качество электроэнергии.
Данное решение является наиболее близким по своей технической сущности прототипом к заявляемому решению.
Раскрытие изобретения. Из уровня техники широко известны различного рода электроэнергетические системы, в том числе судовые [1, 3]. Они включают в себя источники электроэнергии (генераторы), выключатели главного тока, и распределительные щиты - обеспечивая генерирование, преобразование, и распределение электроэнергии к потребителям.
Потребление электроэнергии практически целиком приходится на потребители, получающие питание от фидеров главных распределительных щитов [3]. Собственное потребление распределительных щитов минимально, а их функция сводится практически только к распределению электроэнергии между собой и к потребителям.
Установленные на главных распределительных щитах выключатели подразделяют на фидерные (к потребителям) и главного тока. Последние осуществляют подключение источников электроэнергии (генераторов) к шинам главных распределительных щитов, а также переключения между самими главными распределительными щитами. Количество выключателей главного тока зависит от типа электроэнергетической системы, и количества источников электроэнергии (генераторов) в ее составе. Как правило, в состав электроэнергетической системы входят кабельные линии связи между смежными щитами, которые обеспечивают их совместное подключение на работу от общих генераторов (“закольцовывание”).
При включении выключателей перемычек и закольцовывания схемы, происходит объединение соответствующих генераторов на параллельную работу. Различают два вида, длительную параллельную работу - при условии наличия соответствующих уравнительных цепей, а также кратковременную на время перевода нагрузки с генератора на генератор [3].
Длительная параллельная работа как правило, предусматривается в случае большого количества источников электроэнергии и необходимости их совместной работы на мощную нагрузку (для судов это электродвижение). В остальных случаев достаточно обеспечить включение генераторов на время перевода нагрузки с выводимого генератора на нагружаемый.
Для недопущения возникновения больших токов для подключения генераторов на параллельную работу применяют различного рода системы синхронизации, обеспечивающие выдачу команды на включение генераторов на параллельную (т.е. включение генераторного выключателя или перемычки между главными распределительными щитами) в моменты равенства фаз на их шинах, т.е. нулевым фазовым сдвигом между трехфазными системами [3]. Это обеспечивает относительно мягкое включение с небольшими токами в момент подключения генераторов на параллельную работу. Однако, это не гарантирует отсутствие уравнительных токов в дальнейшем - при втягивании генераторов в синхронную работу, по причине разности частот.
Также следует отметить, что возможно подключение генератора без нагрузки параллельно с другим генератором, предварительно нагруженным генератором. Такая схема является наиболее типовой и встречается наиболее часто в практических случаях. Она обуславливается как необходимостью для включения резервного генератора взамен выводимого из действия, так и необходимостью обеспечивать мощность потребителей электроэнергии [3].
Кроме того, существует потребность в объединении уже нагруженных генераторов, в работу на общую нагрузку. В этом случае также происходит перераспределение мощностей в электроэнергетической системе, что может сопровождаться разного рода уравнительными токами.
Известны различного рода отечественные (например, УСГ-1, УСГ-2) и импортные устройства для синхронизации включения генераторов, которые обеспечивают контроль фазового сдвига между напряжениями и подгонку частоты синхронизируемых генераторов, с выдачей команды на включение выключателя, через который производится объединение генераторов [3].
В настоящее время возможность синхронизации генераторов входит в функциональные возможности пультов управления электроэнергетической системой, и осуществляется программными алгоритмами - что обеспечивает потенциал для модернизации уже созданных систем.
При всем аппаратном многообразии систем управления, они являются типовыми решениями в части обеспечения синхронизации генераторов на параллельное включение. Во всех известных автору решениях, реализован следующий алгоритм: система управления управляет частотой генераторов, так что генератор, вводимый в действие, имеет частоту несколько выше номинальной, а генератор, уже нагруженный или выводимый из действия - имеет частоту равную номинальной. Таким образом, существующие системы управляют частотой вводимого генератора, чтобы обеспечить ее запас после приема нагрузки на генератор. Однако, это ведет к расхождению частот между первичными тепловыми двигателями генераторов, и возникновению уравнительных токов, обеспечивающих втягивание в синхронизм.
После задания упомянутой разности частот, система управления начинает процесс синхронизации, который заключается в выдаче команды на включение управляемого выключателя при условии совпадения фаз между генераторами. На всем протяжении процесса синхронизации в таком случае между генераторами сохраняется разность частот [3].
На фигуре 1 изображена упрощенная схема электроэнергетической системы с двумя генераторами. Из схемы видно, что генератор подключается к собственному главному распределительному щиту через выключатель, который обеспечивает подключение и отключение к шинам генератора. Для объединения главных распределительных щитов на параллельную работу электроэнергетическая система оснащена выключателями на перемычках, которые обеспечивают возможность соединения уже подключенных к своим источникам щитов. Отсюда следует необходимость синхронизации как для выключателей генераторов, так и перемычек между щитами - однако, сам принцип синхронизации является общим вне зависимости от режима работы электроэнергетической системы.
В целом можно определить процесс управления электроэнергетической системой как подключение и отключение выключателей и генераторов от шин распределительных щитов, и их синхронизацию перед включением.
На фигуре 2 показана векторная диаграмма работы уже известного из уровня техники способа управления электроэнергетической системой. Из диаграммы видно две системы трехфазных напряжений, имеющих разные собственные частоты ω1 и ω2. Фазовый сдвиг между напряжениями будет постоянно изменяться, пропорционально разности частот. При ω1 = ω2 будет сохраняться постоянный фазовый сдвиг, и синхронизация станет невозможна из-за отсутствия моментов прохождения через равенство частот. Именно поэтому системы синхронизации не только управляют частотой генераторов, но и обеспечивают задание постоянного фазового сдвига, точное значение которого задается на этапе проектирования и наладки. После достижения заданного фазового сдвига между генераторами, система управления ждет момент отсутствия фазового сдвига между генераторами, для управления на включение выключателя.
На фигуре 3 показана векторная диаграмма работы предлагаемого решения. Из диаграммы видно, что вектора трехфазных систем напряжений изменяются навстречу друг другу, то есть в сторону уменьшения разности частоты между генераторами. Одна трехфазная система ускоряется, другая - ускоряется, причем начальная частота первой задается ниже, чем второй. Это обеспечивает облегчение втягивания в синхронизм, поскольку в момент включения на параллельную работу идет встречное регулирование скорости вращения первичных тепловых двигателей. Стрелками показано направление приращения угловых скоростей напряжений в фазах генераторов.
Отличие с существующими решениями заключается в задании частоты для обоих генераторов одновременно в начальный момент времени в начале процесса синхронизации, причем оба генератора разводятся по частоте от номинальной, но в обратную сторону относительно известного способа.
Далее идет процесс синхронизации, сопровождающийся непрерывным регулированием частоты генераторов по направлению к равенству нулю разброса частот генераторов между собой. В момент включения генераторов на общие шины, их частота равняется между собой и равна номинальной.
Указанная выше особенность является также важным отличием для предлагаемого способа, поскольку в известных ранее способах, частоты генераторов до момента включения их на параллельную работу не равняются между собой, что приводит к возникновению уравнительных токов которые втягивают генераторы в синхронизм. Поскольку механическим приводом для генераторов выступают того или иного вида тепловой двигатель, требуется значительная электрическая мощность для воздействия на частоту двигателя через повышенный механический момент на валу. Это, делает невозможным, например, длительную параллельную работу при отсутствии уравнительных реакторов или автоматических систем, воздействующих на механический двигатель. В таких случаях параллельная работа генераторов допускается только кратковременно на время перевода нагрузки [3].
В этом преимущество заявляемого способа перед другими, известными из уровня техники - включение генераторов на параллельную происходит при равенстве не только их фазы, но и частоты между собой. Кроме того, в момент включения частота переходит точку равенства номиналу, исключая задержку механического регулирования (рост частоты на принимающем).
Система управления для реализации предлагаемого способа, может быть микропроцессорной, из числа серийно выпускаемых универсальных промышленных контроллеров. Использование готовых узлов обеспечивает дешевизну, и скорость проектирования, а микропроцессорное управление дает гибкость в настройке управления. Уже существующие промышленные модули могут обеспечить реализацию алгоритма синхронизации, что говорит о его промышленной применимости. Предлагаемое решение может быть внедрено и при использовании уже существующих и выпускаемых пультов управления, обеспечивающих все необходимые для этого функции.
Заявляемое решение является простым и промышленно применимым, представляя собой способ управления электроэнергетической системой, включающий измерение частоты синхронизируемых генераторов, а также управление их частотой, при этом в начале процесса синхронизации задают частоту принимающих нагрузку генераторов ниже номинальной, а частоту разгружаемых генераторов задают выше номинальной, после чего управляют их частотой таким образом, что частота генераторов непрерывно приближается к номинальной, далее включают генераторы на параллельную работу в момент совпадения их фаз и равенства частот. Вся совокупность указанных в отличительной части формулы признаков имеет новизну в целом, и участвует в получении технического результата.
Предлагаемое техническое решение является новым, и имеет следующие принципиальные отличия от прототипа:
- в момент начала синхронизации частоту на всех генераторов устанавливают отличной от номинальной;
- на принимающих нагрузку генераторах устанавливают частоту ниже номинальной;
- на разгружаемых генераторах устанавливают частоту выше номинальной;
- в процессе синхронизации непрерывно управляют частотой генераторов, так что она стремится к номинальной;
- включение генераторов на параллельную работу происходит в момент равенства и частоты, и фазы.
Таким образом, совокупность существенных признаков изобретения ранее неизвестна и ведет к новому техническому результату - улучшению переходных процессов при включении генераторов на параллельную работу, а также снижению износа коммутационной аппаратуры.
Краткое описание чертежей. На фигуре 1 изображена упрощенная схема электроэнергетической системы. Здесь 1 - генератор, 2 - трехфазный выключатель, 3 - главный распределительный щит. На фигуре 2 изображена векторная диаграмма применяемого в электроэнергетических системах способа синхронизации. На фигуре 3 изображена векторная диаграмма предлагаемого системах способа синхронизации.
Список использованной литературы.
1. Дмитриев Б.Ф., Рябенький В.М., Черевко А.И., Музыка М.М. Судовые полупроводниковые преобразователи. - Архангельск: САФУ, 2015.
2. Фрумкин А.М. Теоретические основы электротехники. - М.: Высшая школа, 1982.
3. Яковлев Г.С. Судовые электроэнергетические системы. Л.: Судостроение, 1967.

Claims (1)

  1. Способ управления электроэнергетической системой, включающий измерение частоты синхронизируемых генераторов, а также управление их частотой, отличающийся тем, что в начале процесса синхронизации задают частоту принимающих нагрузку генераторов ниже номинальной, а частоту разгружаемых генераторов задают выше номинальной, после чего управляют их частотой таким образом, что частота генераторов непрерывно приближается к номинальной, далее включают генераторы на параллельную работу в момент совпадения их фаз и равенства частот.
RU2020131071A 2020-09-21 2020-09-21 Способ управления электроэнергетической системой RU2747785C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020131071A RU2747785C1 (ru) 2020-09-21 2020-09-21 Способ управления электроэнергетической системой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020131071A RU2747785C1 (ru) 2020-09-21 2020-09-21 Способ управления электроэнергетической системой

Publications (1)

Publication Number Publication Date
RU2747785C1 true RU2747785C1 (ru) 2021-05-14

Family

ID=75919941

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020131071A RU2747785C1 (ru) 2020-09-21 2020-09-21 Способ управления электроэнергетической системой

Country Status (1)

Country Link
RU (1) RU2747785C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2381607C1 (ru) * 2008-06-09 2010-02-10 Государственное образовательное учреждение высшего образования "Новосибирский государственный технический университет" Способ синхронизации и подключения в режим параллельной работы регулируемого статического источника переменного напряжения и источника переменного напряжения
RU2464438C1 (ru) * 2011-04-29 2012-10-20 Открытое акционерное общество "Авиадвигатель" Способ управления активной мощностью электростанции
RU2655569C1 (ru) * 2017-09-08 2018-05-28 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Комбинированная энергетическая установка судна

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2381607C1 (ru) * 2008-06-09 2010-02-10 Государственное образовательное учреждение высшего образования "Новосибирский государственный технический университет" Способ синхронизации и подключения в режим параллельной работы регулируемого статического источника переменного напряжения и источника переменного напряжения
RU2464438C1 (ru) * 2011-04-29 2012-10-20 Открытое акционерное общество "Авиадвигатель" Способ управления активной мощностью электростанции
RU2655569C1 (ru) * 2017-09-08 2018-05-28 Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" Комбинированная энергетическая установка судна

Similar Documents

Publication Publication Date Title
CN109193746B (zh) 一种基于直流配电中心的虚拟同步发电机无缝切换方法
US11581739B2 (en) Power distribution on a vessel
US8760888B2 (en) HVDC system and method to control a voltage source converter in a HVDC system
EP2627557B1 (en) Marine propulsion systems
EP4071993A1 (en) Power distribution systems
KR20140022465A (ko) 선박용 전력 시스템
EP2894753A1 (en) Reconnecting a wind power plant to a utility grid
US4133026A (en) Method of starting up a high-voltage d-c inverter or transmission station in isolated or island operation
CN109494869A (zh) 一种核动力船舶电力系统
CN105826948A (zh) 电力推进船舶交流供电系统
KR20210145162A (ko) 전기 그리드를 자력 기동하는 방법
RU2747785C1 (ru) Способ управления электроэнергетической системой
JPH10313596A (ja) 揚水発電装置
Rostamkolai et al. Control design of Santo Tome back-to-back HVDC link
KR20070090665A (ko) 대형 컨테이너선의 바우 쓰러스터 단독발전기 연결배전시스템
Zhong et al. Frequency load control of seamless connection with shore power for dual generators
Nasrudin et al. Design study of power management system for parallel operation of generator set of a ship's diesel electric power plant
Prousalidis et al. Reactive power sharing in ship energy systems with shaft generators
CN111864792A (zh) 直流/交流转换器的控制方法
SU752607A1 (ru) Способ пуска электропередачи посто нного тока
RU2754455C1 (ru) Способ управления электроэнергетической системой с ветрогенераторами
RU2752248C1 (ru) Способ управления режимом параллельной работы синхронных генераторов в электрических сетях
CN219287154U (zh) 一种船舶动力定位系统的供电站
CN215646645U (zh) 飞机起动发电机
Galang et al. Decarbonization Of Offshore Installations Using Static Frequency Converters And Active Front Ends