RU2744065C1 - Способ снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, и устройство для его осуществления - Google Patents

Способ снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, и устройство для его осуществления Download PDF

Info

Publication number
RU2744065C1
RU2744065C1 RU2020119913A RU2020119913A RU2744065C1 RU 2744065 C1 RU2744065 C1 RU 2744065C1 RU 2020119913 A RU2020119913 A RU 2020119913A RU 2020119913 A RU2020119913 A RU 2020119913A RU 2744065 C1 RU2744065 C1 RU 2744065C1
Authority
RU
Russia
Prior art keywords
closed
shell
air flow
air
ship
Prior art date
Application number
RU2020119913A
Other languages
English (en)
Inventor
Антон Александрович Шайхутдинов
Original Assignee
Антон Александрович Шайхутдинов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Антон Александрович Шайхутдинов filed Critical Антон Александрович Шайхутдинов
Priority to RU2020119913A priority Critical patent/RU2744065C1/ru
Application granted granted Critical
Publication of RU2744065C1 publication Critical patent/RU2744065C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F3/00Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/34Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
    • B63B1/38Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H7/00Propulsion directly actuated on air
    • B63H7/02Propulsion directly actuated on air using propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Изобретение относится к области создания транспортных средств и касается в особенности судов, приводимых в движение воздушным винтом. Предложен способ снижения гидродинамического сопротивления корпуса судна, приводимого в движение воздушным винтом, заключающийся в том, что подают воздушный поток под днище корпуса судна, при этом днище выполнено в виде замкнутой оболочки, внутри замкнутой оболочки днища закреплены баллоны, а воздушный поток первоначально подают в межбаллонное пространство замкнутой оболочки днища и направляют его через отверстия в нижней части замкнутой оболочки днища, причем до выхода воздушного потока наружу к поверхности движения его формируют и отклоняют в сторону кормовой части днища. Предложено также устройство для снижения гидродинамического сопротивления днища корпуса судна. Техническим результатом является улучшение эксплуатационных характеристик судна. 2 н. и 2 з.п. ф-лы, 2 ил.

Description

Группа изобретений относится к области создания транспортных средств и касается в особенности судов, приводимых в движение воздушным винтом.
Известен способ, реализованный в устройстве для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке. (См. патент РФ на изобретение №2675279 от 20.04.2018). Вышеупомянутый способ является наиболее близким к предложенному способу (прототипом) и заключается в том, что воздушный поток подают под днище корпуса судна через продольный воздухозаборный канал нагнетательного устройства. Кроме того, в пневмоканал, образованный под днищем, поступает от источника воздух.
Недостатком известного способа являются повышенные потери воздуха. Названные потери обусловлены большой площадью пневмоканала и тем, что он повторяет форму днища корпуса, выполнен по всей длине и имеет открытые полости для выхода воздуха. Это требует большей мощности двигателя и приводит на выходе к пониженному давлению воздуха. В конечном итоге не происходит необходимого снижения гидродинамического сопротивления днища корпуса судна.
Известно устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке. (См. патент РФ на изобретение №2675279 от 20.04.2018). Названное устройство является наиболее близким к предложенному устройству (прототипом) и содержит днище, выполненное из частей под различными углами, руль поворота и продольный воздухозаборный канал нагнетательного устройства в виде импеллера. Воздух из сопла подается под днище судна. Днище расположено между боковыми скегами на некотором расстоянии выше нижних опорных концов скегов. При этом продольный воздухозаборный канал в виде сопла имеет свое продолжение в сторону расширяющегося днища судна со скегами. Таким образом, образован закрытый пневмоканал с прямоугольным днищем, также расположенным на некотором расстоянии выше нижних опорных концов скегов, заканчивающийся, не доходя до кормовой части. В кормовую часть поступает от источника воздух. Дно закрытого пневмоканала, расположенного между скегами, выполнено по всей длине с поперечными выпускными каналами под углом 30-60° в сторону кормы. При этом они выполнены с дополнительными наклонными плоскостями, разделенными в средней части посредством горизонтальной оси вращения, прикрепленной к стенкам выпускных каналов. Кроме того, верхняя часть наклонной плоскости внутри закрытого пневмоканала имеет козырек, направленный навстречу воздушному потоку, с возможностью закрытия поперечных выпускных каналов в днище закрытого пневмоканала. Нижняя часть наклонной плоскости выполнена с козырьком, направленным в сторону кормы, с возможностью прилегания к нижней части днища. Оси вращения наклонных плоскостей связаны между собой рычагами для перемещения наклонных плоскостей в вертикальной плоскости одновременно с помощью гидропривода управления.
Недостатком известного устройства являются повышенные потери воздуха. Воздух выходит из нижней части пневмоканала, расположенного между скегами. При отрыве судна от поверхности воды воздух из открытой полости выходит в открытое пространство и происходит падение давления. Все это не позволяет добиться необходимого снижения гидродинамического сопротивления днища корпуса судна. Кроме того, расположение двигателя внутри корпуса судна уменьшает его полезный объем и ограничивает доступ к двигателю при необходимости его обслуживания. Сложная конструкция известного устройства для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке также является недостатком, т.к. снижается надежность всего изделия.
Задачей, на решение которой направлена предлагаемая группа изобретений, является создание способа снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, и устройства для его осуществления.
Техническим результатом, на достижение которого направлена предлагаемая группа изобретений, является улучшение эксплуатационных характеристик судна при его движении по разным поверхностям (по воде, снегу, льду, земле, песку и другим свободным поверхностям).
Указанный технический результат достигается за счет того, что в способе снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, подают воздушный поток под днище корпуса судна. При этом первоначально воздушный поток подают через кормовую часть в замкнутую оболочку днища во внутренние пневмоканалы замкнутой оболочки днища и направляют его через отверстия в нижней части замкнутой оболочки днища, причем до выхода воздушного потока наружу к поверхности движения его формируют и отклоняют в сторону кормовой части днища.
Указанный технический результат достигается за счет того, что устройство для снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, содержит нагнетатель воздушного потока. При этом днище выполнено в виде замкнутой оболочки, а нагнетатель расположен в кормовой части судна и выходом через переходный закрытый участок пневмоканала соединен с полостью замкнутой оболочки днища. Причем внутри замкнутой оболочки днища закреплены баллоны, заполненные газом под давлением или вспененным веществом, а в нижней части замкнутой оболочки днища выполнены отверстия, при этом снаружи поперек нижней части замкнутой оболочки днища закреплены гибкие защитные полосы. При этом к нижней части замкнутой оболочки днища прикреплена только передняя кромка защитной полосы, а задняя кромка защитной полосы остается свободной с возможностью освобождать и прикрывать отверстия.
Кроме того, между баллонами по линии соприкосновения баллонов могут быть выполнены вставки, имеющие промежутки для прохода воздуха, а баллоны в сечении преимущественно имеют круглую или овальную форму (хотя форма может быть и любой другой). Отверстия с наружной стороны днища прикрыты гибкими защитными полосами, прикрепленными к днищу судна одним краем перед отверстиями со стороны носа судна. Гибкие защитные полосы могут быть не только цельными, но и сегментными.
Сущность предлагаемой группы изобретений поясняется рисунками, где:
на фиг. 1 схематично показано судно, приводимое в движение воздушным винтом;
на фиг. 2 показано сечение А-А на фиг. 1.
Устройство для снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, входит в состав корпуса 1, основанием которого является днище 2. (См. фиг. 1). Нагнетатель 3 воздушного потока расположен в кормовой части судна и выходом через переходный закрытый участок пневмоканала 4 соединен с полостью замкнутой оболочки днища 5. Внутри замкнутой оболочки днища 5 закреплены баллоны 6, заполненные газом под давлением (как правило - воздухом). Эти баллоны, в разрезе, чаще всего имеют форму близкую к кругу. Когда их собирают в плот, то неизбежно образуются межбаллонные каналы 7 (межбаллонное пространство). (См. фиг. 2). В нижней части замкнутой оболочки днища делаются серии отверстий 8 (не обязательно круглых) «напротив» каждого межбаллоного канала. Отверстия делаются таким образом, чтобы гибкие защитные полосы 9 снаружи накрывали их. Защитные полосы 9 закрепляются поперек нижней части замкнутой оболочки днища внахлест. Другими словами, к нижней части замкнутой оболочки днища прикрепляется только передняя (ближе к носу судна) кромка защитной полосы 9, а задняя (ближе к корме судна) кромка защитной полосы 9 остается свободной с возможностью перемещаться (вверх - вниз) относительно днища, освобождая и прикрывая отверстия 8.
Для усиления подачи воздуха под днище и для распределения воздушного потока под днищем перед выходом его к поверхности движения могут устанавливаться бурты (упоры) для того, чтобы образовывалась щель между днищем 2 и защитными полосами 9 (на рисунках не показано).
Совокупность взаимосвязанных элементов (нагнетатель 3 воздушного потока, переходный закрытый участок пневмоканала 4, замкнутая оболочка днища 5 и баллоны 6) позволяет в межбаллонном пространстве формировать воздушный напорный поток. При этом нагнетатель 3 может быть закреплен под любым углом относительно поверхности воды для забора воздушного атмосферного потока и подачи воздуха в пневмоканалы, расположенные в межбаллонном пространстве.
В кормовой части корпуса в нижней части могут быть выполнены отверстия для слива воды, попавшей в межбаллонное пространство (на рисунках не показано).
Замкнутая оболочка образует днище судна (далее будут рассматриваться верхняя часть оболочки, т.е. пол, и нижняя часть оболочки). Защитные полосы 9 закрепляются снаружи поперек нижней части замкнутой оболочки днища внахлест и контактируют по всей плоскости днища с водной поверхностью, т.е. в зонах всех участков касания с водой. В нижней части оболочки выполнены отверстия 8 для выхода воздуха из пневмоканалов. Защитные полосы сделаны из изностойкого материала и являются защитой от повреждений для замкнутой оболочки.
Способ осуществляют следующим образом.
Сразу следует отметить, что речь пойдет о транспортном средстве (ТС) типа аэролодки, аэробота, аэроглиссера и т.п. Данные ТС передвигаются по поверхностям за счет скольжения. Т.е. чем ниже сила трения скольжения между днищем и поверхностью движения, тем меньше усилий надо затратить для передвижения ТС. Одним из способов снижения трения днища 2 (см. фиг. 1) судна о поверхность является создание воздушной пленки между днищем и поверхностью. Принудительная подача воздуха под днище позволяет усилить воздушную смазку и существенно снизить силу трения скольжения.
Принудительная подача воздуха осуществляется каким-либо устройством (нагнетатель 3). Оно создает воздушный поток, который надо подать под днище. Как правило, нагнетатель 3 - это вентилятор. Приводом для вентилятора может быть электродвигатель, бензиновый двигатель, дизельный двигатель, или механический привод от основного двигателя судна.
Устройство подачи воздуха (нагнетатель 3) подает воздух в межбаллонные каналы внутрь замкнутой оболочки днища 5. Воздух может проходить между баллонами, если они не склеены, через заднюю часть или переднюю часть замкнутой оболочки днища 5, где имеются естественные расстояния между баллонами. Из межбаллонных каналов 7 (см. фиг. 2) воздух выходит наружу через отверстия (могут быть разной формы) в днище лодки. Воздушный поток через отверстия 8 в нижней части замкнутой оболочки днища 2 выходит в виде газовой смазки для снижения гидродинамического сопротивления днища корпуса судна.
Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке работает следующим образом.
В начале движения судна нагнетатель 3, расположенный на корме корпуса 1, подает воздушную смесь в переходный закрытый участок пневмоканала 4 и закрытые межбаллонные каналы 7, расположенные в межбаллонном пространстве. При этом воздух выходит через отверстия 8 в нижней части замкнутой оболочки днища судна 5. В результате образуется газовая прослойка между днищем и границей опорной поверхности движения. Таким образом, создается эффект «воздушной смазки» для судна.
Следует отметить, что между баллонами 6 по линии соприкосновения баллонов могут быть выполнены вставки, имеющие промежутки для прохода воздуха (на рисунках не показано). Вставки могут и не иметь промежутков для прохода воздуха, но применение вставок раздвигает баллоны и воздух легко проходит между баллонами за счет вставок. Этот технический прием повышает надежность равномерного распределения воздуха до выхода его наружу к поверхности движения, а также увеличивает проходное сечение, что позволяет увеличить объем подаваемого под днище воздуха.
Для распределения (формирования) воздушного потока под днищем (после прохождения отверстий 8) перед выходом его к поверхности движения могут устанавливаться бурты (упоры) для того, чтобы образовывалась щель между днищем 2 и защитными полосами 9 (на рисунках не показано). Эта конструктивная особенность обеспечивает равномерность распределения воздуха после выхода его наружу перед тем, как защитные полосы 9 отклонят воздушный поток в сторону кормовой части днища. Кроме того, бурты предотвращают полное перекрытие отверстий защитными полосами.
Маневрирование судна может осуществляться как изменением мощности работы основного воздушного винта, так и за счет рулевых устройств (на рисунках не показаны).
Применение предлагаемой группы изобретений на судах на сжатом пневмопотоке обеспечивает увеличение давления и потока воздуха, выходящего из отверстий во внешней оболочке, выполняющей функцию днища.
Кроме того, достигается сохранение давления воздуха в межбаллонном пространстве, соединенном полостями с нагнетателем воздуха, при отрыве днища лодки от поверхности движения.
Таким образом, предлагаемая группа изобретений обеспечивает улучшение эксплуатационных характеристик судна при его движении по разным поверхностям (по воде, снегу, льду, земле, песку и другим свободным поверхностям). Одним из конкретных улучшений является повышение скорости, поскольку трение по поверхности контакта (гидродинамическое сопротивление днища корпуса судна) значительно снижается по всему днищу корпуса судна. Кроме того, улучшается устойчивость судна по курсу, снижается расход топлива, а также увеличивается грузоподъемность.
Судно на сжатом пневмопотоке при использовании предлагаемой группы изобретений может свободно, не снижая скорости, передвигаться по воде, снегу любой плотности, льду, отмелям и перекатам, а также при переходе из воды на лед. Использование предлагаемых технических решений обеспечивает судну хорошую устойчивость, т.к. судну придано горизонтальное устойчивое положение при высоких скоростях движения. В свою очередь это позволяет также избегать столкновения с подводными предметами на воде, двигаться по льду, не зарываясь в него носовой частью корпуса во время движения.

Claims (4)

1. Способ снижения гидродинамического сопротивления корпуса судна, приводимого в движение воздушным винтом, заключающийся в том, что подают воздушный поток под днище корпуса судна, отличающийся тем, что днище выполнено в виде замкнутой оболочки, причем внутри замкнутой оболочки днища закреплены баллоны, а воздушный поток первоначально подают в межбаллонное пространство замкнутой оболочки днища и направляют его через отверстия в нижней части замкнутой оболочки днища, причем до выхода воздушного потока наружу к поверхности движения его формируют и отклоняют в сторону кормовой части днища.
2. Устройство для снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, включающее нагнетатель воздушного потока, отличающееся тем, что днище выполнено в виде замкнутой оболочки, нагнетатель расположен в кормовой части судна и выходом через переходный закрытый участок пневмоканала соединен с полостью замкнутой оболочки днища, причем внутри замкнутой оболочки днища закреплены баллоны, заполненные газом под давлением или вспененным веществом, в нижней части замкнутой оболочки днища выполнены отверстия, при этом снаружи поперек нижней части замкнутой оболочки днища закреплены защитные полосы, причем к нижней части замкнутой оболочки днища прикреплена только передняя кромка защитной полосы, а задняя кромка защитной полосы остается свободной с возможностью освобождать и прикрывать отверстия.
3. Устройство по п. 2, отличающееся тем, что между баллонами по линии соприкосновения баллонов выполнены вставки.
4. Устройство по п. 2, отличающееся тем, что баллоны в сечении имеют круглую или овальную форму.
RU2020119913A 2020-06-16 2020-06-16 Способ снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, и устройство для его осуществления RU2744065C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020119913A RU2744065C1 (ru) 2020-06-16 2020-06-16 Способ снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020119913A RU2744065C1 (ru) 2020-06-16 2020-06-16 Способ снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2744065C1 true RU2744065C1 (ru) 2021-03-02

Family

ID=74857625

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020119913A RU2744065C1 (ru) 2020-06-16 2020-06-16 Способ снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2744065C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071644A (zh) * 2021-05-21 2021-07-06 常州玻璃钢造船厂有限公司 船用降噪提效装置以及空气动力艇
RU210370U1 (ru) * 2022-01-13 2022-04-14 Лев Леонидович Телегин Аэролодка с двумя двигателями
RU2776363C1 (ru) * 2022-01-26 2022-07-19 Александр Петрович Крантов Надувная аэролодка-амфибия

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650235A (en) * 1969-07-31 1972-03-21 Veritas International Hull construction
SU1273292A1 (ru) * 1981-01-05 1986-11-30 Nedobezhkin Anatolij E Судно с системой подачи воздуха на его днище
US6003465A (en) * 1998-03-11 1999-12-21 Medtech Center, Inc. Lower part of the hull of a planing amphibian
RU2548213C1 (ru) * 2013-11-15 2015-04-20 Виталий Валериевич Кожевин Катамаран на воздушной подушке
RU2675279C1 (ru) * 2018-04-20 2018-12-18 Михаил Иванович Голубенко Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке
RU2677539C1 (ru) * 2018-05-07 2019-01-17 Михаил Иванович Голубенко Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке
RU2713320C1 (ru) * 2019-04-09 2020-02-04 Ооо "Центр Качества, Надежности И Долговечности Зданий" Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650235A (en) * 1969-07-31 1972-03-21 Veritas International Hull construction
SU1273292A1 (ru) * 1981-01-05 1986-11-30 Nedobezhkin Anatolij E Судно с системой подачи воздуха на его днище
US6003465A (en) * 1998-03-11 1999-12-21 Medtech Center, Inc. Lower part of the hull of a planing amphibian
RU2548213C1 (ru) * 2013-11-15 2015-04-20 Виталий Валериевич Кожевин Катамаран на воздушной подушке
RU2675279C1 (ru) * 2018-04-20 2018-12-18 Михаил Иванович Голубенко Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке
RU2677539C1 (ru) * 2018-05-07 2019-01-17 Михаил Иванович Голубенко Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке
RU2713320C1 (ru) * 2019-04-09 2020-02-04 Ооо "Центр Качества, Надежности И Долговечности Зданий" Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071644A (zh) * 2021-05-21 2021-07-06 常州玻璃钢造船厂有限公司 船用降噪提效装置以及空气动力艇
RU210370U1 (ru) * 2022-01-13 2022-04-14 Лев Леонидович Телегин Аэролодка с двумя двигателями
RU2776363C1 (ru) * 2022-01-26 2022-07-19 Александр Петрович Крантов Надувная аэролодка-амфибия
RU2807358C1 (ru) * 2023-07-13 2023-11-14 Александр Петрович Крантов Аэролодка со сменными баллонами

Similar Documents

Publication Publication Date Title
RU2744065C1 (ru) Способ снижения гидродинамического сопротивления днища корпуса судна, приводимого в движение воздушным винтом, и устройство для его осуществления
EP0088640A2 (en) Vessel with exhaust through bottom
RU2675279C1 (ru) Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке
KR101348081B1 (ko) 추진기 주변에 계단형식을 갖춘 선미형상을 한 에어 캐비티 및 공기윤활 방식 선박
US3793980A (en) Marine propulsion system
EP2617640B1 (en) Water displacement boat with air cavities on the bottom
US7093553B2 (en) Super high speed multi-hull watercraft
US5720636A (en) Marine propulsor
MXPA04008057A (es) Embarcacion de colchon de aire.
RU2614367C1 (ru) Устройство для реализации способа передвижения и управления транспортным средством на воздушной подушке
US4926771A (en) Variable hull resistance system for marine vessels
KR101728395B1 (ko) 익형 공기압 스텝을 갖는 선박
RU2302971C2 (ru) Корпус судна (варианты)
RU2610754C2 (ru) Быстроходное судно
US5000107A (en) Extended bow and multiple air cushion air ride boat hull
US5545063A (en) Chambered anti-Coanda jet marine propulsion device with gaseous boundary layer for a thrust jet flow stream exhibiting staged controlled boundary layer separation properties, vessel trim adjustment, and movable thrust vector application points(s)
US6619220B1 (en) Hybrid SES/hovercraft with retractable skirt system
US6422168B1 (en) Sporting water vehicle
US20240227990A9 (en) Wake shaping device
US4714443A (en) Flexible exhaust duct
CA2373462A1 (en) Course-holding, high-speed, sea-going vessel having a hull which is optimized for a rudder propeller
RU2823963C1 (ru) Лодка с двумя движителями для получения высокого давления воздуха
RU2713320C1 (ru) Устройство для снижения гидродинамического сопротивления днища корпуса судна на сжатом пневмопотоке
KR20110093576A (ko) 선박
US6491557B2 (en) Exhaust system for watercraft