RU2745635C1 - Универсальный полевой стенд для поверки геодезических приборов - Google Patents
Универсальный полевой стенд для поверки геодезических приборов Download PDFInfo
- Publication number
- RU2745635C1 RU2745635C1 RU2020111970A RU2020111970A RU2745635C1 RU 2745635 C1 RU2745635 C1 RU 2745635C1 RU 2020111970 A RU2020111970 A RU 2020111970A RU 2020111970 A RU2020111970 A RU 2020111970A RU 2745635 C1 RU2745635 C1 RU 2745635C1
- Authority
- RU
- Russia
- Prior art keywords
- fixed
- geodetic
- ground
- center
- points
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Предложенное изобретение относится к области метрологии и может быть использовано для метрологической аттестации геодезических приборов. Универсальный полевой стенд для поверки геодезических приборов содержит зафиксированный центр, вокруг которого по окружностям радиусами 5, 7, 10, 15 м в восьми направлениях закреплены геодезические пункты, состоящие из металлических труб со сферическими головками. При этом зафиксированным центром является геодезический пункт, оборудованный устройством для принудительного центрирования, закрепленный на местности центром типа 190, дополнительно введены геодезические пункты, закрепленные на местности центрами типа 162, расположенные в восьми направлениях по окружности радиусом 50 м от зафиксированного центра, кроме этого, введены геодезические пункты, оборудованные устройствами для принудительного центрирования, закрепленные на местности центрами типа 150, расположенные в восьми направлениях по окружностям радиусами 50 и 200 м от зафиксированного центра, причем геодезические пункты, закрепленные на местности центрами типов 162 и 150, расположенные по окружности радиусом 50 м, чередуются между собой, а также все вышеупомянутые геодезические пункты и зафиксированный центр имеют координаты и высоты, полученные в единой координатной системе отсчета. Технический результат - расширение функциональных возможностей за счет обеспечения поверки четырех видов геодезических приборов: нивелиров (оптических и цифровых), электронных тахеометров, светодальномеров, ГНСС-приемников с требуемой точностью. 1 ил.
Description
Предложенное изобретение относится к области метрологии и может быть использовано для метрологической аттестации геодезических приборов.
Известен линейный геодезический базис (Тревого И.С. Геодезический полигон для метрологической аттестации приборов и апробации технологий // Геопрофи. - 2009. - №1. - С. 6-11), состоящий из 20 пунктов, закрепленных металлическими трубчатыми центрами, установленными на глубину до 4 метров, выступающих над поверхностью земли на высоту до 1,3 метров и заканчивающиеся горизонтальной плитой с отверстием для станового винта и боковым овальным вырезом в трубе для доступа к нему, входящий в геодезический полигон для метрологической аттестации приборов и апробации технологий.
Недостатками линейного геодезического базиса, используемого для метрологической аттестации геодезических приборов, являются: необходимость проведения повторных измерений на базисе для оценки устойчивости геодезических центров (Уставич Г.А. К вопросу создания эталонных базисов для аттестации спутниковой аппаратуры и светодальномеров // Геодезия и картография. - 1999. - №8. - С. 6-14); линейный геодезический базис не позволяет выполнять метрологическую поверку нивелиров (оптических и цифровых), которые используются при производстве нивелирования I и II классов, так как между двумя пунктами базиса нет расстояния равного 50 м.
Наиболее близким устройством того же назначения к заявляемым по совокупности признаков является полевой высотный стенд (Уставич Г.А., Сальников В.Г., Рябова Н.М. Схема полевого высотного стенда для поверки системы «цифровой нивелир - штрих-кодовые рейки» // Геодезия и аэрофотосъемка. - 2014. - №4/с. - С. 51-55), содержащий металлическую тумбу (зафиксированный центр), вокруг которой по окружностям в восьми направлениях на расстояниях 5, 7, 10, 15 м закреплены точки, состоящие из металлических труб со сферическими головками.
Недостатком технического решения, принятого за прототип, является то, что полевой высотный стенд не позволяет проводить метрологическую поверку светодальномеров, ГНСС-приемников, электронных тахеометров и нивелиров, которые используются при производстве нивелирования I и II классов, так как на металлической тумбе отсутствует принудительное центрирование и максимальное расстояние между металлической тумбой и закрепленной точкой на окружности составляет 15 м, что является недостаточным для выполнения метрологической поверки.
Техническая задача предполагаемого изобретения заключается в расширении функциональных возможностей за счет того, что с помощью одного устройства обеспечиваются поверки четырех видов геодезических приборов: нивелиров (оптических и цифровых), электронных тахеометров, светодальномеров, ГНСС-приемников с требуемой точностью.
Поставленная задача достигается тем, что универсальный полевой стенд для поверки геодезических приборов, содержит зафиксированный центр, вокруг которого по окружностям радиусами 5, 7, 10, 15 м в восьми направлениях закреплены геодезические пункты, состоящие из металлических труб со сферическими головками, согласно изобретению, зафиксированным центром является геодезический пункт, оборудованный устройством для принудительного центрирования, закрепленный на местности центром типа 190, дополнительно введены геодезические пункты, закрепленные на местности центрами типа 162, расположенные в восьми направлениях по окружности радиусом 50 м от зафиксированного центра, кроме этого введены геодезические пункты, оборудованные устройствами для принудительного центрирования, закрепленные на местности центрами типа 150, расположенные в восьми направлениях по окружностям радиусами 50 и 200 м от зафиксированного центра, причем геодезические пункты, закрепленные на местности центрами типов 162 и 150, расположенные по окружности радиусом 50 м чередуются между собой, также все вышеупомянутые геодезические пункты и зафиксированный центр имеют координаты и высоты, полученные в единой координатной системе отсчета.
Предлагаемое изобретение поясняется схемой, представленной на фиг. 1, где:
1 - геодезический пункт (зафиксированный центр);
2 - геодезические пункты, закрепленные металлическими трубами со сферическими головками;
3 - геодезические пункты, закрепленные на местности центрами типа 162;
4 - геодезические пункты, оборудованные устройствами принудительного центрирования, закрепленные на местности центром типа 150.
Предлагаемое изобретение, в зависимости от поверяемой системы (комплекта), работает следующим образом.
В зависимости от поверяемой системы «нивелир - нивелирная рейка», «электронный тахеометр - отражатель», «светодальномер - отражатель», «базовый ГНСС-приемник - мобильный ГНСС-приемник» универсальный полевой стенд работает следующим образом.
При метрологической поверке системы «нивелир - нивелирная рейка» нивелир устанавливается на геодезический пункт (зафиксированный центр) - 1, оборудованный устройством для принудительного центрирования, закрепленный на местности центром типа 190, и приводится в рабочее положение, а нивелирная рейка, входящая в комплект для поверки нивелира, устанавливается последовательно на геодезические пункты, закрепленные металлическими трубами со сферическими головками - 2 и геодезические пункты, закрепленные на местности центрами типа 162 - 3. Выполняют измерения превышений (h) между зафиксированным центром - 1 и геодезическими пунктами, закрепленными металлическими трубами со сферическими головками - 2 и геодезическими пунктами, закрепленными на местности центрами типа 162 - 3, причем измерения вышеупомянутой системой повторяют не менее 3-5 раз по каждому направлению.
При метрологической поверке системы «электронный тахеометр - отражатель» электронный тахеометр устанавливается на геодезический пункт (зафиксированный центр) - 1, оборудованный устройством для принудительного центрирования, закрепленный на местности центром типа 190, и приводится в рабочее положение, а отражатель, входящий в комплект для поверки электронного тахеометра, устанавливается последовательно на геодезические пункты, закрепленные на местности центрами типа 150 - 4, и приводится в рабочее положение. Выполняют измерения горизонтальных проложений (D) и превышений (h) между зафиксированным центром - 1 и геодезическими пунктами, закрепленными на местности центрами типа 150 - 4, причем измерения вышеупомянутой системой повторяют не менее 3-5 раз по каждому направлению.
При метрологической поверке системы «светодальномер - отражатель» светодальномер устанавливается на геодезический пункт (зафиксированный центр) - 1, оборудованный устройством для принудительного центрирования, закрепленный на местности центром типа 190, и приводится в рабочее положение, а отражатель, входящий в комплект для поверки светодальномера, устанавливается последовательно на геодезические пункты, закрепленные на местности центрами типа 150 - 4, и приводится в рабочее положение. Выполняют измерения горизонтальных проложений (D) и превышений (h) между зафиксированным центром - 1 и геодезическими пунктами, закрепленными на местности центрами типа 150 - 4, причем измерения вышеупомянутой системой повторяют не менее 3-5 раз по каждому направлению.
При метрологической поверке системы «базовый ГНСС-приемник - мобильный ГНСС-приемник» базовый ГНСС-приемник устанавливается на геодезический пункт (зафиксированный центр) - 1, оборудованный устройством для принудительного центрирования, закрепленный на местности центром типа 190, и приводится в рабочее положение, а мобильный ГНСС-приемник, входящий в комплект для поверки ГНСС-аппаратуры, устанавливается последовательно на геодезические пункты, закрепленные на местности центрами типа 150 - 4, и приводятся в рабочее положение. Базовый и мобильный ГНСС-приемники запускаются в режиме реального времени (RTK-режим) с помощью специализированного контроллера. В специализированном контроллере задается плоская прямоугольная система координат в проекции Гаусса-Крюгера. Мобильным ГНСС-приемником, входящим в комплект для поверки ГНСС-аппаратуры, выполняются последовательно измерения координат и высот геодезических пунктов, закрепленных на местности центрами типа 150 - 4, причем измерения координат и высот вышеупомянутой системой повторяют не менее 3-5 раз по каждому направлению. После этого вычисляют горизонтальные проложения (D) и превышения (h) между зафиксированным центром - 1 и геодезическими пунктами, закрепленными на местности центрами типа 150 - 4.
Горизонтальные проложения (D) и превышения (h) между зафиксированным центром - 1 и геодезическими пунктами, закрепленными на местности центрами типа 150 - 4, вычисляются по формулам:
где хцентр и уцентр - измеренные базовым ГНСС-приемником плановые координаты зафиксированного центра - 1;
хпункт и упункт - измеренные мобильным ГНСС-приемником плановые координаты геодезических пунктов, закрепленных на местности центрами типа 150 - 4;
hцентр - измеренная базовым ГНСС-приемником высота зафиксированного центра - 1;
hпункт - измеренные мобильным ГНСС-приемником высоты геодезических пунктов, закрепленных на местности центрами типа 150 - 4.
В зависимости от поверяемой системы (комплекта) «нивелир - нивелирная рейка», «электронный тахеометр - отражатель», «светодальномер - отражатель», «базовый ГНСС-приемник - мобильный ГНСС-приемник» вычисляют отклонения между измеренными (вычисленными) горизонтальными проложениями и превышениями и их эталонными значениями:
где εxy - отклонение измеренного (вычисленного) горизонтального проложения от его эталонного значения;
εh - отклонение измеренного (вычисленного) превышения от его эталонного значения.
Далее анализируются результаты отклонений между измеренными (вычисленными) горизонтальными проложениями и превышениями и их эталонными значениями.
Критериями отбраковки грубых ошибок в результатах измерений являются следующие величины [ГОСТ Р ИСО 17123-8-2011 Государственная система обеспечения единства измерений (ГСИ). Оптика и оптические приборы. Методики полевых испытаний геодезических и топографических приборов. Часть 8. Полевые испытания GNSS-аппаратуры в режиме «Кинематика в реальном времени» (RTK). - М.: Стандартинформ, 2013. - 20 с.]:
где sxy и sh - стандартные отклонения, установленные изготовителем по каждому типу геодезических приборов.
По результатам сравнений отклонений между измеренными (вычисленными) горизонтальными проложениями и превышениями и их эталонными значениями делается вывод о пригодности средств измерений (нивелиров, электронных тахеометров, светодальномеров, ГНСС-приемников) для выполнения геодезических работ. В случае если какое-либо отклонение не удовлетворяет хотя бы одному из условий уравнений (5) и (6), то подозревают наличие выброса (выбросов) в соответствующих измерениях и процедуру поверки повторяют.
Технический результат, достигаемый заявленным универсальным полевым стендом для поверки геодезических приборов, заключается в повышении достоверности и точности определения превышений, расстояний и координат при метрологической аттестации исследуемых геодезических приборов.
При всей совокупности заявляемых признаков универсальный полевой стенд для поверки геодезических приборов обеспечивает поверку четырех видов геодезических приборов нивелиров (оптических и цифровых), электронных тахеометров, светодальномеров, ГНСС-приемников с требуемой точностью.
Claims (1)
- Универсальный полевой стенд для поверки геодезических приборов, содержащий зафиксированный центр, вокруг которого по окружностям радиусами 5, 7, 10, 15 м в восьми направлениях закреплены геодезические пункты, состоящие из металлических труб со сферическими головками, отличающийся тем, что зафиксированным центром является геодезический пункт, оборудованный устройством для принудительного центрирования, закрепленный на местности центром типа 190, дополнительно введены геодезические пункты, закрепленные на местности центрами типа 162, расположенные в восьми направлениях по окружности радиусом 50 м от зафиксированного центра, кроме этого, введены геодезические пункты, оборудованные устройствами для принудительного центрирования, закрепленные на местности центрами типа 150, расположенные в восьми направлениях по окружностям радиусами 50 и 200 м от зафиксированного центра, причем геодезические пункты, закрепленные на местности центрами типов 162 и 150, расположенные по окружности радиусом 50 м, чередуются между собой, а также все вышеупомянутые геодезические пункты и зафиксированный центр имеют координаты и высоты, полученные в единой координатной системе отсчета.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020111970A RU2745635C1 (ru) | 2020-03-23 | 2020-03-23 | Универсальный полевой стенд для поверки геодезических приборов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020111970A RU2745635C1 (ru) | 2020-03-23 | 2020-03-23 | Универсальный полевой стенд для поверки геодезических приборов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2745635C1 true RU2745635C1 (ru) | 2021-03-29 |
Family
ID=75353193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020111970A RU2745635C1 (ru) | 2020-03-23 | 2020-03-23 | Универсальный полевой стенд для поверки геодезических приборов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2745635C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2805599C2 (ru) * | 2021-04-14 | 2023-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет геодезии и картографии" (МИИГАиК) | Стенд для компарирования нивелирных реек |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7623224B2 (en) * | 2003-12-16 | 2009-11-24 | Trimble Jena Gmbh | Calibration of a surveying instrument |
RU2494346C1 (ru) * | 2012-04-10 | 2013-09-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет геодезии и картографии" (МИИГАиК) | Поверочный комплекс координатных приборов и измерительных систем |
RU2497075C1 (ru) * | 2012-06-04 | 2013-10-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет геодезии и картографии" (МИИГАиК) | Устройство тестирования и аттестации спутниковых gps-приемников (утасп) |
RU2641618C1 (ru) * | 2016-11-30 | 2018-01-18 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Метрологический полигон |
US9874458B2 (en) * | 2008-02-29 | 2018-01-23 | Trimble Ab | Automated calibration of a surveying instrument |
-
2020
- 2020-03-23 RU RU2020111970A patent/RU2745635C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7623224B2 (en) * | 2003-12-16 | 2009-11-24 | Trimble Jena Gmbh | Calibration of a surveying instrument |
US9874458B2 (en) * | 2008-02-29 | 2018-01-23 | Trimble Ab | Automated calibration of a surveying instrument |
RU2494346C1 (ru) * | 2012-04-10 | 2013-09-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет геодезии и картографии" (МИИГАиК) | Поверочный комплекс координатных приборов и измерительных систем |
RU2497075C1 (ru) * | 2012-06-04 | 2013-10-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет геодезии и картографии" (МИИГАиК) | Устройство тестирования и аттестации спутниковых gps-приемников (утасп) |
RU2641618C1 (ru) * | 2016-11-30 | 2018-01-18 | Публичное акционерное общество "Транснефть" (ПАО "Транснефть") | Метрологический полигон |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2805599C2 (ru) * | 2021-04-14 | 2023-10-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет геодезии и картографии" (МИИГАиК) | Стенд для компарирования нивелирных реек |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109470222B (zh) | 一种超高层建筑工程测量的监理控制方法 | |
CN105865334A (zh) | 地下建(构)筑物测绘方法 | |
CN103292795A (zh) | 一种双棱镜精确测量的方法及测量杆 | |
CN101464146B (zh) | 将地面水准点高程精确传递到高架桥上的测量方法及其装置 | |
RU2745635C1 (ru) | Универсальный полевой стенд для поверки геодезических приборов | |
Mohammed | Important methods measurements to exam the accuracy and reliability of reflector-less total station measurements | |
Braun et al. | Absolute baseline for testing of electronic distance meters | |
JP6431995B2 (ja) | 改良型ポータブルプリズム受信装置及び改良型ポータブルgps受信装置、並びに、これを用いた測量方法 | |
CN111076705A (zh) | 利用全站仪优化三角高程测量的方法 | |
WO2020133970A1 (zh) | 激光倾斜仪精度的测试方法、测试系统 | |
El-Ashmawy | Accuracy, time cost and terrain independence comparisons of levelling techniques | |
Idoko et al. | Comparison of Orthometric Heights Obtained Using Total Station and Differential Global Positioning Systems (DGPS) with Precise Levels Instruments | |
CN211121079U (zh) | 一种用于检测预制构件间距的检测设备 | |
Chiominto et al. | Assessment of the provisional structures efficacy, for the conservation of monuments after an earthquake: metrological evaluations | |
CN111121656A (zh) | 一种用于检测预制构件间距的检测设备及方法 | |
Tomaštik et al. | Compass measurement–still a suitable surveying method in specific conditions | |
Zeidan et al. | Precision Comparison and Analysis of Reflector-less Total Station Observations. | |
Spasov | METHOD FOR BUILDING A WORKING GEODETIC NETWORK OF REFLECTIVE MARKS FOR CONSTRUCTION NEEDS: METHOD FOR BUILDING A WORKING GEODETIC NETWORK OF REFLECTIVE MARKS FOR CONSTRUCTION NEEDS | |
Štroner et al. | Testing of the relative precision in local network with use of the Trimble Geo XR GNSS receivers | |
Lambrou et al. | A convenient method for accurate height differences determination | |
Štroner et al. | Errors of electronic high precision short distance measurement | |
No | List of Figure | |
RU2177143C1 (ru) | Способ геометрического нивелирования | |
Gairabekov et al. | Accuracy of Determining Buidings' Geometric Characteristics and Structures by Modern Means of Geodetic Measurements | |
Orason et al. | Accuracy Tests of Vertical Component of RTK GNSS Measurements Corrected by a Laser System |