RU2741186C1 - Способ получения газообразного хладоносителя - Google Patents

Способ получения газообразного хладоносителя Download PDF

Info

Publication number
RU2741186C1
RU2741186C1 RU2019131023A RU2019131023A RU2741186C1 RU 2741186 C1 RU2741186 C1 RU 2741186C1 RU 2019131023 A RU2019131023 A RU 2019131023A RU 2019131023 A RU2019131023 A RU 2019131023A RU 2741186 C1 RU2741186 C1 RU 2741186C1
Authority
RU
Russia
Prior art keywords
gas
fluidized bed
heat exchanger
compressed gas
coolant
Prior art date
Application number
RU2019131023A
Other languages
English (en)
Inventor
Вадим Львович Ноткин
Юрий Алексеевич Арефьев
Наталья Вячеславовна Гусева
Галина Владимировна Кривошеина
Original Assignee
Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") filed Critical Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ")
Priority to RU2019131023A priority Critical patent/RU2741186C1/ru
Application granted granted Critical
Publication of RU2741186C1 publication Critical patent/RU2741186C1/ru

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/12Devices using other cold materials; Devices using cold-storage bodies using solidified gases, e.g. carbon-dioxide snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

Изобретение относится к области теплообменных процессов между твердым материалом и газообразным теплоносителем, омывающим этот материал, например, при охлаждении воздуха диоксидом углерода. Способ получения газообразного хладоносителя путем подачи газа в теплообменник и сублимации твердого гранулированного хладагента в режиме кипящего слоя, в котором в качестве газа используют сжатый газ. Сублимацию реализуют в однородном режиме кипящего слоя, подавая при заданном давлении сжатый газ в камеру теплообменника при надкритическом истечении с постоянным расходом. Техническим результатом является повышение холодопроизводительность за счет интенсивного испарения диоксида углерода в кипящем слое и обеспечение работы кипящего слоя на однородном режиме за счет стабилизация расхода сжатого газа, подаваемого в теплообменник, при критическом перепаде давлений на входе, что обеспечивает равномерный обдув объекта испытаний. 1 з.п. ф-лы.

Description

Изобретение относится к области теплообменных процессов и может быть использовано для испытаний в различных отраслях промышленности, в частности для охлаждения элементов авиационных конструкций с заданным режимом.
Известно применение в различных отраслях промышленности контактного способа охлаждения потока газа сухим льдом (см. «Справочник химика 21», стр. 305). Способ заключается в использовании потока газа в качестве промежуточного хладоносителя, служащего для отвода тепла от охлаждаемого объекта. В холодильной камере размещают хладагент - колотый или гранулированный твердый диоксид углерода (сухой лед), хладоноситель в камере за счет естественной или вынужденной конвекции взаимодействует с сухим льдом и охлаждает продукцию. При контакте хладоносителя с поверхностью хладагента последний сублимирует, охлаждая хладоноситель, который, в свою очередь, охлаждает продукцию.
Недостатком этого способа является низкая интенсивность теплообмена между потоком газа и поверхностью сухого льда, обусловленная низкой скоростью газа и малой площадью взаимодействия поверхности гранул сухого льда с потоком газа.
Другим известным и более эффективным техническим решением является способ охлаждения потока газа в холодильных камерах и рефрижераторах путем продувки гранулированного сухого льда принудительным потоком газа, создаваемым вентилятором (см. С.А. Большаков «Холодильная техника и технология продуктов питания». - М.: Академия, 2003, стр. 71).
Для этого сухой лед размещают в решетчатых контейнерах, которые размещают в потоке газа от вентилятора. Теплообмен становится более интенсивным по сравнению с аналогом, холодопроизводительность процесса и скорость охлаждения газа увеличиваются. Продукция охлаждается быстрее.
Основным недостатком аналога с охлаждением газа принудительной продувкой хладагента является низкая интенсивность теплообмена в процессе прохождения газа сквозь неподвижные слои сухого льда и невозможность обеспечить требуемый режим охлаждения при испытаниях элементов авиационных конструкций, который требует оперативного управления изменением параметров охлаждения в процессе испытаний.
Наиболее близким известным техническим решением, реализующем описанный метод охлаждения и принятым за прототип, является способ и устройство, использующие сублимацию твердого диоксида углерода (сухого льда) в режиме кипящего слоя для охлаждения потока воздуха (см. Патент США US5222363A (CARBONIC RESERVES[US]) 29.06.1993.
Суть этого изобретения заключается в следующем:
На перфорированную транспортерную ленту контактного теплообменника помещают слой твердого гранулированного диоксида углерода. Под лентой по всей ее длине устанавливают множество вентиляторов, потоки воздуха от которых направлены вертикально и сквозь перфорацию продувают слой сухого льда. Скорость воздуха подбирается так, чтобы гранулы сухого льда поднялись в воздух и образовали кипящий слой некоторой высоты, не превышающей высоту стенок, ограждающих по бокам конвейер. За счет теплообмена между гранулами и воздухом сухой лед сублимирует, воздух охлаждается и попадает на конвейер следующего уровня, охлаждая пищевые продукты, на нем размещенные. Особенностью этой системы охлаждения является природное свойство диоксида углерода - сублимация, т.е. испарение твердого тела, минуя жидкую фазу. В процессе движения на конвейере и продувки воздухом гранулы, испаряясь уменьшаются в размерах и массе. Процесс рассчитан так, чтобы к концу движения на конвейере гранулы испарились полностью. Однако потоки воздуха от вентиляторов по мере уменьшения размера гранул на ленте начинают уносить легкие гранулы на охлаждаемые продукты, загрязняя их. Чтобы избежать этого, на вентиляторах по ходу движения ленты установлены регуляторы, уменьшающие их производительность до минимума, поддерживающего кипящий слой.
Недостатком прототипа является то, что система охлаждения в рассматриваемой установке вырабатывает множество отдельных потоков хладоносителя с заведомо различным расходом, структурой кипящего слоя и температурой газа, зависящих от производительности вентиляторов, массы и размеров гранул, продуваемых потоком и меняющихся по длине конвейерной ленты. Использование хладоносителя, полученного в таком виде, для испытаний с охлаждением, например, авиационных конструкций невозможно, так как для этого необходим один общий поток газа, сконцентрированный на объекте испытаний и равномерно его омывающий с постоянным расходом и заданной температурой (до -75°С).
Здесь следует отметить, что применение диоксида углерода в качестве хладагента для получения хладоносителя, используемого в установках для тепловых испытаний техники, требует подготовки компонентов к процессу производства хладоносителя и разрешения ряда проблем, связанных как с теплофизическими свойствами диоксида углерода, так и с технологией его использования. Проблемы эти таковы:
- предельная температура охлаждения хладоносителя (-75°С) очень близка к предельной температуре его сублимации (-78,3°С), поэтому для получения программной температуры хладоносителя необходимо до предела повысить эффективность и холодопроизводительность процесса сублимации, чтобы использовать весь хладоресурс фазового перехода сухого льда. Это возможно только в единственном из шести известных режимов кипящего слоя - однородном, как наиболее эффективном. Необходимым условием реализации этого режима является постоянный расход воздуха, образующего кипящий слой.
- Для повышения испаряемости гранул их сублимацию надо производить в потоке сжатого воздуха, как более плотной и теплоемкой субстанции по сравнению с потоком атмосферного воздуха от вентилятора. Контакт гранул со сжатым воздухом повышает коэффициенты тепломассообмена, увеличивая холодопроизводительность процесса.
- Свойство диоксида углерода уменьшать массу и размеры гранул в процессе сублимации вызывает уменьшение гидросопротивления кипящего слоя, и как следствие этого увеличение расхода сжатого воздуха, подаваемого в зону кипящего слоя. Это систематическое изменение расхода неприемлемо как для реализации однородного режима кипящего слоя, так и для равномерного обдува испытываемой конструкции и требует специальных мер для устранения зависимости расхода хладоносителя от гидросопротивления кипящего слоя.
Таким образом, основными задачами разработки рассматриваемого способа получения газообразного хладоносителя являются:
- интенсивный отбор хладоресурса от хладагента, для чего необходимы обеспечение постоянного расхода сжатого воздуха или газа, подаваемого в теплообменник для образования однородного режима кипящего слоя; реализация сублимации диоксида углерода в потоке сжатого газа, находящегося под избыточным давлением, повышающим эффективность тепло- массообмена в кипящем слое;
- обеспечение независимости расхода сжатого газа от гидросопротивления кипящего слоя для обеспечения равномерного обдува объекта испытаний при постоянном расходе хладоносителя и заданной его температуре, близкой к предельно достижимой.
Техническим результатом предлагаемого изобретения является повышение эффективности процесса сублимации и холодопроизводительности процесса охлаждения потоком сжатого газа в теплообменном аппарате. Кроме того, появилась возможность управлять расходом потока сжатого газа и температурой.
Технический результат достигается тем, что в способе получения газообразного хладоносителя газ подают в теплообменник и осуществляют сублимацию твердого гранулированного хладагента в режиме кипящего слоя. При этом в качестве газа используют сжатый газ, а сублимацию реализуют в однородном режиме кипящего слоя, подавая при заданном давлении сжатый газ в камеру теплообменника при надкритическом истечении с постоянным расходом.
Также технический результат достигается тем, что постоянный расход обеспечивают подачей сжатого газа через дроссельную шайбу с критическим проходным сечением.
Способ получения газообразного хладоносителя представляет собой охлаждение потока сжатого газа путем сублимации твердого гранулированного хладагента в этом потоке. Это достигнуто организацией интенсивного тепломассообмена хладагента с хладоносителем в режиме кипящего слоя.
Режим кипящего слоя реализуют путем продувки слоя гранулированного хладагента сжатым газом снизу-вверх через решетчатое днище, размещенное в специальной камере. Гранулы подбрасываются вверх потоком газа и остаются во взвешенном состоянии до полной их сублимации. Их интенсивное движение в потоке многократно увеличивает теплообмен, ускоряя процесс охлаждения и изменяя температуру хладоносителя при изменении расхода газа.
Использование диоксида углерода в качестве твердой фазы в кипящем слое имеет особенности, влияющие на режим функционирования кипящего слоя. Как правило, содержание твердой фазы при обработке материалов в кипящем слое остается почти неизменным, например, при сушке зерна, обжиге керамзита, и т.д. При сублимации диоксида углерода он интенсивно испаряется и его содержание в кипящем слое быстро уменьшается. Соотношение масс твердой фазы и ожижающего агента (воздуха), участвующих в процессе, влияет на гидравлическое сопротивление кипящего слоя и, в свою очередь, на давление и скорость потока. От скорости завит режим и структура слоя.
Существует несколько режимов работы кипящего слоя: режим уноса частиц из рабочей зоны при большой скорости потока, каналообразование - когда сквозь массу твердого компонента газ проходит по образовавшимся каналам с минимальным контактом с твердыми частицами, поршнеобразование с большими пузырями газа, толкающими крупные массы слипшихся частиц и другие структурные разновидности кипящего слоя, ухудшающие процессы теплообмена. Наиболее оптимальным режимом является однородный кипящий слой, в котором все частицы находятся во взвешенном состоянии, свободно движутся в хорошем контакте с воздухом. Для этого необходим постоянный равномерный расход газа, который надо специально обеспечить в условиях переменной массы интенсивно испаряющегося диоксида углерода.
Это может быть обеспечено установкой на входе в теплообменник дроссельной шайбы с критическим проходным сечением, создающим режим подачи газа в аппарат со звуковой скоростью (см. «Техническая термодинамика» под ред. В.И. Крутова. - М.: 1981, стр. 237). Создается надкритическое истечение сжатого газа в проходном сечении входного патрубка теплообменника.
В этом случае при заданном давлении газа перед шайбой и переменном давлении в полости истечения (в том числе и в кипящем слое) расход газа остается постоянным, не зависящим от изменения давления в полости кипящего слоя. Подача газа с постоянным расходом обеспечивает наиболее рациональный однородный режим кипящего слоя в условиях быстрого изменения содержания в нем испаряющегося твердого диоксида углерода.
Основное предполагаемое использование хладоносителя - охлаждение элементов авиационных конструкций при теплопрочностных испытаниях, путем обдува их потоком холодного газа. К такому источнику холода предъявляется ряд специфических требований, а именно:
- температура хладоносителя до - 75°С;
- достаточно быстрое изменение температуры, заданное программой испытаний;
- оперативное изменение расхода хладоносителя по программе.
Эти требования должны обеспечиваться способом подготовки и подачи хладоносителя на объект испытаний. Для этого необходим интенсивный съем хладоресурса с хладагента на хладоноситель и оперативное регулирование параметров потока - скорости обдува и его температуры.
Выполнение этих условий достигается конструкцией теплообменного аппарата и способом обработки компонентов хладоносителя в нем.
Главной особенностью процесса подготовки хладоносителя является организация теплообмена гранулированного сухого льда с газом в однородном режиме кипящего слоя. Он образуется при продувке слоя гранул снизу через газораспределительную решетку, на которой он лежит, потоком сжатого газа. При определенной скорости воздуха гранулы под воздействием силы аэродинамического давления потока поднимаются в воздух и при равновесии сил давления и гравитации остаются во взвешенном состоянии, находясь в непрерывном пульсирующем движении. Такое состояние в разы увеличивают интенсивность процесса теплообмена, ускоряя сублимацию, съем хладоресурса с хладагента, а, следовательно, и охлаждение газа. Наиболее подходящим хладагентом для реализации описанного процесса является диоксид углерода, имеющий наибольшую теплоту испарения, среди веществ, склонных к сублимации. Его использование для этой цели в режиме кипящего слоя позволило ускорить теплообмен между газом и движущими гранулами, кратно увеличив холодопроизводительность процесса.
Таким образом, основное преимущество предлагаемого способа заключается в том, что интенсивное испарение диоксида углерода в кипящем слое значительно повышает холодопроизводительность процесса теплообмена, а стабилизация расхода сжатого газа, подаваемого в теплообменник, при критическом перепаде давлений на входе, обеспечивает работу кипящего слоя на однородном режиме, как наиболее рациональном и являющимся обязательным условием для достижения максимальной холодопроизводительности теплообменного аппарата. Использование диоксида углерода в качестве хладагента позволяет охладить поток воздуха до минус 75°С - 78°С.

Claims (2)

1. Способ получения газообразного хладоносителя путем подачи газа в теплообменник и сублимации твердого гранулированного хладагента в режиме кипящего слоя, отличающийся тем, что в качестве газа используют сжатый газ, сублимацию реализуют в однородном режиме кипящего слоя, подавая при заданном давлении сжатый газ в камеру теплообменника при надкритическом истечении с постоянным расходом.
2. Способ по п. 1, отличающийся тем, что постоянный расход обеспечивают подачей сжатого газа через дроссельную шайбу с критическим проходным сечением.
RU2019131023A 2019-10-02 2019-10-02 Способ получения газообразного хладоносителя RU2741186C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019131023A RU2741186C1 (ru) 2019-10-02 2019-10-02 Способ получения газообразного хладоносителя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019131023A RU2741186C1 (ru) 2019-10-02 2019-10-02 Способ получения газообразного хладоносителя

Publications (1)

Publication Number Publication Date
RU2741186C1 true RU2741186C1 (ru) 2021-01-22

Family

ID=74213061

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019131023A RU2741186C1 (ru) 2019-10-02 2019-10-02 Способ получения газообразного хладоносителя

Country Status (1)

Country Link
RU (1) RU2741186C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222363A (en) * 1992-03-11 1993-06-29 Carbonic Reserves Fluidized bed air cooling system
RU2102661C1 (ru) * 1991-11-27 1998-01-20 Иматран Воима Ой Способ просушивания топлива и устройство для его осуществления
RU2393386C1 (ru) * 2006-05-10 2010-06-27 Фостер Вилер Энергия Ой Теплообменник с псевдоожиженным слоем для котла с циркулирующим псевдоожиженным слоем и котел с циркулирующим псевдоожиженным слоем, снабженный теплообменником с псевдоожиженным слоем
US20150260022A1 (en) * 2008-01-23 2015-09-17 Ben M. Enis Method and apparatus for using frozen carbon dioxide blocks or cylinders to recover oil from abandoned oil wells
RU2659839C1 (ru) * 2017-04-27 2018-07-04 Артем Фролович Порутчиков Низкотемпературная холодильная машина на диоксиде углерода

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102661C1 (ru) * 1991-11-27 1998-01-20 Иматран Воима Ой Способ просушивания топлива и устройство для его осуществления
US5222363A (en) * 1992-03-11 1993-06-29 Carbonic Reserves Fluidized bed air cooling system
RU2393386C1 (ru) * 2006-05-10 2010-06-27 Фостер Вилер Энергия Ой Теплообменник с псевдоожиженным слоем для котла с циркулирующим псевдоожиженным слоем и котел с циркулирующим псевдоожиженным слоем, снабженный теплообменником с псевдоожиженным слоем
US20150260022A1 (en) * 2008-01-23 2015-09-17 Ben M. Enis Method and apparatus for using frozen carbon dioxide blocks or cylinders to recover oil from abandoned oil wells
RU2659839C1 (ru) * 2017-04-27 2018-07-04 Артем Фролович Порутчиков Низкотемпературная холодильная машина на диоксиде углерода

Similar Documents

Publication Publication Date Title
Syahrul et al. Energy analysis in fluidized‐bed drying of large wet particles
Goula et al. Spray drying of tomato pulp in dehumidified air: I. The effect on product recovery
CA2435214C (en) Method and apparatus for chilling a food product
KR20070047239A (ko) 건조 방법 및 장치
Parikh Solids drying: basics and applications
DK161607B (da) Fremgangsmaade og anlaeg til toerring af faste stoffer
RU2741186C1 (ru) Способ получения газообразного хладоносителя
US3290788A (en) Fluid-solids contacting methods and apparatus, particularly for use in desiccating organic materials
US3263339A (en) Apparatus for treating solid particles in a fluidized state
RU2655442C2 (ru) Способ получения солей с пониженным содержанием кристаллизационной воды
Rahman et al. Atmospheric freeze drying
US3436837A (en) Fluidized bed freeze drying
NO164331B (no) Framgangsmaate for toerking og/eller frysing av granulater og apparat for gjennomfoering av framgangsmaaten.
RU2120217C1 (ru) Способ регулирования влагосодержания органических материалов
Boeh-Ocansey Some factors influencing the freeze drying of carrot discs in vacuo and at atmospheric pressure
DK159989B (da) Apparat til straalelagstoerring af klaebrigt-kornede og termolabile stoffer
Blasco et al. Flash drying of fish meals with superheated steam: isothermal process
Rogala et al. Effect of operating conditions on performance of silica gel-water air-fluidised desiccant cooler
RU2278527C1 (ru) Способ управления процессом приготовления комбикормов
Nimmol et al. Multistage impinging stream drying for Okara
Szentmarjay et al. Scale-up aspects of the mechanically spouted bed dryer with inert particles
JP2023528418A (ja) 凍結室と凝縮器の組み合わせによる凍結乾燥
Smith et al. Evaporation and drying
US6477845B1 (en) Apparatus for air treatment and transportation of a material
Dhadwal et al. An overview on fluidized bed dryer