RU2735977C1 - Способ сжижения природного газа и установка для его осуществления - Google Patents
Способ сжижения природного газа и установка для его осуществления Download PDFInfo
- Publication number
- RU2735977C1 RU2735977C1 RU2020100933A RU2020100933A RU2735977C1 RU 2735977 C1 RU2735977 C1 RU 2735977C1 RU 2020100933 A RU2020100933 A RU 2020100933A RU 2020100933 A RU2020100933 A RU 2020100933A RU 2735977 C1 RU2735977 C1 RU 2735977C1
- Authority
- RU
- Russia
- Prior art keywords
- gas
- natural gas
- compressor
- refrigerant
- outlet
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 112
- 239000003345 natural gas Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000007789 gas Substances 0.000 claims abstract description 65
- 238000001816 cooling Methods 0.000 claims abstract description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 12
- 238000010521 absorption reaction Methods 0.000 claims abstract description 11
- 239000003546 flue gas Substances 0.000 claims abstract description 11
- 239000002826 coolant Substances 0.000 claims abstract description 8
- 238000009835 boiling Methods 0.000 claims abstract description 6
- 238000001704 evaporation Methods 0.000 claims abstract description 5
- 230000008020 evaporation Effects 0.000 claims abstract description 5
- 238000011084 recovery Methods 0.000 claims abstract description 5
- 239000003507 refrigerant Substances 0.000 claims description 48
- 238000000926 separation method Methods 0.000 claims description 28
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 16
- 238000009434 installation Methods 0.000 claims description 13
- 238000005057 refrigeration Methods 0.000 claims description 13
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 239000007788 liquid Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000012071 phase Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B25/00—Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
- F25B25/02—Compression-sorption machines, plants, or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0085—Ethane; Ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0208—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0242—Waste heat recovery, e.g. from heat of compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
- F25J1/0268—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0283—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/60—Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/80—Hot exhaust gas turbine combustion engine
- F25J2240/82—Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/906—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Изобретение относится к технологиям сжижения природного газа. Природный газ компримируют до сверхкритических давлений с помощью многоступенчатого компрессора 1, предварительно охлаждают газ за счет кипения хладагента в испарителях 6 с различным уровнем давления, понижают давление газа, отделяют газ мгновенного испарения и отводят сжиженный природный газ. Хладагент, полученный при испарении, компримируют, конденсируют и вновь используют при предварительном охлаждении природного газа. Конденсацию хладагента осуществляют с помощью аппаратов 10, 11 воздушного или водяного охлаждения совместно с абсорбционной холодильной машиной 12, в качестве энергетического источника которой используют тепло дымовых газов привода компрессора 1. Абсорбционная холодильная машина 12 подсоединена между теплообменником 15 рекуперации холода испарившегося хладагента и компрессором 1. Выход привода компрессора для дымовых газов соединен с рекуперативным теплообменником 13, выход и вход которого для теплоносителя соединены соответственно с входом и выходом холодильной машины 12 для теплоносителя. Изобретение направлено на упрощение и повышение энергоэффективности процесса сжижения природного газа, а также уменьшение энергетических затрат на работу установки при температуре окружающего воздуха до +35 °С. 2 н. и 7 з.п. ф-лы, 1 ил.
Description
Изобретение относится к технологиям сжижения природного газа.
Известно множество способов сжижения природного газа, преимущественно основанных на отводе теплоты внешним хладагентом.
Известен способ сжижения природного газа по патенту RU 2256130 С2 компании ПАО «Криогенмаш». Способ заключается в том, что исходный природный газ подают на сжижение, повышают давление природного газа с образованием прямого потока, охлаждают прямой поток не менее чем в одной ступени охлаждения, где от него отделяют жидкую фазу высококипящих компонентов и дросселируют ее в обратный поток. Прямой поток после ступени охлаждения дросселируют с образованием газожидкостной смеси, разделяют ее в сепараторе на целевую жидкость и паровую фазу с образованием обратного потока, отводят целевую жидкость потребителю. Обратный поток направляют на охлаждение прямого потока и смешение с исходным природным газом. Прямой поток перед его подачей в ступень охлаждения предварительно охлаждают, отделяют рабочий поток от прямого потока, входящего в ступень охлаждения, снижают давление прямого потока с образованием парожидкостной смеси перед отделением жидкой фазы высококипящих компонентов. Повышают давление прямого потока после отделения жидкой фазы высококипящих компонентов с помощью эжектора за счет энергии расширения в нем рабочего потока, разделяют выходящий из эжектора парожидкостный поток на пар, который направляют в прямой поток, и жидкость с образованием циркуляционного потока, который дросселируют и смешивают с обратным потоком. Предварительное охлаждение прямого потока ведут за счет холода обратного потока.
Недостатками данного способа сжижения являются большое количество оборудования, необходимого для осуществления процесса, большое количество образующегося газа мгновенного испарения, что снижает энергоэффективность сжижения, а также протекание процесса теплообмена в докритической области, что влечет за собой наличие двухфазного потока, который не оптимален для регулирования процессом при охлаждении.
Наиболее близким к предложенным технологическим способом сжижения природного газа и соответствующей установкой являются принятые за прототип способ сжижения природного газа «Арктический каскад» и установка для его осуществления по патенту RU 2645185 С1 компании ПАО «НОВАТЭК», применяемые на заводе «Ямал СПГ» в п. Сабетта на четвертой очереди сжижения природного газа. Способ заключается в том, что подготовленный природный газ предварительно охлаждают, отделяют этан, переохлаждают сжижаемый газ с использованием охлажденного азота в качестве хладагента, снижают давление сжижаемого газа, отделяют газ мгновенного испарения и отводят сжиженный природный газ. При этом перед предварительным охлаждением природный газ компримируют, отделение этана осуществляют в процессе многоступенчатого предварительного охлаждения сжижаемого газа с одновременным испарением этана с использованием охлажденного этана в качестве хладагента. Этан, полученный при испарении, компримируют конденсируют и используют в качестве хладагента при охлаждении сжижаемого газа и азота, причем азот компримируют, охлаждают, расширяют и подают на стадию переохлаждения природного газа. Установка сжижения содержит линию сжижения природного газа, контур этана и контур азота, линия сжижения природного газа включает последовательно соединенные компрессор природного газа, аппарат охлаждения, испарители этана, концевой теплообменник переохлаждения и сепаратор, контур этана включает последовательно соединенные по меньшей мере один компрессор этана, аппарат охлаждения, указанные испарители этана, выходы которых соединены с входами, по меньшей мере, одного компрессора, контур азота включает последовательно соединенные, по меньшей мере, один компрессор азота, аппарат охлаждения, указанные испарители этана, между которыми подсоединены теплообменники азот-азот, турбодетандер, указанный концевой теплообменник переохлаждения, указанные теплообменники азот-азот и турбокомпрессор, соединенный с входом компрессора азота.
Особенностью способа и установки по RU 2645185 С1 является высокая производительность только при низких температурах окружающей среды от +5 град. С и ниже, применение дополнительного контура азота, а также мультипликатора, что усложняет технологическое оформление процесса.
Технической проблемой, решаемой предлагаемой технологией сжижения природного газа, является упрощение технологического процесса, обеспечение высокой производительности, низкие энергетические затраты на работу установки при температуре окружающего воздуха до +35 град. С.
Техническая проблема решается способом сжижения природного газа, заключающимся в том, что подготовленный природный газ компримируют до сверхкритических давлений с помощью компрессора, многоступенчато предварительно охлаждают газ за счет кипения хладагента в испарителях с различным уровнем давления, понижают давление газа, отделяют газ мгновенного испарения и отводят сжиженный природный газ, а хладагент полученный при испарении, компримируют, конденсируют с помощью по меньшей мере одного аппарата воздушного или водяного охлаждения и вновь используют при многоступенчатом предварительном охлаждении природного газа, при этом, согласно изобретению, конденсацию хладагента осуществляют также с помощью абсорбционной бромистолитиевой или водоаммиачной холодильной машины, подсоединенной между теплообменником рекуперации холода испарившегося хладагента и по меньшей мере одним аппаратом воздушного или водяного охлаждения, а в качестве энергетического источника указанной холодильной машины используют тепло дымовых газов привода компрессора, в качестве которого используют газопоршневой или газотурбинный двигатель, выход которого для дымовых газов соединен с рекуперативным теплообменником, выход и вход которого для теплоносителя соединены соответственно с входом и выходом указанной холодильной машины для теплоносителя.
Кроме того, компримирование природного газа и хладагента целесообразно осуществлять на разных ступенях многоступенчатого поршневого компрессора.
Кроме того, предпочтительно охлаждение природного газа в испарителях осуществлять при высоком давлении в однофазном состоянии, исключающем процессы фазового перехода, с получением на выходе однофазного сверхкритического флюида.
Техническая проблема также решается установкой для сжижения природного газа, содержащей многоступенчатый компрессор, последовательно соединенные линию подачи природного газа, линию предварительного охлаждения природного газа и средства понижения давления и сепарирования газа, а также контур хладагента, и линию возврата несжиженного природного газа, линия подачи природного газа включает последовательно соединенные по меньшей мере две ступени компрессора и по меньшей мере один аппарат воздушного или водяного охлаждения, линия предварительного охлаждения природного газа включает испарители хладагента и по меньше мере один теплообменный аппарат рекуперации холода газа мгновенного испарения, контур хладагента включает по меньшей мере одну ступень компрессора и по меньшей мере один аппарат воздушного или водяного охлаждения, указанный по меньшей мере один теплообменный аппарат рекуперации холода испарившегося хладагента и указанные испарители хладагента, выходы которых для хладагента соединены с входом по меньшей мере одной ступени компрессора, при этом выход для хладагента по меньшей мере одного испарителя хладагента соединен с компрессором через теплообменник рекуперации холода испарившегося хладагента, средства понижения давления и сепарирования газа содержат по меньшей мере одну ступень сепарации, каждая из которых включает устройство расширения газа и соединенный с его выходом сепаратор, а линия возврата природного газа включает по меньшей мере одну ступень компрессора и по меньшей мере один аппарат воздушного или водяного охлаждения, при этом контур хладагента дополнительно включает по меньшей мере одну абсорбционную бромистолитиевую или водоаммиачную холодильную машину, подсоединенную между теплообменником рекуперации холода испарившегося хладагента и по меньшей мере одним аппаратом воздушного или водяного охлаждения, а привод поршневого компрессора представляет собой газопоршневой или газотурбинный двигатель, выход которого для дымовых газов соединен с рекуперативным теплообменником, выход и вход которого для теплоносителя соединены соответственно с входом и выходом указанной холодильной машины для теплоносителя.
Кроме того, многоступенчатый компрессор предпочтительно представляет собой многоступенчатый поршневой компрессор.
В одном из вариантов выполнения установки средства понижения давления и сепарирования газа содержат две или более ступеней сепарации, а устройство расширения газа по меньшей мере одной ступени сепарации представляет собой эжектор, один вход которого соединен с высоконапорным потоком газа с линии предварительного охлаждения или с предыдущей ступени сепарации, а другой вход -с низконапорным потоком газа со следующей ступени сепарации.
Возможны также варианты выполнения, когда устройство расширения газа по меньшей мере одной ступени сепарации представляет собой дроссель или детандер.
Возможе также вариант, когда на выходе средств понижения давления и сепарирования газа установлен насос откачки сжиженного природного газа, который кинематически связан с валом детандера по меньшей мере одной ступени сепарации.
Технический результат, достигаемый при использовании предложенных способа и установки, заключается в следующем. По сравнению с прототипом в предлагаемой технологии не используется контур азотного переохлаждения природного газа. Для переохлаждения газа используются устройства расширения газа. Такое решение упрощает аппаратурное оформление процесса.
Использование только одного контура хладагента снижает затраты на производство, уменьшает количество единиц технологического оборудования и снижает размеры склада-хранилища хладагента.
Энергозатраты на производство СПГ предложенного процесса ниже чем в прототипе, поскольку для охлаждения и конденсации хладагента используется абсорбционная бромистолитиевая или водоаммиачная холодильная машина, использующая в качестве энергетического источника тепло дымовых газов, вместо аппарата воздушного или водяного охлаждения, использующего в качестве энергетического источника электрическую энергию.
На чертеже представлена схема предложенной установки.
Установка для сжижения природного газа включает последовательно соединенные линию подачи природного газа, линию предварительного охлаждения, средства понижения давления и сепарирования газа и линию возврата несжиженного газа, а также включает контур хладагента.
В установке использован многоступенчатый компрессор 1. Предпочтительно это поршневой компрессор, все ступени которого расположены в одном корпусе. Линия подачи природного газа включает по меньшей мере две ступени компрессора 1, по крайней мере один аппарат охлаждения, в данном случае аппараты 2, 3. Линия предварительного охлаждения включает испарители 6 хладагента, в данном случае этана, включенные в одну линию между теплообменными аппаратами 5 рекуперации холода газа мгновенного испарения или между трубами одного теплообменного аппарата рекуперации. Средства понижения давления и сепарирования газа включают по меньшей мере одну ступень, каждая ступень включает эжектор либо дроссель, либо детандер, который на выходе соединен с соответствующим сепаратором. На чертеже показаны две ступени, но их может быть больше или одна. Эжектор 7, либо дроссель 14, либо детандер (не показан) на выходе соединен с соответствующим сепаратором 8 или 9. Выход газа мгновенного испарения сепаратора 8, 9 соединен с холодным входом теплообменного аппарата 5 либо с входом низконапорного потока в эжектор 7 предыдущей ступени сепарации в случае ее наличия. Выход сжиженного газа сепаратора 8 соединен с дросселем 14, либо с входом эжектора для высоконапорного потока, либо с детандером (в случае, если следующая ступень понижения давления не является последней), выход которого соединен со входом сепаратора 9 следующей ступени. Сжиженный газ на выходе из сепаратора 9 (в случае последней ступени понижения давления) отводится из системы, например, насосом откачки СПГ (на схеме не показан), а газ мгновенного испарения направляется в качестве низконапорного потока в эжектор 7 предыдущей ступени сепарации, либо в теплообменный аппарат 5 линии предварительного охлаждения, либо на ступень компрессора 1.
Выход газа мгновенного испарения сепаратора 8 соединен с входом теплообменных аппаратов 5 рекуперации холода, выход которых соединен с по меньшей мере с одной ступенью поршневого компрессора 1 и далее с аппаратом 4 охлаждения, соединенным с линией подачи природного газа.
Контур хладагента включает последовательно соединенные по меньшей мере одну ступень поршневого компрессора 1, по меньшей мере один аппарат охлаждения, в данном случае аппараты 10, 11, по меньшей мере одну абсорбционную бромистолитиевую или водоаммиачную холодильную машину 12, генератор 13 энергии холодильной машины, в данном случае рекуперативный теплообменник с дымовыми газами привода поршневого компрессора 1, указанные испарители 6 этана, выходы которых для этана соединены с входом по меньшей мере одной ступени поршневого компрессора 1, при этом выход по меньшей мере одного испарителя 6 хладагента соединен со ступенями компрессора 1 через теплообменник 15 рекуперации холода испарившегося хладагента.
Линия возврата природного газа включает по меньшей мере одну ступень компрессора 1 и по меньшей мере один аппарат 4 охлаждения, который соединен с линией подачи газа.
В качестве привода компрессора 1 предлагается применять газопоршневой или газотурбинный двигатель 16.
Также для передачи крутящего момента с привода можно использовать редукторы, мультипликаторы, электродвигатели или иные устройства.
В случае использования детандера как средства понижения давления газа, можно использовать часть генерируемой на нем мощности для работы насоса откачки СПГ путем обеспечения его кинематической связи с валом детандера.
Способ сжижения природного газа осуществляется следующим образом.
Подготовленный к сжижению природный газ (ПГ) (очищенный от паров воды, углекислого газа и других загрязняющих примесей) поступает по меньшей мере на одну ступень компрессора 1, компримируется до давления выше критического, охлаждается за счет холода окружающей среды в аппаратах 2, 3 (или аппарате) воздушного либо водяного охлаждения до температуры от +5 град. С до +45 град. С в зависимости от температуры окружающей среды и направляется в теплообменные аппараты 5 и испарители 6 этана предварительного многоступенчатого охлаждения. Последовательно охладившись, сжижаемый газ, представляющий собой сверхкритический флюид со свойствами жидкости под высоким давлением, с температурой порядка -84 град. С направляется в систему понижения давления и сепарации, где на последовательно расположенных устройствах расширения - на чертежах на эжекторе 7 и дросселе 14 - давление газа снижается до значений от 0,2 МПа до 0,4 МПа, при этом температура снижается примерно до уровней от -152 град. С до -142 град. С, После каждого из устройств расширения происходит разделение газожидкостного потока на сепараторах 8 и 9. После разделения образовавшегося газожидкостного потока жидкость насосом (на схеме не показан) откачивается в резервуары хранения СПГ. Несжиженный газ мгновенного испарения сепаратора 9 компримируется в эжекторе 7 (в случае его использования) или поступает через теплообменники 5 в компрессоре 1, где газ компримируется до давлений от 0,7 МПа до 1,2 МПа. Часть газа направляется в топливную сеть завода, а другая часть поступает на рецикл в начало процесса сжижения на линию подачи природного газа.
Охлаждение природного газа в теплообменных аппаратах 5 и испарителях 6 осуществляют при высоком давлении в однофазном состоянии, исключающем процессы фазового перехода. Природный газ в теплообменных аппаратах 5 и испарителях 6 находится под давлением выше критического и представляет собой однофазный сверхкритический флюид. Такое состояние природного газа обеспечивает более эффективное его охлаждение, а также исключает наличие двухфазного потока на линии испарителей, который не оптимален для регулирования процессом при охлаждении.
В качестве хладагента применяется этан, но применение не ограничивается им. Газообразный этан от испарителей 6 компримируется на по меньшей мере двух ступенях компрессора 1 до давления от 2,8 МПа до 4,4 МПа, при этом пары этана по меньшей мере одного испарителя 6 хладагента перегреваются в теплообменнике 15 рекуперации холода испарившегося хладагента, охлаждаются и конденсируются в аппарате 11 (или аппаратах) воздушного или водяного охлаждения либо в абсорбционной бромистолитиевой или водоаммиачной холодильной машине 12, либо в совокупности в этих аппаратах при температурах от +5 град. С. до +25 град. С. При этом энергетическим источником абсорбционной бромистолитиевой или водоаммиачной холодильной машины 12 является тепло дымовых газов, рекуперирующееся в генераторе 13 энергии холодильной машины. Жидкий этан переохлаждается в теплообменном аппарате 15 и направляется в испарители 6, в которых на различных уровнях давления этан охлаждает газ до температуры порядка -84 град. С. Газообразный этан от испарителей 6 направляется к компрессору 1 и далее по циклу.
Технологическая схема работает в номинальном режиме при температуре окружающей среды +5 град. С и ниже. При температуре выше +5 град. С производительность установки поддерживается благодаря использованию абсорбционной холодильной машины для конденсации хладагента.
Claims (9)
1. Способ сжижения природного газа, в котором подготовленный природный газ компримируют до сверхкритических давлений с помощью компрессора, многоступенчато предварительно охлаждают газ за счет кипения хладагента в испарителях с различным уровнем давления, понижают давление газа, отделяют газ мгновенного испарения и отводят сжиженный природный газ, а хладагент, полученный при испарении, компримируют, конденсируют с помощью по меньшей мере одного аппарата воздушного или водяного охлаждения и вновь используют при многоступенчатом предварительном охлаждении природного газа, отличающийся тем, что конденсацию хладагента осуществляют также с помощью абсорбционной бромистолитиевой или водоаммиачной холодильной машины, подсоединенной между теплообменником рекуперации холода испарившегося хладагента и по меньшей мере одним аппаратом воздушного или водяного охлаждения, а в качестве энергетического источника указанной холодильной машины используют тепло дымовых газов привода компрессора, в качестве которого используют газопоршневой или газотурбинный двигатель, выход которого для дымовых газов соединен с рекуперативным теплообменником, выход и вход которого для теплоносителя соединены соответственно с входом и выходом указанной холодильной машины для теплоносителя.
2. Способ по п. 1, отличающийся тем, что компримирование природного газа и хладагента осуществляют на разных ступенях многоступенчатого поршневого компрессора.
3. Способ по п. 1, отличающийся тем, что охлаждение природного газа в испарителях осуществляют при высоком давлении в однофазном состоянии, исключающем процессы фазового перехода, с получением на выходе однофазного сверхкритического флюида.
4. Установка для сжижения природного газа, содержащая многоступенчатый компрессор, последовательно соединенные линию подачи природного газа, линию предварительного охлаждения природного газа и средства понижения давления и сепарирования газа, а также контур хладагента, и линию возврата несжиженного природного газа, линия подачи природного газа включает последовательно соединенные по меньшей мере две ступени компрессора и по меньшей мере один аппарат воздушного или водяного охлаждения, линия предварительного охлаждения природного газа включает испарители хладагента и по меньше мере один теплообменный аппарат рекуперации холода газа мгновенного испарения, контур хладагента включает по меньшей мере одну ступень компрессора и по меньшей мере один аппарат воздушного или водяного охлаждения, указанный по меньшей мере один теплообменный аппарат рекуперации холода испарившегося хладагента и указанные испарители хладагента, выходы которых для хладагента соединены с входом по меньшей мере одной ступени компрессора, при этом выход для хладагента по меньшей мере одного испарителя хладагента соединен с указанным компрессором через теплообменник рекуперации холода испарившегося хладагента и средства понижения давления и сепарирования газа содержат по меньшей мере одну ступень сепарации, каждая из которых включает устройство расширения газа и соединенный с его выходом сепаратор, а линия возврата природного газа включает по меньшей мере одну ступень компрессора и по меньшей мере один аппарат воздушного или водяного охлаждения, характеризующаяся тем, что контур хладагента дополнительно включает по меньшей мере одну абсорбционную бромистолитиевую или водоаммиачную холодильную машину, подсоединенную между теплообменником рекуперации холода испарившегося хладагента и по меньшей мере одним аппаратом воздушного или водяного охлаждения, а привод указанного компрессора представляет собой газопоршневой или газотурбинный двигатель, выход которого для дымовых газов соединен с рекуперативным теплообменником, выход и вход которого для теплоносителя соединены соответственно с входом и выходом указанной холодильной машины для теплоносителя.
5. Установка по п. 4, характеризующаяся тем, что многоступенчатый компрессор представляет собой многоступенчатый поршневой компрессор.
6. Установка по п. 4, характеризующаяся тем, что средства понижения давления и сепарирования газа содержат две или более ступеней сепарации, а устройство расширения газа по меньшей мере одной ступени сепарации представляет собой эжектор, один вход которого соединен с высоконапорным потоком газа с линии предварительного охлаждения или с предыдущей ступени сепарации, а другой вход - с низконапорным потоком газа со следующей ступени сепарации.
7. Установка по п. 4, характеризующаяся тем, что устройство расширения газа по меньшей мере одной ступени сепарации представляет собой дроссель.
8. Установка по п. 4, характеризующаяся тем, что устройство расширения газа по меньшей мере одной ступени сепарации представляет собой детандер.
9. Установка по п. 8, характеризующаяся тем, что на выходе средств понижения давления и сепарирования газа установлен насос откачки сжиженного природного газа, который кинематически связан с валом детандера по меньшей мере одной ступени сепарации.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020100933A RU2735977C1 (ru) | 2020-01-14 | 2020-01-14 | Способ сжижения природного газа и установка для его осуществления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020100933A RU2735977C1 (ru) | 2020-01-14 | 2020-01-14 | Способ сжижения природного газа и установка для его осуществления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2735977C1 true RU2735977C1 (ru) | 2020-11-11 |
Family
ID=73460858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020100933A RU2735977C1 (ru) | 2020-01-14 | 2020-01-14 | Способ сжижения природного газа и установка для его осуществления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2735977C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2783611C1 (ru) * | 2021-12-24 | 2022-11-15 | Юрий Васильевич Белоусов | Установка для производства сжиженного природного газа |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU190919A1 (ru) * | Московский институт инженеров железнодорожно | Комбинированная абсорбционно-компрессионная холодильная установка | ||
SU427531A3 (ru) * | 1970-11-28 | 1974-05-05 | Инострат Итизо Аоки , Ёсицуги Кицукава | Способ производства холода |
RU2141084C1 (ru) * | 1995-10-05 | 1999-11-10 | Би Эйч Пи Петролеум ПТИ. Лтд. | Установка для сжижения |
EP1813889A1 (en) * | 2004-11-15 | 2007-08-01 | Mayekawa Mfg. Co., Ltd. | Cryogenic liquefying refrigerating method and device |
RU96416U1 (ru) * | 2009-12-01 | 2010-07-27 | Георгий Константинович Лавренченко | Комплекс для автономного производства жидкого низкотемпературного диоксида углерода и газообразного азота, а также жидких кислорода или азота |
RU2645185C1 (ru) * | 2017-03-16 | 2018-02-16 | Публичное акционерное общество "НОВАТЭК" | Способ сжижения природного газа по циклу высокого давления с предохлаждением этаном и переохлаждением азотом "арктический каскад" и установка для его осуществления |
-
2020
- 2020-01-14 RU RU2020100933A patent/RU2735977C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU190919A1 (ru) * | Московский институт инженеров железнодорожно | Комбинированная абсорбционно-компрессионная холодильная установка | ||
SU427531A3 (ru) * | 1970-11-28 | 1974-05-05 | Инострат Итизо Аоки , Ёсицуги Кицукава | Способ производства холода |
RU2141084C1 (ru) * | 1995-10-05 | 1999-11-10 | Би Эйч Пи Петролеум ПТИ. Лтд. | Установка для сжижения |
EP1813889A1 (en) * | 2004-11-15 | 2007-08-01 | Mayekawa Mfg. Co., Ltd. | Cryogenic liquefying refrigerating method and device |
RU96416U1 (ru) * | 2009-12-01 | 2010-07-27 | Георгий Константинович Лавренченко | Комплекс для автономного производства жидкого низкотемпературного диоксида углерода и газообразного азота, а также жидких кислорода или азота |
RU2645185C1 (ru) * | 2017-03-16 | 2018-02-16 | Публичное акционерное общество "НОВАТЭК" | Способ сжижения природного газа по циклу высокого давления с предохлаждением этаном и переохлаждением азотом "арктический каскад" и установка для его осуществления |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2783611C1 (ru) * | 2021-12-24 | 2022-11-15 | Юрий Васильевич Белоусов | Установка для производства сжиженного природного газа |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2636966C1 (ru) | Способ производства сжиженного природного газа | |
US8464551B2 (en) | Liquefaction method and system | |
KR101278960B1 (ko) | 제1냉동사이클에 의한 냉각을 통하여 얻은 엘엔지 스트림의과냉각방법과 장치 | |
JP4521833B2 (ja) | 低温液化冷凍方法及び装置 | |
US11774173B2 (en) | Arctic cascade method for natural gas liquefaction in a high-pressure cycle with pre-cooling by ethane and sub-cooling by nitrogen, and a plant for its implementation | |
US20020148225A1 (en) | Energy conversion system | |
EA007310B1 (ru) | Способ и устройство для сжижения природного газа | |
MX2013014870A (es) | Proceso para la licuefaccion de gas natural. | |
JP2006504928A (ja) | 天然ガス液化用モータ駆動コンプレッサシステム | |
NO176371B (no) | Fremgangsmåte for flytendegjöring av en trykksatt mateström og apparat for utförelse av samme | |
CN107683397B (zh) | 工业气体和烃类气体的液化 | |
US20150330705A1 (en) | Systems and Methods for Natural Gas Liquefaction Capacity Augmentation | |
RU2698565C2 (ru) | Способ сжижения природного газа | |
US20230375261A1 (en) | Closed loop lng process for a feed gas with nitrogen | |
RU2740112C1 (ru) | Способ сжижения природного газа "Полярная звезда" и установка для его осуществления | |
RU2735977C1 (ru) | Способ сжижения природного газа и установка для его осуществления | |
WO2016103296A1 (ja) | 冷凍装置 | |
RU2792387C1 (ru) | Способ сжижения природного газа "арктический каскад модифицированный" и установка для его осуществления | |
RU2797608C1 (ru) | Способ сжижения природного газа "АРКТИЧЕСКИЙ МИКС" | |
WO2024107081A1 (ru) | Способ сжижения природного газа и установка для его осуществления | |
AU2013202933B2 (en) | Liquefaction method and system | |
WO2024172687A1 (ru) | Способ сжижения природного газа | |
WO2004040212A2 (en) | Lng process with imroved methane cycle | |
JPH0627619B2 (ja) | 天然ガスの液化方法 |