RU2746870C1 - Однофотонный источник излучения - Google Patents

Однофотонный источник излучения Download PDF

Info

Publication number
RU2746870C1
RU2746870C1 RU2020130009A RU2020130009A RU2746870C1 RU 2746870 C1 RU2746870 C1 RU 2746870C1 RU 2020130009 A RU2020130009 A RU 2020130009A RU 2020130009 A RU2020130009 A RU 2020130009A RU 2746870 C1 RU2746870 C1 RU 2746870C1
Authority
RU
Russia
Prior art keywords
channel
luminescence
photon
radiation source
radiation
Prior art date
Application number
RU2020130009A
Other languages
English (en)
Inventor
Сергей Юрьевич Трощиев
Антон Владимирович Голованов
Сергей Александрович Тарелкин
Николай Викторович Лупарев
Виталий Сергеевич Бормашов
Original Assignee
Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ") filed Critical Федеральное государственное унитарное предприятие "ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОПТИКО-ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ" (ФГУП "ВНИИОФИ")
Priority to RU2020130009A priority Critical patent/RU2746870C1/ru
Application granted granted Critical
Publication of RU2746870C1 publication Critical patent/RU2746870C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Abstract

Изобретение относится к области оптических систем связи, а именно, к истинно однофотонным источникам оптического излучения и может быть использовано для создания высокозащищенных систем передачи информации на основе принципа квантовой криптографии и реализации протокола квантового распределения ключа (КРК, QKD) через существующие оптоволоконные сети. Однофотонный источник излучения содержит канал оптической накачки, канал люминесценции, приемный канал и дихроичное зеркало. В канале оптической накачки расположен источник возбуждающего излучения. В канале люминесценции расположены элемент генерации одиночных фотонов на основе алмаза, система увеличения с кратностью М и система сканирования. Дихроичное зеркало обеспечивает возможность направления возбуждающего излучения в канал люминесценции, а генерируемых фотонов - в приемный канал. Элемент генерации выполнен в виде монокристалла алмаза с ростовыми центрами люминесценции концентрации N. В канале оптической накачки и приемном канале установлены конфокальные модули с точечными диафрагмами, радиус R которых составляет
Figure 00000005
Технический результат-обеспечение возможности расширить номенклатуру алмазного материала, на базе которого может быть выполнен элемент генерации, и, как следствие, упростить изготовление однофотонного источника излучения. 6 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области оптических систем связи, а именно, к истинно однофотонным источникам оптического излучения и может быть использовано для создания высокозащищенных систем передачи информации на основе принципа квантовой криптографии и реализации протокола квантового распределения ключа (КРК, QKD) через существующие оптоволоконные сети.
Из уровне техники известен однофотонный источник излучения, содержащий канал оптической накачки с источником возбуждающего излучения, канал люминесценции с элементом генерации одиночных фотонов на основе алмаза, системой увеличения с кратностью М и системой сканирования, приемный канал и дихроичное зеркало, обеспечивающее возможность направления возбуждающего излучения в канал люминесценции, а генерируемых фотонов - в приемный канал (см. патент US 2011174995, кл. G21K 5/00, опубл. 21.07.2011). Использование элемента генерации на основе алмаза позволяет получать истинно одиночные фотоны, так как в этом случае они испускаются одиночным центром люминесценции (в отличие от источников квази-одиночных фотонов, основанных на ослаблении лазерного излучения, в которых неизбежно могут появляться двух-, трех- и более фотонные импульсы, что значительно повышает уязвимость к прослушиванию). При этом основным недостатком известного устройства является необходимость использования в качестве элемента генерации высокочистых наноалмазов с единственным центром люминесценции. Манипуляция с такими элементами размером 10-100 нм требует особого оборудования, что значительно усложняет изготовление, контроль характеристик и позиционирование соответствующего компонента. Кроме того, известный источник требует трудоемкой юстировки.
Технической проблемой является устранение указанных недостатков. Технический результат заключается в расширении номенклатуры алмазного материала, на базе которого может быть выполнен элемент генерации, и, как следствие, упрощении изготовления однофотонного источника излучения. Поставленная проблема решается, а технический результат достигается тем, что в однофотонном источнике излучения, содержащем канал оптической накачки с источником возбуждающего излучения, канал люминесценции с элементом генерации одиночных фотонов на основе алмаза, системой увеличения с кратностью М и системой сканирования, приемный канал и дихроичное зеркало, обеспечивающее возможность направления возбуждающего излучения в канал люминесценции, а генерируемых фотонов - в приемный канал, указанный элемент генерации выполнен в виде монокристалла алмаза с ростовыми центрами люминесценции концентрации N, а в канале оптической накачки и приемном канале установлены конфокальные модули с точечными диафрагмами, радиус R которых составляет
Figure 00000001
В указанном монокристалле могут быть выполнены дополнительные центры люминесценции методом радиационного повреждения с последующим отжигом. Указанный элемент генерации предпочтительно выполнен на базе азот-вакансионных, кремний-вакансионных или германий-вакансионных центров люминесценции. Система сканирования предпочтительно выполнена в виде гальваносканера. В приемном канале предпочтительно установлен светоделитель, направляющий часть излучения на контрольный фотоприемник, а часть - в линию вывода однофотонного излучения. Канал люминесценции предпочтительно выполнен с возможностью установки камеры и фоновой подсветки. Источник возбуждающего излучения может быть выполнен в виде лазера.
На чертеже представлена оптическая схема предлагаемого однофотонного источника излучения.
Предлагаемый однофотонный источник излучения состоит из канала оптической накачки, канала люминесценции и приемного канала.
В канале оптической накачки расположен источник возбуждающего излучения в виде коллимированного диодного лазера 1 и конфокальный модуль 2, состоящий из двух собирающих линз и точечной диафрагмы 3. Излучение из канала накачки направляется в канал люминесценции через дихроичное зеркало 4, которое разделяет световые потоки, пропуская и отражая свет в зависимости от длины волны.
В канале люминесценции расположены система сканирования в виде гальваносканера 5, система увеличения в виде объектива 6 и элемент генерации 7 одиночных фотонов на основе алмаза. Использование гальваносканера 5 вместо подвижного столика с образцом (как в прототипе) позволяет значительно ускорить и повысить точность позиционирования возбуждающего пучка, а также ресурс работы устройства.
Для выполнения первичной грубой юстировки в канале люминесценции также устанавливают фоновую подсветку, образованную источником света 8. Положение элемента генерации 7 контролируют с помощью CMOS-камеры 9, изображение в которую направляется с помощью светоделителя 10. Такая конструкция позволяет повысить скорость наведения оптической системы на одиночные центры в элементе генерации 7 (на монокристалле алмаза для этого предпочтительно вытравливают координатную сетку, позволяющую идентифицировать положение одиночного центра). После заводской юстировки элементы 8-10 могут быть демонтированы.
Генерируемые фотоны из канала люминесценции через дихроичное зеркало 4 направляются в приемный канал, в котором установлены длинноволновый сфетофильтр 11 и конфокальный модуль 12 с точечной диафрагмой 13 для исключения влияния фонового излучения, в частности, люминесцентного излучения всех центров люминесценции в алмазе, кроме одного целевого. Для контроля стабильности потока одиночных фотонов в приемном канале располагают светоделитель 14, направляющий часть излучения на контрольный фотоприемник в виде фотоэлектронного умножителя (ФЭУ) 15. Остальное излучение, минуя светоделитель 14, направляется в линию 16 вывода однофотонного излучения.
Элемент генерации 7 выполнен в виде макроскопического монокристалла алмаза, работа с такими крупными объектами вполне обыденна и не сложнее работы с общепринятыми элементами электронной компонентной базы, такими как резисторы SMD. В указанном монокристалле алмаза содержатся ростовые центры люминесценции, а также могут быть созданы дополнительные центры люминесценции, в частности, в заранее определенных местах. В алмазном материале может существовать целый ряд центров окраски, но наиболее ярко люминесцирующими из них являются NV (азот-вакансионный), SiV (кремний-вакансионный) и GeV (германий-вакансионный). Более высокая яркость люминесценции одиночного центра окраски позволяет достичь более высокой скорости квантовой передачи информации (битрейта)
Наиболее широко изучен NV-центр, поскольку азот является наиболее широко распространенной и неизбежной примесью - он легко встраивается в кристаллическую решетку алмаза как в ходе природного, так и в ходе искусственного роста. Из-за присутствия азота в атмосфере избавиться от азотных примесных центров в алмазе - невыполнимая задача. На практике во всех алмазах, содержащих азот, содержатся также и NV-центры. Есть два метода роста макроскопических искусственных монокристаллов алмаза: метод осаждения из газовой фазы (CVD) и метод температурного градиента при высоком давлении и высокой температуре (НРНТ). В самых чистых НРНТ кристаллах присутствует не менее 10101/см3 ростовых NV-центров, а в CVD - еще больше. Указанная концентрация соответствует расстоянию около 4 мкм между ростовыми центрами, а более высокая концентрация - еще меньшему расстоянию вплоть до полной невозможности их оптического разделения.
На практике ростовые центры люминесценции обычно не используют, потому что их расположение непредсказуемо как латерально, так и по глубине. Дополнительные одиночные центры люминесценции создают искусственно методом радиационного повреждения, имплантируя ионы в алмаз или через малые (1 мкм или меньше) отверстия в масках, или без масок, но со сверхмалой дозой не более 109 см-2, с последующим отжигом в вакууме. В результате получаются одиночные центры или небольшие скопления (кластеры) центров (процесс вероятностный), находящихся на расстоянии порядка сотен нанометров друг от друга, причем при имплантации через отверстия в масках координаты таких центров совпадают с координатами отверстий в масках с точностью до 1 мкм.
Для работы с таким материалом элемента генерации 7 устройство предлагаемого источника излучения должно обеспечивать возможность возбуждения люминесценции в одиночных центрах люминесценции, не допуская при этом накачки соседних. В общем случае расстояние Н между соседними центрами люминесценции составляет
Figure 00000002
где N - концентрация центров люминесценции.
Таким образом, пучок возбуждающего излучения, а также область сбора генерируемых фотонов необходимо сжать до размеров на элементе генерации 7 порядка 300 нм. Это обеспечивается вводом конфокальных модулей 2 и 12 и размещением в них точечных диафрагм 3 и 13, для объектива 8 кратностью М=100 с радиусом R диафрагм 3, 13 порядка 30 мкм. В общем случае для обеспечения возможности работы системы радиус R должен составлять
Figure 00000003
где М - кратность системы увеличения.
Предлагаемый однофотонный источник излучения работает следующим образом.
Свет от лазера 1 с длиной волны 532 нм, последовательно прошедший через конфокальный модуль 2, дихроичное зеркало 4, гальваносканер 5 и объектив 6, направляют на элемент генерации 7. Для предварительной визуальной настройки на область, содержащую одиночный NV-центр, используют фоновую подсветку 8 и камеру 9, для более точной - гальваносканер 5 с обратной связью через ФЭУ 15 (элементы 5 и 15 используют в ходе всей эксплуатации устройства для компенсации температурной и иной расфокусировки). После фокусировки на одиночном NV-центре в элементе генерации 7, люминесцентное излучение в виде истинно одиночных фотонов с длиной волны 637 нм собирают объективом 6, после чего через гальваносканер 5 возвращают к дихроичному зеркалу 4. Дихроичное зеркало 4 с длиной волны отсечки 605 нм пропускает более коротковолновое излучение накачки и отражает более длинноволновое люминесцентное излучение в приемный канал. В приемном канале целевое излучение дополнительно очищают от остаточного излучения накачки, частично отраженного от дихроичного зеркала 4 из-за его неидеальности, длинноволновым фильтром 11 и от люминесценции всех центров люминесценции, кроме целевого конфокальным модулем 12. Целевое истинно однофотонное излучение направляют в линию вывода 16. На линии вывода 16 может быть установлено устройство понижения частоты (на чертежах не показано). Работая на основе трехволнового смешения в нелинейной среде с излучением вторичной накачки длиной волны 1064 нм, такое устройство преобразует исходное однофотонное люминесцентное излучение в сигнал на длине волны порядка 1588 нм, который может быть транспортирован по существующим оптоволоконным сетям.
Предлагаемое устройство, благодаря вышеуказанным особенностям конструкции, позволяет работать с кристаллами алмаза размером от единиц нанометров (наноалмазы) до крупных монокристаллов, размер которых ограничен только технологией их изготовления. В зависимости от конкретного подбора оптических элементов и диафрагм могут быть использованы алмазы с концентрацией ростовых NV-центров ~3,7⋅1013 1/см3 (0,2 ppm, что характерно для недорогих CVD пленок) и ниже. Кроме того, прибор позволяет работать с целым набором оптически-активных центров в алмазе (NV, SiV, GeV): путем простой замены нескольких типовых спектрально-селективных элементов схемы (дихроичного зеркала и длинноволнового фильтра) и возбуждающего лазера, прибор может быть перестроен на работу с другими центрами, люминесцирующими в области более длинных волн (например, GeV). Таким образом, изобретение позволяет значительно расширить номенклатуру алмазного материала, на базе которого может быть выполнен элемент генерации, и, как следствие, упростить изготовление однофотонного источника излучения.
Работа выполнена с использованием оборудования Центра коллективного пользования высокоточных измерительных технологий в области фотоники (ckp.vniiofi.ru), созданного на базе ФГУП «ВНИИОФИ» и поддержанного Минобрнауки России в рамках выполнения соглашения №05.595.21.0005 (уникальный идентификатор RFMEFI59519X0005).

Claims (8)

1. Однофотонный источник излучения, содержащий канал оптической накачки с источником возбуждающего излучения, канал люминесценции с элементом генерации одиночных фотонов на основе алмаза, системой увеличения с кратностью М и системой сканирования, приемный канал и дихроичное зеркало, обеспечивающее возможность направления возбуждающего излучения в канал люминесценции, а генерируемых фотонов - в приемный канал, отличающийся тем, что указанный элемент генерации выполнен в виде монокристалла алмаза с ростовыми центрами люминесценции концентрации N, а в канале оптической накачки и приемном канале установлены конфокальные модули с точечными диафрагмами, радиус R которых составляет
Figure 00000004
2. Однофотонный источник излучения по п. 1, отличающийся тем, что в указанном монокристалле сформированы дополнительные центры люминесценции методом радиационного повреждения с последующим отжигом.
3. Однофотонный источник излучения по п. 1 или 2, отличающийся тем, что указанный элемент генерации выполнен на базе азот-вакансионных, кремний-вакансионных или германий-вакансионных центров люминесценции.
4. Однофотонный источник излучения по п. 1, отличающийся тем, что система сканирования выполнена в виде гальваносканера.
5. Однофотонный источник излучения по п. 1, отличающийся тем, что в приемном канале установлен светоделитель, направляющий часть излучения на контрольный фотоприемник, а часть - в линию вывода однофотонного излучения.
6. Однофотонный источник излучения по п. 1, отличающийся тем, что канал люминесценции выполнен с возможностью установки камеры и фоновой подсветки.
7. Однофотонный источник излучения по п. 1, отличающийся тем, что источник возбуждающего излучения выполнен в виде лазера.
RU2020130009A 2020-09-11 2020-09-11 Однофотонный источник излучения RU2746870C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020130009A RU2746870C1 (ru) 2020-09-11 2020-09-11 Однофотонный источник излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020130009A RU2746870C1 (ru) 2020-09-11 2020-09-11 Однофотонный источник излучения

Publications (1)

Publication Number Publication Date
RU2746870C1 true RU2746870C1 (ru) 2021-04-21

Family

ID=75584826

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020130009A RU2746870C1 (ru) 2020-09-11 2020-09-11 Однофотонный источник излучения

Country Status (1)

Country Link
RU (1) RU2746870C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070228373A1 (en) * 2006-03-30 2007-10-04 Fujitsu Limited Single-photon generator
US20070277730A1 (en) * 2004-03-02 2007-12-06 James Rabeau Photon Source
US20110174995A1 (en) * 2008-02-25 2011-07-21 The University Of Melbourne Single photon emission system
US20130056704A1 (en) * 2011-09-01 2013-03-07 Nano-Meta Technologies Inc. Single-photon generator and method of enhancement of broadband single-photon emission
RU2516574C2 (ru) * 2009-12-22 2014-05-20 Элемент Сикс Лимитед Синтетический cvd алмаз
RU161214U1 (ru) * 2015-02-10 2016-04-10 Общество с Ограниченной Ответственностью "Фотонные Нано-Мета Технологии" Компактное устройство для генерации одиночных фотонов

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070277730A1 (en) * 2004-03-02 2007-12-06 James Rabeau Photon Source
US20070228373A1 (en) * 2006-03-30 2007-10-04 Fujitsu Limited Single-photon generator
US20110174995A1 (en) * 2008-02-25 2011-07-21 The University Of Melbourne Single photon emission system
RU2516574C2 (ru) * 2009-12-22 2014-05-20 Элемент Сикс Лимитед Синтетический cvd алмаз
US20130056704A1 (en) * 2011-09-01 2013-03-07 Nano-Meta Technologies Inc. Single-photon generator and method of enhancement of broadband single-photon emission
RU161214U1 (ru) * 2015-02-10 2016-04-10 Общество с Ограниченной Ответственностью "Фотонные Нано-Мета Технологии" Компактное устройство для генерации одиночных фотонов

Similar Documents

Publication Publication Date Title
US7623557B2 (en) Wavelength converting optical system, laser light source, exposure apparatus, mask examining apparatus, and macromolecular crystal lens machining device
CN101371070B (zh) 照明装置及使用它的投射型显示装置
CN1286818A (zh) 紫外激光装置以及使用该紫外激光装置的曝光装置和曝光方法
US9419718B2 (en) Aligning optical components in a multichannel receiver or transmitter platform
US20020044346A1 (en) Multiparallel three dimensional optical microscopy system
US8159663B2 (en) Laser microscope apparatus having a frequency dispersion adjuster
JP7085034B2 (ja) 光通信装置
JP2014530380A (ja) 193nmレーザを用いた固体レーザおよび検査システム
JP2019525249A5 (ru)
CN113075177B (zh) 一种氮化镓位错双光子超分辨显微三维成像装置及方法
US20150192848A1 (en) Lighting device and projection type video display apparatus
WO2020157077A3 (en) A compact fluorescence microscope and a cell monitoring system
KR20160073376A (ko) 모듈형 레이저 장치
RU2746870C1 (ru) Однофотонный источник излучения
CN107202780A (zh) 一种基于散斑照明的超分辨显微方法和装置
Ortega et al. Experimental space-division multiplexed polarization-entanglement distribution through 12 paths of a multicore fiber
CN110133950A (zh) 照明系统与投影装置
CN104122237B (zh) 基因测序光学系统
US20110174995A1 (en) Single photon emission system
CN105589186B (zh) 显微傅里叶成像光学系统
RU2560745C1 (ru) Устройство ввода лазерного излучения в торец оптического элемента
CN109932316A (zh) 基因测序光学装置
EP3752886B1 (de) Bildsensor, positionssensorvorrichtung, lithographieanlage und verfahren zum betreiben eines bildsensors
WO2021222097A1 (en) Laser activated luminescence system
Okishev et al. Unique high-bandwidth UV fiber delivery system for the OMEGA diagnostics applications

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20211015

Effective date: 20211015