RU2742887C1 - Конденсаторная группа, коммутируемая тиристорами - Google Patents

Конденсаторная группа, коммутируемая тиристорами Download PDF

Info

Publication number
RU2742887C1
RU2742887C1 RU2020114550A RU2020114550A RU2742887C1 RU 2742887 C1 RU2742887 C1 RU 2742887C1 RU 2020114550 A RU2020114550 A RU 2020114550A RU 2020114550 A RU2020114550 A RU 2020114550A RU 2742887 C1 RU2742887 C1 RU 2742887C1
Authority
RU
Russia
Prior art keywords
capacitor group
thyristors
thyristor
parallel
branches
Prior art date
Application number
RU2020114550A
Other languages
English (en)
Inventor
Михаил Георгиевич Асташев
Геннадий Михайлович Минаев
Дмитрий Иванович Панфилов
Original Assignee
Акционерное общество "Энергетический институт им. Г.М. Кржижановского" (АО "ЭНИН")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Энергетический институт им. Г.М. Кржижановского" (АО "ЭНИН") filed Critical Акционерное общество "Энергетический институт им. Г.М. Кржижановского" (АО "ЭНИН")
Priority to RU2020114550A priority Critical patent/RU2742887C1/ru
Application granted granted Critical
Publication of RU2742887C1 publication Critical patent/RU2742887C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

Изобретение относится к области электротехники и силовой электроники и может быть использовано для управления источниками реактивной мощности, построенными на основе тиристорных преобразователей. Техническим результатом, на получение которого направлено предлагаемое техническое решение, является увеличение надежности функционирования конденсаторных групп, коммутируемых тиристорами, а также улучшение их технико-экономических показателей за счет исключения из их состава токоограничивающего оборудования. Технический результат достигается тем, что в конденсаторной группе, коммутируемой тиристорами, содержащей параллельно подключенные ветви, каждая из которых состоит из последовательно соединенных конденсатора и тиристора, параллельно которому включен во встречном направлении дополнительный тиристор или диод, при этом одна из общих точек соединения параллельных ветвей подключена к первому выводу конденсаторной группы, а вторая общая точка соединения параллельных ветвей, не подключенная к первому выводу конденсаторной группы, соединена со вторым выводом конденсаторной группы посредством управляемого ключа, параллельно управляемому ключу подключен двунаправленный тиристорный ключ, образованный встречно-параллельно соединенными тиристорами. 3 ил.

Description

Изобретение относится к области электротехники и силовой электроники и может быть использовано для управления источниками реактивной мощности, построенными на основе тиристорных преобразователей. Подобные устройства широко применяются в электроэнергетике, электроприводе, электротермии, электролизе, преобразовательной технике, для плавного регулирования реактивной мощности в электрической сети, как в режиме ее потребления, так и генерации в составе управляемых блоков конденсаторных батарей и комбинированных статических тиристорных компенсаторов реактивной мощности.
Известна конденсаторная группа, коммутируемая тиристорами, использующая параллельно соединенные ветви, каждая из которых содержит конденсатор с последовательно подключенным к нему двунаправленным тиристорным ключом. Изменение емкости конденсаторной группы осуществляется за счет управления двунаправленными тиристорными ключами каждой из ветвей и подключением различного количества конденсаторов параллельно. За счет выбора различных реактивных сопротивлений каждой ветви конденсаторной группы и включения каждой ветви или комбинации нескольких из них с помощью двунаправленных тиристорных ключей достигается заданная дискретность и равномерность изменения уровней регулирования емкости конденсаторной группы. («Дальние электропередачи сверхвысокого напряжения» Ю.П. Рыжов, М., Издательский дом МЭИ, 2007 г., 486 с, стр. 313, рис. 9.11 а).
Недостатком данной конденсаторной группы является возможность возникновения значительных бросков тока в ее ветвях при изменении уровней регулирования емкости конденсаторной группы. Это значительно снижает надежность работы устройства и усложняет его управление, т.к. моменты коммутации двунаправленных тиристорных ключей необходимо синхронизировать с напряжением, приложенным к конденсаторной группе, с учетом уровней остаточного напряжения на всех включаемых в работу конденсаторах, которые могут меняться в процессе работы устройства в широком диапазоне.
Известна конденсаторная группа, коммутируемая тиристорами, использующая параллельно соединенные ветви, каждая из которых содержит конденсатор с последовательно подключенным к нему двунаправленным тиристорным ключом и токоограничивающим реактором. Изменение емкости конденсаторной группы достигается изменением комбинации конденсаторов, подключаемых параллельно с помощью соответствующих двунаправленных тиристорных ключей. Система управления устройством синхронизирует моменты отпирания встречно-параллельно соединенных тиристоров в каждой из параллельных ветвей относительно приложенного к ним напряжения. («Энергосбережение в системах промышленного электроснабжения» Справочно-методическое издание под общей редакцией Вакулко А.Г. Из-во «Теплоэнергетик»,М. 2014 г., 298 стр. с ил. стр 137, рис. 5.10).
Недостатком данной конденсаторной группы, коммутируемой тиристорами, является наличие в ее составе токоограничивающих реакторов, предназначенных для ограничения бросков токов параллельных ветвей при коммутации двунаправленных тиристорных ключей в процессе изменения уровней регулирования емкости конденсаторной группы. С одной стороны, применение токоограничивающих реакторов позволяет увеличить надежность функционирования устройства, с другой стороны, увеличивается суммарная установленная мощность реактивных элементов схемы, что ухудшает технико-экономические показатели устройства в целом.
Техническим результатом, на получение которого направлено предлагаемое техническое решение, является увеличение надежности функционирования конденсаторных групп, коммутируемых тиристорами, за счет схемотехнической реализации, исключающей возникновение коммутационных бросков тока через конденсаторы и полупроводниковые ключи при изменении уровней регулирования емкости, а также улучшение технико-экономических показателей конденсаторных групп, коммутируемых тиристорами, за счет исключения из их состава токоограничивающего оборудования.
Технический результат достигается тем, что в конденсаторной группе, коммутируемой тиристорами, содержащей параллельно подключенные ветви, каждая из которых состоит из последовательно соединенных конденсатора и тиристора, параллельно которому включен во встречном направлении дополнительный тиристор или диод, при этом одна из общих точек соединения параллельных ветвей подключена к первому выводу конденсаторной группы, а вторая общая точка соединения параллельных ветвей, не подключенная к первому выводу конденсаторной группы, соединена со вторым выводом конденсаторной группы посредством управляемого ключа, параллельно управляемому ключу подключен двунаправленный тиристорный ключ, образованный встречно-параллельно соединенными тиристорами.
Сущность предлагаемого устройства поясняется чертежами, где на фиг. 1 приведена схема построения конденсаторной группы, коммутируемой тиристорами, состоящей из четырех параллельных ветвей, одна из общих точек соединения которых подключена к выходу конденсаторной группы посредством управляемого ключа с параллельно подключенным к нему резистором.
На фиг. 2 приведены временные диаграммы работы конденсаторной группы фиг. 1.
На фиг. 3 приведена схема построения конденсаторной группы, коммутируемой тиристорами, состоящей из четырех параллельных ветвей, одна из общих точек соединения которых подключена к выходу конденсаторной группы посредством управляемого ключа с параллельно подключенным к нему двунаправленным тиристорным ключом.
Конденсаторная группа, коммутируемая тиристорами (фиг. 1), включает четыре параллельно подключенные ветви 1, 2, 3, 4. Первая ветвь содержит конденсатор 1, первый вывод которого подключен к общей точке соединения 1 параллельных ветвей 1, 2, 3, 4, а второй вывод конденсатора 1 соединен с катодом диода 6 и анодом тиристора 7, при этом анод диода 6 и катод тиристора 7 соединены с общей точкой соединения 2 параллельных ветвей 1, 2, 3, 4. Ветви 2, 3, 4 по своей структуре полностью аналогичны ветви 1 и содержат соответственно конденсаторы 8, 11, 14, диоды 9, 12, 15 и тиристоры 10, 13, 16. Общая точка соединения 2 параллельных ветвей 1, 2, 3, 4 соединена с первым выводом управляемого ключа 17, второй вывод которого подключен к входу 1 конденсаторной группы, коммутируемой тиристорами, вход 2 конденсаторной группы, коммутируемой тиристорами, соединен с общей точкой соединения 1 параллельных ветвей 1, 2, 3, 4. К первому выводу управляемого ключа 17 подключен первый вывод резистора 18, второй вывод которого подключен ко второму выводу управляемого ключа 17. Сигналы управления на управляемый ключ 17, тиристоры 7, 10, 13, 16 параллельных ветвей 1, 2, 3, 4 поступают от системы управления 19. К входу 1 конденсаторной группы, коммутируемой тиристорами, подключен первый вывод датчика напряжения 20, второй вывод которого подключен к входу 2 конденсаторной группы, коммутируемой тиристорами. Выход датчика напряжения 20 подключен ко входу системы управления 19.
Конденсаторная группа, коммутируемая тиристорами, представленная на фиг. 2, построена на основе конденсаторной группы, коммутируемой тиристорами фиг. 1, при этом резистор 18 из схемы исключен, а к первому выводу управляемого ключа 17 подключен первый вывод двунаправленного тиристорного ключа 21, второй вывод которого подключен ко второму выводу управляемого ключа 17. Импульсы управления на двунаправленный тиристорных ключ 21 также поступают от системы управления 19.
Конденсаторная группа, коммутируемая тиристорами, изображенная на фиг. 1, работает следующим образом. При подаче на входы 1 и 2 конденсаторной группы, коммутируемой тиристорами, сетевого напряжения система управления 19 обеспечивает разомкнутое (выключенное) состояние управляемого ключа 17, в качестве которого может быть применен механический контактор (реле), импульсы управления на тиристоры 7, 10, 13, 16 не подаются. При этом на полупериодах сетевого напряжения, соответствующих открытому состоянию диодов 6, 9, 12, 15, через резистор 18 происходит заряд конденсаторов 5, 8, 11, 14. По истечении времени заряда, когда напряжение на конденсаторах достигнет величины, близкой к амплитудному значению сетевого напряжения, система управления 19 переводит управляемый ключ 17 в замкнутое (включенное) состояние, тем самым зашунтировав резистор 18, основной функцией которого является ограничение зарядного тока конденсаторов 5, 8, 11, 14 при включении конденсаторной группы, коммутируемой тиристорами, в работу. Полярность напряжения на заряженных конденсаторах 5, 8, 11, 14 показана на конденсаторе 5 фиг. 1. После завершения заряда конденсаторов 5, 8, 11, 14 и перевода управляемого ключа 17 во включенное состояние конденсаторная группа, коммутируемая тиристорами, готова к работе.
При выключенных тиристорах 7, 10, 13, 16, конденсаторы 5, 8, 11, 14 ветвей 1, 2, 3, 4 не участвуют в формировании уровней эквивалентной выходной емкости конденсаторной группы, коммутируемой тиристорами. При этом на периоде изменения сетевого напряжения при закрытом состоянии диодов 6, 9, 12, 15 происходит саморазряд или разряд на параллельные разрядные резисторы конденсаторов 5, 8, 11, 14 (разрядные резисторы входят в состав промышленно выпускаемых приборов), а при открытом состоянии диодов 6, 9, 12, 15 - заряд конденсаторов 5, 8, 11, 14 сетевым напряжением. Ток конденсаторов 5, 8, 11, 14 в этом случае пренебрежимо мал. состоянии диодов 6, 9, 12, 15 происходит саморазряд или разряд на параллельные разрядные резисторы конденсаторов 5, 8, 11, 14 (разрядные резисторы входят в состав промышленно выпускаемых приборов), а при открытом состоянии диодов 6, 9, 12, 15 - заряд конденсаторов 5, 8, 11, 14 сетевым напряжением. Ток конденсаторов 5, 8, 11, 14 в этом случае пренебрежимо мал.
В процессе изменения уровня регулирования емкости конденсаторной группы, коммутируемой тиристорами, для включения в работу соответствующих ветвей 1, 2, 3, 4 система управления 19 подает импульсы управления на тиристоры 7, 10, 13, 16 включаемых ветвей. Пример включения в работу ветви конденсаторной группы при изменении уровня регулирования емкости конденсаторной группы приведен на фиг. 2. Подача импульсов управления на тиристоры включаемых в работу ветвей должна происходить в момент достижения мгновенным значением сетевого напряжения своего амплитудного значения (момент t3 на фиг. 2). Мгновенное значение сетевого напряжения контролируется системой управления 19 посредством датчика напряжения 20. За счет работы диодов 6, 9, 12, 15 на каждом периоде сетевого напряжения, напряжение на конденсаторах 5, 8, 11, 14 ветвей 1, 2, 3, 4 конденсаторной группы, коммутируемой тиристорами, всегда достигает амплитудного значения сетевого напряжения и по этой причине дополнительного мониторинга системой управления 19 текущего значения напряжения на конденсаторах 5, 8, 11, 14 не требуется. Выключение из работы соответствующих ветвей 1, 2, 3, 4 конденсаторной группы, коммутируемой тиристорами, система управления 19 осуществляет посредством снятия импульсов управления с тиристоров 7, 10, 13, 16 выключаемых ветвей 1, 2, 3, 4. Моменты снятия импульсов управления с тиристоров 7, 10, 13, 16 не требуют при этом синхронизации с напряжением на входе конденсаторной группы (момент t1 на фиг. 2). Выключение соответствующих тиристоров 7, 10, 13, 16 произойдет при достижении их током нулевого значения (момент t2 на фиг. 2). группы. Так при 4-х параллельных ветвях и равных величинах емкостей конденсаторов 5, 8, 11, 14 может быть получено 5 различных ступеней регулирования емкости с учетом нулевой эквивалентной емкости, реализуемой при всех выключенных тиристорах 7, 10, 13, 16. При 4-х параллельных ветвях и величинах емкостей конденсаторов 5, 8, 11, 14, находящихся в соотношении 1:2:4:8 (бинарное соотношение) может быть получено 16 различных ступеней регулирования емкости с учетом нулевой эквивалентной емкости, получаемой при всех выключенных тиристорах 7, 10, 13, 16.
Выключение конденсаторной группы по схеме фиг. 1 из работы может осуществляться как непосредственно путем снятия напряжения с входов конденсаторной группы посредством внешней коммутационной аппаратуры, так и с предварительным снятием импульсов управления со всех тиристоров 7, 10, 13, 16 параллельных ветвей 1, 2, 3, 4 с целью выключения коммутационных аппаратов при нулевом значении тока.
В состав конденсаторной группы, коммутируемой тиристорами, приведенной на фиг. 3, вместо резистора 18 включен двунаправленный тиристорный ключ 21. Применение вместо резистора 18 двунаправленного тиристорного ключа 21 позволяет значительно уменьшить время предварительного заряда конденсаторов 5, 8, 11, 14 в процессе включения конденсаторной группы, коммутируемой тиристорами, в работу.
Конденсаторная группа, коммутируемая тиристорами, изображенная на фиг. 3, работает следующим образом. При подаче на входы 1 и 2 конденсаторной группы, коммутируемой тиристорами, сетевого напряжения система управления 19 обеспечивает разомкнутое (выключенное) состояние управляемого ключа 17, в качестве которого может быть применен механический контактор (реле), импульсы управления на тиристоры 7, 10, 13, 16 и двунаправленный тиристорный ключ 21 не подаются.
В момент включения конденсаторной группы в работу должно быть обеспечено нулевое значение остаточного напряжения на конденсаторах 5, 8, 11, 14. Посредством датчика напряжения 20 система управления 19 отслеживает момент перехода через нулевое значение напряжения на входе конденсаторной группы. В момент достижения напряжением нулевого значения на двунаправленный тиристорный ключ 21 и соответствующие тиристоры (7, 10, 13, 16) подключаемых ветвей подаются импульсы управления, при этом ток в конденсаторной группе сразу достигает амплитуды тока, соответствующей установившемуся его значению. Установившееся значение тока определяется суммарной емкостью параллельно включенных ветвей для заданного состояния конденсаторной группы. В зависимости от полярности входного напряжения полный заряд конденсаторов 5, 8, 11, 14 произойдет либо через
Figure 00000001
периода изменения сетевого напряжения (если полярность входного напряжения после подачи импульса управления на тиристорный ключ 21 соответствует открытому состоянию диодов 6, 9, 12, 16), либо через
Figure 00000002
периода изменения сетевого напряжения (если полярность входного напряжения после подачи импульса управления на тиристорный ключ 21 соответствует закрытому состоянию диодов 6, 9, 12, 16). После окончания процесса заряда конденсаторов 5, 8, 11, 14 с целью уменьшения потерь энергии в двунаправленном тиристорном ключе 21 система управления 19 подает импульс управления на включение управляемого ключа 17, который после включения шунтирует двунаправленный тиристорный ключ 21. Выключение конденсаторной группы, коммутируемой тиристорами фиг. 3 может осуществляться аналогично выключению конденсаторной группы, коммутируемой тиристорами фиг. 1.
Таким образом, предлагаемое техническое решение позволяет повысить надежность функционирования конденсаторных групп, коммутируемых тиристорами, за счет схемотехнической реализации, существенно упрощающей алгоритмы управления при регулировании уровней выходной емкости, и при этом улучшить технико-экономические показатели устройств за счет исключения из их состава дополнительного токоограничивающего оборудования.

Claims (1)

  1. Конденсаторная группа, коммутируемая тиристорами, содержащая параллельно подключенные ветви, каждая из которых состоит из последовательно соединенных конденсатора и тиристора, параллельно которому включен во встречном направлении дополнительный тиристор или диод, при этом одна из общих точек соединения параллельных ветвей подключена к первому выводу конденсаторной группы, а вторая общая точка соединения параллельных ветвей, не подключенная к первому выводу конденсаторной группы, соединена со вторым выводом конденсаторной группы посредством управляемого ключа, отличающаяся тем, что параллельно управляемому ключу подключен двунаправленный тиристорный ключ, образованный встречно-параллельно соединенными тиристорами.
RU2020114550A 2020-04-20 2020-04-20 Конденсаторная группа, коммутируемая тиристорами RU2742887C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020114550A RU2742887C1 (ru) 2020-04-20 2020-04-20 Конденсаторная группа, коммутируемая тиристорами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020114550A RU2742887C1 (ru) 2020-04-20 2020-04-20 Конденсаторная группа, коммутируемая тиристорами

Publications (1)

Publication Number Publication Date
RU2742887C1 true RU2742887C1 (ru) 2021-02-11

Family

ID=74665918

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020114550A RU2742887C1 (ru) 2020-04-20 2020-04-20 Конденсаторная группа, коммутируемая тиристорами

Country Status (1)

Country Link
RU (1) RU2742887C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798470C1 (ru) * 2022-08-23 2023-06-23 Дмитрий Иванович Панфилов Способ управления реактивным сопротивлением компенсатора реактивной мощности

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1023520A1 (ru) * 1981-12-18 1983-06-15 Центральный Научно-Исследовательский И Проектно-Конструкторский Институт Механизации И Энергетики Лесной Промышленности Устройство дл подключени конденсаторной батареи
SU1181054A1 (ru) * 1984-04-03 1985-09-23 Казанский Филиал Московского Ордена Ленина И Ордена Октябрьской Революции Энергетического Института Устройство дл подключени конденсаторной батареи
SU1372468A1 (ru) * 1986-08-11 1988-02-07 Производственное Объединение "Таллинский Электротехнический Завод Им.М.И.Калинина Устройство дл подключени конденсаторной батареи
CN1845456B (zh) * 2006-04-29 2011-01-19 杨建宁 一种投切电容器组的串联型复合开关电路
RU2683964C1 (ru) * 2018-04-06 2019-04-03 Акционерное общество "Энергетический институт им. Г.М. Кржижановского" (АО "ЭНИН") Способ управления ёмкостью управляемой конденсаторной группы и устройство для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1023520A1 (ru) * 1981-12-18 1983-06-15 Центральный Научно-Исследовательский И Проектно-Конструкторский Институт Механизации И Энергетики Лесной Промышленности Устройство дл подключени конденсаторной батареи
SU1181054A1 (ru) * 1984-04-03 1985-09-23 Казанский Филиал Московского Ордена Ленина И Ордена Октябрьской Революции Энергетического Института Устройство дл подключени конденсаторной батареи
SU1372468A1 (ru) * 1986-08-11 1988-02-07 Производственное Объединение "Таллинский Электротехнический Завод Им.М.И.Калинина Устройство дл подключени конденсаторной батареи
CN1845456B (zh) * 2006-04-29 2011-01-19 杨建宁 一种投切电容器组的串联型复合开关电路
RU2683964C1 (ru) * 2018-04-06 2019-04-03 Акционерное общество "Энергетический институт им. Г.М. Кржижановского" (АО "ЭНИН") Способ управления ёмкостью управляемой конденсаторной группы и устройство для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2798470C1 (ru) * 2022-08-23 2023-06-23 Дмитрий Иванович Панфилов Способ управления реактивным сопротивлением компенсатора реактивной мощности

Similar Documents

Publication Publication Date Title
US3703680A (en) Capacitor bank for ac networks
CN105490306B (zh) 一种光伏储能并网供电系统
Chen et al. Regulating and equalizing DC capacitance voltages in multilevel STATCOM
US20140254223A1 (en) Method and system for a high speed soft-switching resonant converter
RU2683964C1 (ru) Способ управления ёмкостью управляемой конденсаторной группы и устройство для его осуществления
RU2684307C1 (ru) Конденсаторная группа, коммутируемая тиристорами
CN102891617A (zh) 一种无源均压控制电路
RU2742887C1 (ru) Конденсаторная группа, коммутируемая тиристорами
EP2945246A1 (en) Voltage adjusting apparatus
CN103929079B (zh) 具备光伏侧解耦电路的微逆变器及其工作方法
WO2023284560A1 (zh) 辅助火电机组agc调频超级电容器组的电压均衡装置和方法
Mohamed et al. Comprehensive Study of Reactive Power and its Compensation Using Shunt-Connected FACTS Device
US11368022B2 (en) Device and method for controlling a load flow in an alternating-voltage network
RU2713631C1 (ru) Конденсаторная группа, коммутируемая тиристорами
GB2050083A (en) Electrical converter
CN107046303B (zh) 一种等效无功电池电路及其控制方法
RU2715993C1 (ru) Способ управления ёмкостью управляемой конденсаторной группы
CN204349572U (zh) 双电源切换装置
RU2730178C1 (ru) Способ управления режимом работы компенсатора реактивной мощности, построенного на основе тиристорно-переключаемой конденсаторной группы
RU2254658C1 (ru) Трёхфазный транзисторный источник реактивных токов
RU2718502C1 (ru) Конденсаторная группа, коммутируемая тиристорами
RU2677860C1 (ru) Конденсаторная группа, коммутируемая тиристорами
RU2804403C1 (ru) Способ управления мощностью статического компенсатора реактивной мощности, работающего в сети синусоидального напряжения
RU2760407C1 (ru) Конденсаторная установка
Mahendran et al. Adapted SVPWM for T-source inverter for renewable energy system