RU2737594C1 - Устройство для гидродинамического каротажа - Google Patents

Устройство для гидродинамического каротажа Download PDF

Info

Publication number
RU2737594C1
RU2737594C1 RU2020113777A RU2020113777A RU2737594C1 RU 2737594 C1 RU2737594 C1 RU 2737594C1 RU 2020113777 A RU2020113777 A RU 2020113777A RU 2020113777 A RU2020113777 A RU 2020113777A RU 2737594 C1 RU2737594 C1 RU 2737594C1
Authority
RU
Russia
Prior art keywords
piston
channel
chamber
hydraulic
unit
Prior art date
Application number
RU2020113777A
Other languages
English (en)
Inventor
Александр Васильевич Бубеев
Александр Александрович Бубеев
Original Assignee
Александр Васильевич Бубеев
Александр Александрович Бубеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Васильевич Бубеев, Александр Александрович Бубеев filed Critical Александр Васильевич Бубеев
Priority to RU2020113777A priority Critical patent/RU2737594C1/ru
Application granted granted Critical
Publication of RU2737594C1 publication Critical patent/RU2737594C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Изобретение относится к горному делу и предназначено для гидродинамических исследований необсаженных скважин приборами на кабеле. Технический результат заключается в обеспечении высокой надежности, эффективности и технологичности при эксплуатации устройства для гидродинамического каротажа. Устройство выполнено в виде двух функциональных и одновременно транспортировочных блоков, снабженных стыковочными узлами. Первый блок содержит блок питания электромеханических приводов и электромагнитного клапана, электромеханический привод первого блока с силовым штоком, имеющим фиксированный ход L1. Гидропривод первого блока выполнен в виде поршневого гидроцилиндра двустороннего действия с односторонним штоком и поршнем с рабочими площадями Sк и Sо. При этом большая камера гидроцилиндра соединена основным гидравлическим каналом с клапаном двойного управления, выполненным, например, в виде подпружиненного поршня площадью S1, за клапаном основной гидравлический канал соединен с буферным гидроцилиндром с поршнем. Малая камера гидроцилиндра двустороннего действия с рабочей площадью поршня Sк частично заполнена гидравлической жидкостью, соединена каналом с малым гидравлическим цилиндром с поршнем площадью S1, меньшей Sк, с обратной стороны поршень соединен с основным гидравлическим каналом и контактирует с толкателем упомянутого клапана. Поршень упомянутого буферного гидроцилиндра контактирует со штоком, связанным с датчиком линейных перемещений. Шток соединен с первым поршнем пробоприемника. Малая камера пробоприемника содержит не менее двух дополнительных кольцевых дифференциальных поршней, которые не контактируют между собой и с первым поршнем; и сообщена со скважиной, а приемная камера соединена со стыковочным узлом первого блока со стыковочной трубкой, которая входит в стыковочный канал второго блока. Во втором блоке верхняя часть штока-толкателя механизма управления прижимной системы соединена с подвижным блоком прижимной системы, а его нижняя часть размещена в гидравлически изолированной камере и контактирует с поршнем, который соединен главным гидравлическим каналом с другим поршнем гидравлического привода прижимной системы. Электромагнитный клапан установлен в канале, соединяющем главный гидравлический канал с балластной камерой, при этом максимальный ход силового штока электромеханического привода второго блока меньше такового у первого блока. 3 з.п. ф-лы, 5 ил.

Description

Заявленное изобретение относится к горному делу и предназначено для гидродинамических исследований необсаженных скважин приборами на каротажном кабеле.
Известно устройство для гидродинамических исследований (авт.св. СССР 600293, МПК Е21В 49/00), содержащее пробоприемник с разделительным поршнем, телескопическим поршнем, взаимодействующим с разделительным поршнем, торцевая площадь телескопического поршня меньше площади разделительного поршня. Недостатком является ограниченное число циклов исследования за один рейс прибора в скважину и необходимость обслуживания его для повторного спуска.
Известен малогабаритный прибор гидродинамического каротажа многократного действия Multiphase Flow Measurement (MFT) фирмы Weatherford (www: weatherford.com), выполненный в виде двух герметичных блоков, разделенных многорычажной прижимной системой пантографного типа, с блоком питания, приводом прижимной системы, телескопическим каналом, соединяющим отверстие в герметизирующем элементе с камерой поршневого цилиндра, соединенной каналом с двумя датчиками давления разного класса точности и уравнивающим клапаном, камерой.
После прижатия герметизирующего элемента к стенке скважины, создание депрессии и отбор флюида из пласта производится насосом, что усложняет процесс гидродинамического возмущения пласта, делает его зависимым от производительности насоса.
Наиболее близким по технической сущности с заявляемым является устройство для гидродинамического каротажа скважин (патент РФ 2675616, приоритет 20.12.2018, МПК E21B 49/08, выполненное в виде двух герметичных блоков, разделенных прижимной системой, выполненной в виде многозвенного рычажного механизма пантографного типа с герметизирующим элементом и каналом, при этом первый блок содержит блок питания, соединенный с приводом пробоприемника, с поршнем, размещенным в камере депрессии, которая соединена каналом с гидравлическим клапаном с цилиндром, внутри которого установлены поршни и разделительный поршень, предназначенный для изолирования полости цилиндра, пробоприемник, который соединен каналом с датчиком давления, блоком телеметрии и герметизирующим элементом. Другой блок содержит шток, связанный с поршнем, разделительный поршень, связанный каналом с поршнем, электромагнитный клапан, связанный каналами с поршнем, разделительным поршнем, а также связанный каналом с камерой сброса (балластной камерой), реле давления, связанное каналами с электромагнитным клапаном и встроенным реверсивным клапаном, предназначенным для удержания давления в системе привода многозвенного рычажного механизма пантографного типа прижимной системы при отборе флюидов.
Все устройства для гидродинамического каротажа объединяет последовательное выполнение следующих действий:
- тем или иным способом прижатие герметизирующего элемента к стенке скважины;
- снижение разными способами давления на стенке скважины и, как следствие, гидродинамическое возмущение пласта, и т.д.
Согласно описанию работы устройства прототипа одновременно с включением привода прижимной системы включается привод пробоприемника. Поршень первого блока, находящийся в камере депрессии, перемещаясь, создает разряжение в ней и в канале за гидравлическим клапаном, открывая его.
За открытием клапана последует поступление флюида из скважины, если его открытие не согласовано с работой прижимной системы.
Однако в описании прототипа не указано, какие элементы устройства, их связи согласовывают открытие клапана с работой прижимной системы, что является его существенным недостатком.
Далее, когда поршень первого блока, размещенный в камере депрессии, переместится в верхнее положение, давление в камере и в канале за гидравлическим клапаном выровняется, он должен закрыться (другого не указывается), а закрывшись, перекроет гидравлический канал и сделает невозможным возврат поршня в исходное положение и продолжение работы первого блока устройства.
Во втором блоке соединение штока с поршнем, и размещение в главном гидравлическом канале между поршнями привода электромагнитного клапана и последовательно с ним реверсивного клапана, делают небезопасной работу прижимной системы и блока в целом.
На практике отношение Pпл/Pскв может в большинстве случаев меняться от 0.4 до 0.8, в этой связи одного кольцевого дифференциального поршня в пробоприемнике первого блока недостаточно для надежного с “высокой точностью” определения проницаемости пластов.
Задачей заявляемого изобретения является создание малогабаритного устройства многократного действия для гидродинамического каротажа необсаженных скважин, обеспечивающего его высокую надежность, эффективность и технологичность при эксплуатации.
Согласно изобретению поставленная задача решается тем, что в устройстве для гидродинамического каротажа необсаженных скважин состоящем из двух блоков, прижимной системы, выполненной в виде многозвенного рычажного механизма с герметизирующим элементом и каналом, при этом первый блок содержит блок питания, соединенный с приводом пробоприемника, с поршнем, размещенным в камере депрессии, гидравлический клапан, пробоприемник с первым поршнем и кольцевым дифференциальным поршнем, приемная камера которого соединена каналами с датчиком давления и с отверстием стока герметизирующего элемента, а второй блок содержит механизм управления прижимной системой, содержащей шток, поршни, главный гидравлический канал с электромагнитным клапаном, соединенный другими каналами с балластной камерой и с реле давления, новым является то, что в первом блоке гидропривод пробоприемника выполнен в виде поршневого гидроцилиндра двустороннего действия с односторонним штоком, соединенным с силовым штоком электромеханического привода и поршнем с рабочими площадями Sк, Sо (Sк меньше Sо), при этом большая камера гидроцилиндра соединена основным гидравлическим каналом с клапаном двойного управления, выполненным, например, в виде подпружиненного поршня площадью S1, за клапаном основной гидравлический канал соединен с буферным гидроцилиндром с поршнем. Малая камера гидроцилиндра двустороннего действия с рабочей площадью поршня Sк, частично заполненная гидравлической жидкостью, соединена каналом с малым гидравлическим цилиндром с поршнем площадью S1 меньшей, чем Sк, с обратной стороны поршень соединен с основным гидравлическим каналом и контактирует с толкателем упомянутого клапана. Поршень упомянутого буферного гидроцилиндра контактирует со штоком, связанным с датчиком линейных перемещений, и соединен с первым поршнем пробоприемника, малая камера которого содержит не менее двух дополнительных кольцевых дифференциальных поршней, не контактирующих между собой и с первым поршнем, и сообщена со скважиной, а приемная камера соединена со стыковочным узлом первого блока.
Во втором блоке верхняя часть штока-толкателя механизма управления прижимной системой соединена с подвижным блоком прижимной системы, а его нижняя часть размещена в гидравлически изолированной камере и контактирует с поршнем, который соединен главным гидравлическим каналом с другим поршнем гидравлического привода прижимной системы, а электромагнитный клапан установлен в канале, соединяющем главный гидравлический канал с балластной камерой, при этом максимальный ход силового штока электромеханического привода второго блока меньше такового у первого блока.
Соединение подвижного блока прижимной системы и верхней части штока-толкателя выполнено разъемным, например, резьбовым, а гидравлически изолированная камера, в которую входит нижняя часть штока-толкателя, снабжена съемным фланцем с входным отверстием для упомянутого штока.
Подвижный блок прижимной системы помимо максимального рабочего хода снабжен дополнительным свободным ходом.
Первый и второй блоки устройства выполнены в виде транспортировочных блоков со стыковочными узлами; стыковочный узел первого транспортировочного блока содержит электрический разъем и стыковочную гидравлическую трубку, связанную с приемной камерой пробоприемника; а второй транспортировочный блок включает в себя прижимную систему, механизм управления прижимной системой, стыковочный узел, совмещенный с неподвижным верхним блоком прижимной системы, снабжен электрическим разъемом и стыковочным каналом, в котором размещена упомянутая гидравлическая трубка.
Сущность предлагаемого изобретения поясняется чертежами и нижеследующим описанием.
На фиг. 1 а изображен общий вид устройства для гидродинамического каротажа скважин с прижимным устройством в собранном виде, на фиг. 1 б прижимное устройство в раскрытом состоянии.
На фиг. 2 (а, б) изображены стыковочные узлы первого (фиг. 2 а) и второго (фиг. 2 б) блоков.
На фиг. 3 (а, б, в, г) - фрагменты общего вида, иллюстрирующие работу первого блока устройства для гидродинамического каротажа скважин.
На фиг. 4 изображены диаграммы показаний датчиков давления P (верхняя кривая) и линейных перемещений L (нижняя кривая) штока во времени t.
На фиг. 5 (а) изображен нижний неподвижный блок прижимной системы со съемным фланцем и штоком-толкателем в рабочем положении; на фиг. 5 (б) - шток-толкатель выведен из гидравлически изолированной камеры со съемным фланцем.
Заявляемое устройство для гидродинамического каротажа необсаженных скважин выполнено в виде двух функциональных и одновременно транспортировочных блоков (фиг. 1 а).
Первый блок 1 включает блок питания, электромеханический привод, силовой шток 2, имеющий ход L1, конечные положения которого контролируются концевыми переключателями, соединенный со штоком 3 гидравлического цилиндра двустороннего действия, с поршнем 4 с рабочими площадями Sк и Sо (кольцевая площадь Sк меньше Sо).
Большая камера 5 рабочего контура гидроцилиндра соединена гидравлическим каналом с поршнем 10 и с клапаном 6 двойного управления, выполненным, например, в виде подпружиненного поршня площадью S1.
С другой стороны клапан 6 гидравлическим каналом соединен с буферным гидроцилиндром 7 с поршнем 8, площадью Sо, малая камера 9 управляющего контура гидроцилиндра частично заполнена гидравлической жидкостью и соединена каналом с малым поршнем 10 площадью S1 меньшей Sк. Поршень 10 с другой стороны соединен с гидравлическим каналом и соприкасается с толкателем 11 клапана 6. Шток 12 пробоприемника контактирует с поршнем 8 буферного гидроцилиндра 7 и связан с датчиком линейных перемещений 13. Кольцевые дифференциальные поршни 14, 15 пробоприемника не контактируют между собой и с поршнем 16, камера 17 пробоприемника сообщена со скважиной, а камера 18 сообщена с датчиком давления 19 и стыковочным узлом первого блока со стыковочной гидравлической трубкой 20 (фиг. 2 а).
Второй блок 21 включает электромеханический привод, силовой шток 22, имеющий максимальный ход L2 = 0.9×L1, исходное положение которого контролируется концевым переключателем, связан с поршнем 23, который соединен главным гидравлическим каналом 24 непосредственно с поршнем 25 одностороннего гидроцилиндра. Главный гидравлический канал 24 связан
с другими каналами, соединяющими его через электромагнитный клапан 29 с балластной камерой 30 и с гидравлическим реле 26, а также с переключателем, контролирующим усилие прижатия герметизирующего элемента к стенке скважины.
Камера 31 каналом соединена поршнем-компенсатором 32, который с другой стороны связан со скважиной.
Камера 33 гидравлически изолирована, в нее помещена нижняя часть штока-толкателя 34, а его верхняя часть соединена с подвижным блоком 35 крепления силовых рычагов прижимной системы. Нижний неподвижный блок прижимной системы 36 двумя тягами (не показаны) соединен с верхним стыковочным узлом 37, совмещенным с неподвижным блоком крепления силовых рычагов и рычаг-канала 38, соединяющего через платформу 39 отверстие стока герметизирующего элемента 40 с каналом 41 стыковочного узла 37 (фиг. 2б).
Соединение подвижного блока 35 прижимной системы и верхней части штока-толкателя 34 выполнено разъемным, например, резьбовым, а гидравлически изолированная камера 33, в которую входит нижняя часть штока-толкателя 34, снабжена съемным фланцем 42 (фиг. 5а) с входным отверстием для упомянутого штока.
Подвижный блок 35 прижимной системы помимо максимального рабочего хода снабжен дополнительным свободным ходом, позволяющим вывести нижний конец штока-толкателя 34 из гидравлически изолированной камеры 33 со съемным фланцем 42 (фиг. 5б).
Работа устройства осуществляется следующим образом.
Устройство в собранном виде спускают в скважину на каротажном кабеле, при этом телеметрия с датчиком давления запитываются от наземного регистрирующего комплекса, процесс спуска контролируется по росту давления. На заданной глубине с наземного блока питания подается напряжение на блок питания устройства, от которого питание одновременно подается на электромеханические приводы и электромагнитный клапан 29, который моментально перекрывает канал в балластную камеру 30, электромеханический привод нижнего блока перемещает силовой шток 22, имеющий максимальный ход L2 = 0.9×L1 , и поршень 23, создает в главном гидравлическом канале 24 давление, действующее на поршень 25, последний выдвигает шток-толкатель 34 подвижного блока 35 прижимной системы с герметизирующим элементом 40, который прижимаясь к стенке скважины, изолирует ее участок. Давление в канале 24, достигнув заданной величины, действуя на реле давления с переключателем, отключает только электромеханический привод второго блока, при этом электромагнитный клапан 29 остается включенным.
Электромеханический привод первого блока 1 силовым штоком 2 (фиг. 3 а), имеющим фиксированный ход L1, связанным с ним штоком 3 продолжает перемещать поршень 4, освобождая камеру 5 гидравлического цилиндра двухстороннего действия.
Приближаясь к верхнему конечному положению, поршень 4 выдавливает гидравлическую жидкость из камеры 9 через канал в малый цилиндр с поршнем 10. При оптимальном для быстрого открытия клапана 6 соотношении рабочих площадей S1/Sк=0.1÷0.12 перемещение поршня 4, после заполнения каналов, связывающих камеру 9 с поршнем 10, менее чем на 1 мм практически мгновенно открывает клапан 6 (фиг. 3 б). В следующий за этим момент шток 2, воздействуя на концевой переключатель, отключает электромеханический привод первого блока 1. При этом камера 5 пуста, клапан 6 открыт, камера 18 пробоприемника сообщена с изолированным участком стенки скважины, гидравлическая жидкость перетекает из буферного гидроцилиндра 7 через клапан 6 в камеру 5, давление на изолированном участке стенки скважины упадет, создавая гидродинамическое возмущение в пласте.
Под действием депрессии пластовый флюид поступает по каналам в камеру 18, давление в которой, достигнув порога страгивания Р1 (фиг. 4) поршня 16, будет его перемещать, при этом шток 12, контактирующий с поршнем 8, выдавливают гидравлическую жидкость из буферного гидроцилиндра 7 через открытый клапан 6 в подготовленную (пустую) камеру 5, при этом регистрируемое давление будет неизменным, но о продолжающемся притоке будут свидетельствовать показания датчика линейных перемещений 13, связанного со штоком 12.
Поршень 16, достигнув поршня 15 (фиг. 3 б), остановится, давление в камере 18 и на стенке скважины резко вырастет (фиг. 4) до давления P2 страгивания двух контактирующих поршней 16, 15, давление при их совместном движении будет оставаться неизменным. При этом, если пластовое давление Pпл окажется ниже давления страгивания P3 (фиг. 4) всех трех поршней 16, 15, 14, процесс от активного притока перейдет к восстановлению Pпл.
Если Pпл окажется выше порога страгивания P3 (фиг. 4) трех поршней 16, 15, 14, процесс, описанный выше, продолжится (фиг. 3 в) и так же по завершению перейдет к восстановлению Pпл.
Наличие датчика линейных перемещений позволяет на протяжении всего цикла контролировать положение штока 12, что свидетельствует о продолжающемся притоке из пласта или, при неизменных показаниях датчика 13, об отсутствии притока. На основании показаний датчиков давления и линейных перемещений оператором принимается решение о завершении исследования (фиг. 4).
При отключении питания с наземного блока отключается электромагнитный клапан 29, который открывает канал в балластную камеру 30, давление в главном гидравлическом канале 24 падает, разбалансированный по действующим силам подвижный блок 35 и соединенный с ним шток-толкатель 34, действуя на поршень 25, выдавливает гидравлическую жидкость в балластную камеру 30, складывает прижимную систему, приводит ее в исходное положение, датчик давления регистрирует давление в скважине Pскв.
Сразу после отключения питания с наземного блока оно подается вновь, но обратной полярности, при этом электромагнитный клапан остается отключенным, а блок питания устройства реверсирует напряжение, подаваемое на электромеханические приводы. Включившись, электромеханические приводы перемещают силовые штоки 22, 2 в исходное положение, во втором блоке 21 поршень 23 создает разряжение в канале 24, в результате чего гидравлическая жидкость из балластной камеры 30 возвращается в главный гидравлический канал 24.
Электромеханический привод первого блока 1 силовым штоком 2, перемещает шток 3 с поршнем 4 в исходное положение (вниз), давление в камере 9 и малом цилиндре с поршнем 10 падает, поршень 10 давлением в камере 5 и канале перемещается в исходное положение (фиг. 3 г), при этом клапан 6 под действием давления, нагнетаемого поршнем 4, возвращаемым в исходное положение, остается открытым, гидравлическая жидкость из камеры 5 через открытый клапан 6 выдавливается в камеру буферного гидроцилиндра 7. Поршень 8 перемещается в исходное положение, воздействуя на шток 12 и поршень 16, выдавливает принятый флюид из камеры 18 через каналы в скважину.
Дифференциальные поршни 14, 15 возвращаются в исходное положение. Силовые штоки 22, 2 достигнув исходного положения, отключают концевыми переключателями оба электромеханических привода. Устройство готово к следующему циклу исследований.
Наличие датчика линейных перемещений 13, связанного со штоком 12 пробоприемника, делает процесс исследования более информативным, облегчает оператору принятие решений в ходе исследований.
Двухконтурная система гидропривода пробоприемника позволила синхронизировать срабатывание (открытие) клапана двойного управления с конечным положением поршня 4 гидропривода, когда подготовлен объем для приема гидравлической жидкости из буферного гидроцилиндра, что исключает влияние привода на процесс притока флюида из пласта, делая его более простым, классическим.
Наличие буферного гидроцилиндра 7 с поршнем 8, с одной стороны, перед открытием клапана 6 снижает давление, действующее на него, повышает его живучесть, с другой, при выдавливании флюида из пробоприемника, оптимизирует нагрузку на электромеханический привод и минимизирует длинновые размеры пробоприемника.
Многократное соотношение S1/Sк рабочих площадей поршней управляющего контура гидропривода делает открытие клапана практически мгновенным, повышает его живучесть.
При подготовке гидродинамического каротажа в неглубоких скважинах с низкими давлениями поршень-компенсатор 32 извлекается, на его место устанавливается пробка-заглушка (не показана), изолирующая камеру 31 от скважинного давления Pскв, что увеличивает и делает достаточной разбалансировку подвижного блока 35 для возврата прижимной системы в исходное положение.
При подготовке гидродинамического каротажа в глубоких скважинах, применительно к конкретным условиям производится подбор и установка сопрягаемых штока-толкателя 34 и съемного фланца 32 гидравлически изолированной камеры 33. Предусмотрены сменные комплекты, упомянутой пары 34, 42 и пробка-заглушка.
Разъемное соединение подвижного блока 35 прижимной системы и штока-толкателя 34, наличие съемного фланца 42 камеры 33 и пробки-заглушки, устанавливаемой вместо поршня–компенсатора 32, позволяет с одной стороны подбором пары шток 34, фланец 42 и их сочетанием с установкой поршня 32 или пробки–заглушки подобрать оптимальное усилие, складывающее прижимную систему, с другой - оптимизировать нагрузку на электромеханический привод второго блока 21.
Соединение штока–толкателя 34 с подвижным блоком прижимной системы 35, непосредственное соединение поршней 23, 25 привода прижимной системы главным гидравлическим каналом 24 и размещение электромагнитного клапана 29 в другом канале, связывающим главный гидравлический канал с балластной камерой 30, обеспечивает надежность и эффективность работы второго блока 21 устройства.
Снабжение подвижного блока 35 дополнительным свободным ходом, обеспечивающим вывод нижнего конца штока–толкателя 34 из камеры 33 с фланцем 42, позволяет произвести смену пары: шток 34, фланец 42 без разборки второго блока 21 устройства.
При унифицированных характеристиках электромеханических приводов меньшая величина максимального хода силового штока 22 второго блока 21, чем у штока 2 первого блока 1 гарантировано обеспечивает последовательный алгоритм срабатывания второго и первого блоков устройства и при максимальном раскрытии прижимной системы.
В начальный период электромеханический привод первого блока 1 испытывает минимальные нагрузки, при этом более нагружен электромеханический привод второго блока 21; при возврате устройства в исходное положение, наоборот, наиболее нагружен электромеханический привод первого блока. Примененная в заявленном изобретении схема работы гидро и электромеханических приводов оптимизирует энергетическую нагрузку внутреннего блока питания устройства, минимизирует его.
Наличие в пробоприемнике не менее двух кольцевых дифференциальных поршней позволяет оценить соответствие притока закону Дарси и, в случае отклонения от него, внести поправки, что повышает точность определения проницаемостей.
Исполнение устройства в виде двух функциональных и одновременно транспортировочных блоков длиной менее 2,5 м упрощает их доставку к месту работ и раздельное их обслуживание.
Заявляемое изобретение изготовлено, прошло стендовые и производственные испытания, принято к использованию АНК «Башнефть».

Claims (4)

1. Устройство для гидродинамического каротажа необсаженных скважин, состоящее из двух блоков, прижимной системы, выполненной в виде многозвенного рычажного механизма с герметизирующим элементом и каналом, при этом первый блок содержит блок питания, соединенный с приводом пробоприемника, с поршнем, размещенным в камере депрессии, гидравлический клапан, пробоприемник с первым поршнем и кольцевым дифференциальным поршнем, приемная камера которого соединена каналами с датчиком давления и с отверстием стока герметизирующего элемента, а второй блок содержит механизм управления прижимной системой, содержащей шток, поршни, главный гидравлический канал с электромагнитным клапаном, соединенный другими каналами с балластной камерой и с реле давления, отличающееся тем, что в первом блоке гидропривод пробоприемника выполнен в виде поршневого гидроцилиндра двустороннего действия с односторонним штоком, соединенным с силовым штоком электромеханического привода и поршнем с рабочими площадями Sк, Sо, причем Sк меньше Sо, большая камера гидроцилиндра соединена основным гидравлическим каналом с клапаном двойного управления, выполненным, например, в виде подпружиненного поршня площадью S1, за клапаном основной гидравлический канал соединен с буферным гидроцилиндром с поршнем; малая камера гидроцилиндра двустороннего действия с рабочей площадью поршня Sк, частично заполненная гидравлической жидкостью, соединена каналом с малым гидравлическим цилиндром с поршнем площадью S1, меньшей, чем Sк, с обратной стороны поршень соединен с основным гидравлическим каналом и контактирует с толкателем упомянутого клапана; поршень упомянутого буферного гидроцилиндра контактирует со штоком, связанным с датчиком линейных перемещений, и соединен с первым поршнем пробоприемника, малая камера которого содержит не менее двух дополнительных кольцевых дифференциальных поршней, не контактирующих между собой и с первым поршнем, и сообщена со скважиной, а приемная камера соединена со стыковочным узлом первого блока, во втором блоке верхняя часть штока-толкателя механизма управления прижимной системы соединена с подвижным блоком прижимной системы, а его нижняя часть размещена в гидравлически изолированной камере и контактирует с поршнем, который соединен главным гидравлическим каналом с другим поршнем гидравлического привода прижимной системы, а электромагнитный клапан установлен в канале, соединяющем главный гидравлический канал с балластной камерой, при этом максимальный ход силового штока электромеханического привода второго блока меньше такового у первого блока.
2. Устройство для гидродинамического каротажа по п. 1, отличающееся тем, что соединение подвижного блока прижимной системы и верхней части штока-толкателя выполнено разъемным, а гидравлически изолированная камера снабжена съемным фланцем с входным отверстием для штока-толкателя.
3. Устройство для гидродинамического каротажа по п. 2, отличающееся тем, что подвижный блок прижимной системы имеет помимо максимального рабочего хода дополнительный свободный ход.
4. Устройство для гидродинамического каротажа необсаженных скважин по п. 1, отличающееся тем, что первый и второй блоки выполнены в виде транспортировочных блоков со стыковочными узлами; стыковочный узел первого транспортировочного блока содержит электрический разъем и стыковочную гидравлическую трубку, связанную с приемной камерой пробоприемника; а второй транспортировочный блок включает в себя прижимную систему, механизм управления прижимной системой, стыковочный узел, совмещенный с неподвижным верхним блоком прижимной системы, снабжен электрическим разъемом и стыковочным каналом, в котором размещена упомянутая гидравлическая трубка.
RU2020113777A 2020-04-03 2020-04-03 Устройство для гидродинамического каротажа RU2737594C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020113777A RU2737594C1 (ru) 2020-04-03 2020-04-03 Устройство для гидродинамического каротажа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020113777A RU2737594C1 (ru) 2020-04-03 2020-04-03 Устройство для гидродинамического каротажа

Publications (1)

Publication Number Publication Date
RU2737594C1 true RU2737594C1 (ru) 2020-12-01

Family

ID=73792404

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020113777A RU2737594C1 (ru) 2020-04-03 2020-04-03 Устройство для гидродинамического каротажа

Country Status (1)

Country Link
RU (1) RU2737594C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU211899U1 (ru) * 2021-08-04 2022-06-28 Александр Васильевич Бубеев Устройство для гидродинамического каротажа

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU735759A1 (ru) * 1977-11-14 1980-05-25 Калининское Отделение Всесоюзного Научно-Исследовательского И Проектно- Конструкторского Института Геофизических Исследований Геологоразведочных Скважин "Ко Вниигис" Устройство дл исследовани скважин и опробывани пластов
US4790378A (en) * 1987-02-06 1988-12-13 Otis Engineering Corporation Well testing apparatus
SU1444510A1 (ru) * 1986-02-10 1988-12-15 Комплексная Опытно-Методическая Экспедиция Тимано-Печорского Отделения Всесоюзного Нефтяного Научно-Исследовательского Геологоразведочного Института Пробоотборник
SU1530767A1 (ru) * 1988-02-04 1989-12-23 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин Устройство гидродинамического каротажа скважин
SU1677289A1 (ru) * 1989-06-08 1991-09-15 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин Устройство дл гидродинамических исследований пластов
SU1737111A1 (ru) * 1990-05-14 1992-05-30 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических методов исследований, испытания и контроля нефтегазоразведочных скважин Устройство дл гидродинамических исследований пластов
RU2584169C1 (ru) * 2015-02-11 2016-05-20 Открытое акционерное общество Научно-производственная фирма "Геофизика" (ОАО НПФ "Геофизика") Устройство для гидродинамических исследований и испытаний скважин
RU2675616C1 (ru) * 2018-01-19 2018-12-20 Виктор Маркелович Саргаев Устройство для гидродинамического каротажа скважин

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU735759A1 (ru) * 1977-11-14 1980-05-25 Калининское Отделение Всесоюзного Научно-Исследовательского И Проектно- Конструкторского Института Геофизических Исследований Геологоразведочных Скважин "Ко Вниигис" Устройство дл исследовани скважин и опробывани пластов
SU1444510A1 (ru) * 1986-02-10 1988-12-15 Комплексная Опытно-Методическая Экспедиция Тимано-Печорского Отделения Всесоюзного Нефтяного Научно-Исследовательского Геологоразведочного Института Пробоотборник
US4790378A (en) * 1987-02-06 1988-12-13 Otis Engineering Corporation Well testing apparatus
SU1530767A1 (ru) * 1988-02-04 1989-12-23 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин Устройство гидродинамического каротажа скважин
SU1677289A1 (ru) * 1989-06-08 1991-09-15 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин Устройство дл гидродинамических исследований пластов
SU1737111A1 (ru) * 1990-05-14 1992-05-30 Всесоюзный научно-исследовательский и проектно-конструкторский институт геофизических методов исследований, испытания и контроля нефтегазоразведочных скважин Устройство дл гидродинамических исследований пластов
RU2584169C1 (ru) * 2015-02-11 2016-05-20 Открытое акционерное общество Научно-производственная фирма "Геофизика" (ОАО НПФ "Геофизика") Устройство для гидродинамических исследований и испытаний скважин
RU2675616C1 (ru) * 2018-01-19 2018-12-20 Виктор Маркелович Саргаев Устройство для гидродинамического каротажа скважин

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU211899U1 (ru) * 2021-08-04 2022-06-28 Александр Васильевич Бубеев Устройство для гидродинамического каротажа
RU2784848C1 (ru) * 2022-06-03 2022-11-30 Акционерное общество Научно-производственное предприятие Научно-исследовательский и проектно-конструкторский институт геофизических исследований геологоразведочных скважин (АО НПП "ВНИИГИС") Устройство для гидродинамического каротажа скважин

Similar Documents

Publication Publication Date Title
US5101907A (en) Differential actuating system for downhole tools
CA1140042A (en) Inflatable packer drill stem testing system
US6668924B2 (en) Reduced contamination sampling
SU839448A3 (ru) Устройство дл исследовани скважинныхфОРМАций
EP0515495B1 (en) Well fluid sampling tool and well fluid sampling method
US4557333A (en) Low pressure responsive downhole tool with cam actuated relief valve
NO302630B1 (no) Anordning og fremgangsmåte for betjening av ett eller flere apparater i et fluidfylt borehull
EP0237662B1 (en) Downhole tool
US20060168955A1 (en) Apparatus for hydraulically energizing down hole mechanical systems
CN1936269B (zh) 油田用抽油井三层找水管柱及其找水方法
US4426882A (en) Apparatus and method for sensing downhole conditions
RU2244123C2 (ru) Устройство и способ для контроля давления пробы скважинного флюида
NO313766B1 (no) Automatisk brönnpumpeenhet, samt fremgangsmåte for drift av denne
RU2737594C1 (ru) Устройство для гидродинамического каротажа
US4589485A (en) Downhole tool utilizing well fluid compression
US9359892B2 (en) Spring assisted active mud check valve with spring
RU2675616C1 (ru) Устройство для гидродинамического каротажа скважин
RU2425955C1 (ru) Гидравлический многоразовый пакер гарипова, установка и способ для его реализации
US3269462A (en) Selective hydraulic pressure booster for borehole apparatus
RU2358156C1 (ru) Установка для одновременно-раздельной эксплуатации трех пластов
RU2784848C1 (ru) Устройство для гидродинамического каротажа скважин
RU2382199C1 (ru) Аппарат имплозионный на кабеле для исследования пластов нефтяных и газовых скважин
CN111058838A (zh) 智能电动地层测试器
RU2812492C1 (ru) Аппаратура для гидродинамического каротажа скважин и отбора проб
SU968365A1 (ru) Устройство дл исследовани скважин и опробовани пластов