RU2734576C1 - Способ определения толщин оптически прозрачных и мутных сред - Google Patents

Способ определения толщин оптически прозрачных и мутных сред Download PDF

Info

Publication number
RU2734576C1
RU2734576C1 RU2020119079A RU2020119079A RU2734576C1 RU 2734576 C1 RU2734576 C1 RU 2734576C1 RU 2020119079 A RU2020119079 A RU 2020119079A RU 2020119079 A RU2020119079 A RU 2020119079A RU 2734576 C1 RU2734576 C1 RU 2734576C1
Authority
RU
Russia
Prior art keywords
radiation
optically transparent
different
thickness
fiber
Prior art date
Application number
RU2020119079A
Other languages
English (en)
Inventor
Леонид Азарьевич Синицын
Сергей Константинович Котов
Сергей Алексеевич Юртаев
Вячеслав Михайлович Шершаков
Аркадий Владиленович Колдаев
Алексей Николаевич Кутаров
Original Assignee
Общество с ограниченной ответственностью «Современные транспортные технологии»
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью «Современные транспортные технологии» filed Critical Общество с ограниченной ответственностью «Современные транспортные технологии»
Priority to RU2020119079A priority Critical patent/RU2734576C1/ru
Application granted granted Critical
Publication of RU2734576C1 publication Critical patent/RU2734576C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • G01B11/0633Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection using one or more discrete wavelengths
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • G08B19/02Alarm responsive to formation or anticipated formation of ice

Abstract

Способ определения толщин оптически прозрачных или мутных сред заключается в расположении на уровне поверхности, на которой располагается слой оптически прозрачной и/или мутной среды, двух волоконно-оптических источников модулированного по амплитуде монохромного излучения на разных длинах волн инфракрасного спектра и двух приемников излучения с двумя входами волоконно-оптических линий разного диаметра. Модуляция источников излучения осуществляется двумя разными не кратными частотами, полученный приемниками сигнал формируется путем синхронного детектирования. Из полученных значений сигналов на разных частотах излучения для каждой приемной апертуры формируют отношения сигналов, по совокупности которых определяют толщина пленки. Технический результат - повышение точности определения толщины оптически проницаемой жидкостной пленки на поверхности. 3 ил., 2 табл.

Description

Изобретение относится к измерительной технике, в частности, касается нового способа формирования сигнала в зависимости от толщины жидкостной пленки на поверхности, например, дорожного покрытия.
Измерение толщины пленки оптически прозрачных и мутных сред может применяться в различных областях народного хозяйства: в дорожном хозяйстве и содержании аэродромов, в авиационной и космической технике, в энергетике для определения возможного обледенения ЛЭП, на водном транспорте, при создании межпланетных исследовательских аппаратов.
Из современного уровня развития техники известен способ формирования сигнала в зависимости от толщины жидкостной пленки на поверхности, основанный на анализе данных изменения температуры при нагреве и охлаждении заданного объема жидкости описанный в RU 2223548. Однако данный способ мало применим в большинстве областей экономики по причине того, что для реализации условий формирования сигнала приемлемой точности нужна статическая среда, на продолжительный период цикла охлаждения/нагрева поверхности измерения, что недостижимо в большинстве сфер применения, например, на поверхности дороги. Также в указанном способе толщина водяной пленки не указывается конечным количественным значение, а приводится качественно в виде диапазона значения толщины водяной пленки.
Известен другой способ, основанный на оптических принципах измерения толщины жидкостной пленки. Для реализации указанного способа используется датчик оптического сенсора. Принцип работы оптоволоконного оптического датчика толщины прозрачных пленок описан в US 5801647 (G08B19/02, G08B21/00, опубл. 01.09.1998 г.) (принят в качестве прототипа).
Принцип работы основан на законах геометрической оптики: если рядом в плоской пластине поместить срез оптоволокна, излучающего свет и срез оптоволокна принимающего свет, а затем на пластину налить прозрачной жидкости, то конус света прошедший через жидкость, отразиться частично от границы раздела воздух-жидкость и попадет в приемный конус принимающего оптоволокна. Из простых геометрических построений очевидно, что вначале, с увеличением толщины пленки, принимаемый сигнал будет расти, пока передающий и приемный конусы света не перекроются полностью. Затем при дальнейшем увеличении толщины пленки принимаемый сигнал должен упасть до нуля за счет поглощения света в жидкости. Таким образом, мы получим кривую с максимумом при определенной толщине пленки, но определить по ней однозначно толщину невозможно, поскольку одному и тому же сигналу соответствует две абсолютно различных толщины. Поэтому в патенте US 5801647 предложен способ, основанный на приеме излучения двумя приемными апертурами, которые в зависимости от геометрии взаимного расположения, позволяют получить кривые с максимумами при различных толщинах пленки. Тогда отношение этих кривых дает монотонную зависимость от толщины пленки оптически прозрачной или мутной среды.
Описанное в патенте устройство применяет монохромный источник света, что приводит к погрешностям, вызванным дифракцией в мутной среде и к ошибкам, вызванным интерференцией в прозрачной среде.
Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении точности определения толщины оптически проницаемой жидкостной пленки на поверхности.
Указанный технический результат достигается тем, что способ определения толщин оптически прозрачных или мутных сред заключается в расположении на уровне поверхности, на которой располагается слой оптически прозрачной и/или мутной среды, двух волоконно-оптических источников излучения модулированного по амплитуде монохромного излучения на разных длинах волн инфракрасного спектра и двух приемников излучения с двумя входами волоконно-оптических линий разного диаметра, причем модуляция источников излучения осуществляется двумя разными не кратными частотами, полученный приемниками сигнал формируется путем синхронного детектирования, затем из полученных значений сигналов на разных частотах излучения для каждой приемной апертуры формируют отношения сигналов, по совокупности которых определяют толщина пленки.
Указанные признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности существенных признаков, достаточной для получения указанного технического результата.
Новый способ иллюстрируется поясняющим иллюстративным материалом, на котором:
фиг. 1 - измерительные системы излучатель/приемник с различной апертурой;
фиг. 2 - график поглощения энергии в жидкой среде при различных длинах волн излучения в инфра красном диапазоне;
фиг. 3 - графики изменения во времени величины сигналов при процессе кристаллизации жидкости.
В общем случае, способ определения толщин оптически прозрачных или мутных сред заключается в расположении на уровне поверхности, на которой располагается слой оптически прозрачной и/или мутной среды, двух волоконно-оптических источников модулированного по амплитуде монохромного излучения на разных длинах волн инфракрасного спектра и двух приемников излучения с двумя входами волоконно-оптических линий разного диаметра d, причем модуляция источников излучения осуществляется двумя разными не кратными частотами, а полученный приемниками сигнал формируется путем синхронного детектирования, затем из полученных 4х значений (2 значения на разных частотах излучения для каждой приемной апертуры) формируется 6 отношений сигналов, по совокупности которых определяется толщина пленки.
Новый способ определения толщин оптически прозрачных и/или мутных сред основан на следующих полученных результатах исследований.
Реализация указанного способа оптимальна при использовании неокрашенного источника света, т.е света равномерно распределенного по некоторому диапазону длин волн и не когерентному на каждой длине волны. В таком случае все эффекты волновой оптики (дифракция, интерференция и пр.) не внесут искажений в измерения. Однако на практике портативными, энергетически выгодными и стабильными являются только монохромные светодиоды, т.е. светодиоды, которые генерируют свет на одной длине волны (или в узком их диапазоне). В монохромных оптических системах эффекты дифракции, на неоднородностях среды распространения, и интерференция, при изменении геометрических размеров границ раздела оптических сред, приводят к сильным вариациям принимаемого сигнала, что не позволяет использовать в принципе вариации сигнала, как информационный канал.
Для уменьшения влияния эффектов волновой оптики на результаты измерений, авторами был предложен способ, использующий излучение на 2-х длинах волн. Как и в прототипе описанном в US 5801647 мы использовали светодиоды инфра красного (ИК) диапазона. Использование этого диапазона волн обусловлено тем, что в этом диапазоне гораздо легче избавиться от мешающих внешних источников излучения в виде солнца днем и искусственного освещения, автомобильных фар ночью. Наш выбор длин волн для светодиодов был основан на следующих принципах:
1. Погонное поглощение в жидкой среде (воде) на этих длинах волн должно сильно различаться (не менее чем в 10 раз).
2. Светодиоды, генерирующие излучение на этих волнах, должны быть массово доступными, т.е дешевыми в серийном производстве.
3. Светодиоды должны иметь идентичные: габариты, требования по питанию и характеристики надежности. Этим требованиям удовлетворяют в том числе, но не ограничиваясь светодиоды IF-E91A и IF-E91D.
На фиг.1 представлен пример исполнения измерительного блока (фиг. 1), используемого для определения толщин оптически прозрачных или мутных сред. Этот блок может иметь различные вариации конструктивного исполнения в части использования электронных компонентов и компоновки их в корпусе. Основным является то, что он содержит первый передатчик 1 излучения в диапазоне, например, 950-960 нм, рядом расположенный второй передатчик 2 излучения в диапазоне, например, 860-870 нм, и два приемных канала 3 и 4, соответственно для двух отраженных от границы жидкость-воздух излучений. При этом сами блоки могут располагаться в корпусе, а на поверхности границы, например, дорога или покрытие-жидкостная среда выведены только приемные части приемников и апертуры излучателей.
Особенностью измерительного блока является то, что каждый приемник излучения имеет два входа волоконно-оптических линий разного диаметра (апертуры) 0,5 и 1,0 мм, подключенных к приемникам излучения. В итоге получаем 4-е значения выходного сигнала для одного цикла измерений:
1. Напряжение, на приемнике со световодом диаметром 1 мм от излучателя ИК-диапазона с длинной волны 870 нм,
2. Напряжение, на приемнике со световодом диаметром 0,5 мм от излучателя ИК-диапазона с длинной волны 870 нм,
3. Напряжение, на приемнике со световодом диаметром 1 мм от излучателя ИК-диапазона с длинной волны 950 нм,
4. Напряжение, на приемнике со световодом диаметром 0,5 мм от излучателя ИК-диапазона с длинной волны 950 нм.
На графике по фиг. 2 видно, что на длине волны 950 нм в 10 раз большее поглощение в воде, чем на длине волны 870 нм. Таким образом, при образовании пар отношений с разными апертурами и длинами волн, мы гарантировано должны получить набор линейно не зависимых уравнений, так как ослабление, по закону Бугера-Бера, определяется экспоненциальной функцией, в показателе которой стоит коэффициент линейного поглощения. Таким образом, мы преодолеваем ограничение, связанное с использованием вариаций измеряемой толщины пленки, и вводим дополнительный информационный канал – вариация оптической системы, обозначенной Dh в Таб. 1.
Область применения данного способа:
1. Встроенный датчик дорожного и аэродромного покрытия
2. Датчик обледенения и толщины прозрачного слоя для авиации (датчик обледенения, датчик наличия жидкости ПОЖ на планере воздушного судна)
3. Аэрокосмическая сфера (в том числе на внеземных исследовательских спутниках, зондах, роверах)
4. Система фиксации обледенения воздушных линий электропередач
5. Система контроля обледенения подвижного состава железнодорожного транспорта
6. Различные системы на водном транспорте
7. Иные сферы, где необходимо измерять наличие и толщину прозрачного слоя жидкости или других сред.
8. Приборы точной дозировки жидкостей или измерения количества выпавших осадков.
Отличительной особенностью данного метода помимо прямого измерения толщин оптически прозрачных и мутных сред является определение агрегатного состояния жидкости в динамике. То есть при начале процесса кристаллизации, зарождении ядер кристаллизации, их разрастании наблюдаются резкие скачки в показаниях принимаемого света (фиг. 3) за счет вариаций рассеяния света обусловленного постоянным изменением размера отражающей поверхности от ядер кристаллизации.
Этот же процесс наблюдается при вибрации жидкости с примесью взвешенных частиц, и может использоваться как индикатор механических возмущений, при выходе системы из состояния равновесия.
Для пересчета полученных данных с измерительного устройства аналитическим путем выработаны следующие расчетные формулы:
Исходные данные:
4-е величины сигналов диаметра апертуры 0,5 частоты 870, диаметра апертуры 1,0 частоты 870, диаметра апертуры 0,5 частоты 950, диаметра апертуры 0,5 частоты 950, диаметра апертуры 1,0 частоты 950.
Для расчетных показателей используются величины отношений апертур и частот, представленные в таблице 1.
Таблица 1
№ комбинации Комбинации отношений Номера столбцов
1 1,0-870/0,5-870 2/1
2 1,0-950/0,5-950 4/3
3 1,0-870/1,0-950 2/4
4 0,5-870/0,5-950 1/3
5 0,5-870/1,0-950 1/4
6 1,0-870/0,5-950 2/3
Опытным путем были просчитаны формулы для пересчета отношений в толщину пленки оптически прозрачных и мутных сред, приведенные в таблице 2 (для каждого из 6-ти отношений (значение отношения принято за Х). Причем внутри одного отношения имеется внутренняя разбивка на несколько интервалов, в зависимости от значения Х.
Figure 00000001
Значения коэффициентов a, b, c, d могут рассчитываться индивидуально для разных оптических сред, и условий проведения измерений.
В результате после расчета 6-ти значений исключаются максимальное и минимальное значение, и берётся среднее арифметическое от оставшихся значений отношений величин сигналов от различных апертур и частот. Результатом получается расчетное значение толщины оптически прозрачной или мутной среды с диапазоном измерения от 0 до 12 мм, с точностью измерения 0,1 мм.
Применение в качестве источников/приемников оптических проводников из пластика позволит делать измерительный прибор с изменяемой длинной оптического проводника, что может использоваться в датчиках и измерительных средствах с истираемой верхней частью. Величина истирания может составлять в том числе и не ограничиваясь 20 мм, и ограничена только оптическими свойствами проводника.

Claims (1)

  1. Способ определения толщин оптически прозрачных или мутных сред, заключающийся в расположении на уровне поверхности, на которой располагается слой оптически прозрачной и/или мутной среды, двух волоконно-оптических источников излучения модулированного по амплитуде монохромного излучения на разных длинах волн инфракрасного спектра и двух приемников излучения с двумя входами волоконно-оптических линий разного диаметра, причем модуляция источников излучения осуществляется двумя разными не кратными частотами, полученный приемниками сигнал формируется путем синхронного детектирования, затем из полученных значений сигналов на разных частотах излучения для каждой приемной апертуры формируют отношения сигналов, по совокупности которых определяют толщину пленки.
RU2020119079A 2020-06-09 2020-06-09 Способ определения толщин оптически прозрачных и мутных сред RU2734576C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020119079A RU2734576C1 (ru) 2020-06-09 2020-06-09 Способ определения толщин оптически прозрачных и мутных сред

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020119079A RU2734576C1 (ru) 2020-06-09 2020-06-09 Способ определения толщин оптически прозрачных и мутных сред

Publications (1)

Publication Number Publication Date
RU2734576C1 true RU2734576C1 (ru) 2020-10-20

Family

ID=72940534

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020119079A RU2734576C1 (ru) 2020-06-09 2020-06-09 Способ определения толщин оптически прозрачных и мутных сред

Country Status (1)

Country Link
RU (1) RU2734576C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU879293A1 (ru) * 1979-01-29 1981-11-07 Московский Ордена Ленина И Ордена Октябрьской Революции Авиационный Институт Им.Серго Орджоникидзе Устройство дл измерени толщины прозрачной пленки
JPS63135810A (ja) * 1986-11-28 1988-06-08 Nippon Sheet Glass Co Ltd 着氷検知器
US5801647A (en) * 1995-09-08 1998-09-01 Vaisala Oy Method and apparatus for measuring road surface conditions
US20070080789A1 (en) * 2003-06-13 2007-04-12 Ikiades Aristedis A Ice detection apparatus and method
CN103940352A (zh) * 2014-04-25 2014-07-23 广州飞拓优视光电科技有限公司 一种超高精度结冰探测装置及其实时探测结冰厚度方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU879293A1 (ru) * 1979-01-29 1981-11-07 Московский Ордена Ленина И Ордена Октябрьской Революции Авиационный Институт Им.Серго Орджоникидзе Устройство дл измерени толщины прозрачной пленки
JPS63135810A (ja) * 1986-11-28 1988-06-08 Nippon Sheet Glass Co Ltd 着氷検知器
US5801647A (en) * 1995-09-08 1998-09-01 Vaisala Oy Method and apparatus for measuring road surface conditions
US20070080789A1 (en) * 2003-06-13 2007-04-12 Ikiades Aristedis A Ice detection apparatus and method
CN103940352A (zh) * 2014-04-25 2014-07-23 广州飞拓优视光电科技有限公司 一种超高精度结冰探测装置及其实时探测结冰厚度方法

Similar Documents

Publication Publication Date Title
Worcester et al. A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean
US4851817A (en) Fiber optic probe system
EP0102102A1 (en) A method and apparatus for tank gauging using diode lasers and optical fibres
US20130282285A1 (en) Method and device for determining the movements of a fluid from remote measurements of radial velocities
RU2734576C1 (ru) Способ определения толщин оптически прозрачных и мутных сред
Denison et al. Oscillatory flow measurements with a directionally sensitive laser velocimeter
US3424531A (en) Distance measuring instrument using a pair of modulated light waves
RU2304759C1 (ru) Дистанционный трехволновой способ измерения толщины тонких пленок
US2894595A (en) Measurement of the velocity of sound in fluids
WO2020003303A2 (en) System for gauging fluids volume
CN110057731A (zh) 基于激光光束光强分析海洋湍流和颗粒感知方法及装置
RU2300077C1 (ru) Дистанционный способ измерения толщины толстых пленок нефтепродуктов на поверхности воды
US11976963B2 (en) Fibre-optic acoustic sensor and associated measurement system, vehicle and measurement method
CN104777527B (zh) 一种能见度标定装置
GB1582673A (en) Ice detector
RU2644628C1 (ru) Измеритель эталонных спектров волнения морской поверхности
GB2196112A (en) Optical fibre measurement apparatus and method
US3457419A (en) Fluid flow meter in which laser light scattered by the fluid and by a stationary scattering center is heterodyned
RU2758843C1 (ru) Способ определения основных параметров структуры воздушно-капельных образований облаков и туманов
RU2063615C1 (ru) Способ измерения покомпонентного расхода трехкомпонентного газожидкостного потока и устройство для его осуществления
RU2208224C2 (ru) Способ измерения энергии оптического и свч-излучения
SU1341554A1 (ru) Способ локационного измерени оптических параметров прозрачных сред
Schutte Alternative methods for measuring fluxes with field scale scintillometry
CN114924129A (zh) 一种介电常数测量装置及方法
van Dinther Measuring crosswind using scintillometry