RU2734276C1 - Дисковый образец для оценки конструкционной прочности материала - Google Patents

Дисковый образец для оценки конструкционной прочности материала Download PDF

Info

Publication number
RU2734276C1
RU2734276C1 RU2019133638A RU2019133638A RU2734276C1 RU 2734276 C1 RU2734276 C1 RU 2734276C1 RU 2019133638 A RU2019133638 A RU 2019133638A RU 2019133638 A RU2019133638 A RU 2019133638A RU 2734276 C1 RU2734276 C1 RU 2734276C1
Authority
RU
Russia
Prior art keywords
sample
strength
stress
sss
disk sample
Prior art date
Application number
RU2019133638A
Other languages
English (en)
Inventor
Лев Беркович Цвик
Евгений Вячеславович Зеньков
Игорь Сергеевич Бочаров
Денис Александрович Еловенко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС)
Priority to RU2019133638A priority Critical patent/RU2734276C1/ru
Application granted granted Critical
Publication of RU2734276C1 publication Critical patent/RU2734276C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к испытательной технике, в частности к образцам для оценки прочности материалов при сложном напряженно-деформированном состоянии (НДС), характеризуемом двухосным растяжением или сжатием. Дисковый образец выполнен в виде пластины, представляющей собой часть круглого диска, образованную его усечением двумя плоскостями, симметричными относительно геометрического центра диска и перпендикулярными его срединной поверхности, имеющей поверхность опирания, ограниченную внешним контуром, поверхность нагружения, а также канавку, расположенную на одной из этих поверхностей, образованную движением U- или V-образного сечения канавки вдоль ее направляющей линии. Технический результат: расширение возможности получения двухосного вида НДС, возникающего в рабочей зоне дискового образца за счет изменения его геометрических параметров. 5 ил.

Description

Изобретение относится к испытательной технике, в частности к образцам для оценки прочности материалов при сложном напряженно-деформированном состоянии (НДС), характеризуемого двухосным растяжением или сжатием. Изобретение может быть использовано при оценке статической и усталостной прочности, а также прочности материала в условиях хрупкого разрушения. Соответствующие испытания необходимы при обеспечении прочности конструкций с концентраторами механических напряжений, например, соединений оболочек с патрубками, в энергетическом оборудовании, сосудах давления, реакторах, несущих элементов транспортной техники и другом высоконагруженном оборудовании.
Ресурс работоспособности современных конструкций в зависимости от назначения и условий их работы оценивается по характеристикам статической прочности материала конструкции, по характеристикам циклической его прочности, а также по характеристикам его трещиностойкости. Известно, что при различных видах НДС: в условиях всестороннего сжатия, одноосного растяжения и сдвига, а также при сложных видах НДС, являющиеся их комбинацией, критерии прочности материала конструкций могут существенно различаться. По этой причине, вид НДС в рабочей зоне лабораторных образцов материала, испытываемых до разрушения, должен совпадать с видом НДС в очаге возможного разрушения конструкции [1-4]. Указанный вид характеризуется коэффициентом вида напряженно-деформированного состояния П (далее - коэффициент вида НДС), определяемого отношением [1-7]
Figure 00000001
где
Figure 00000002
где σ1, σ2, σ3 - главные напряжения в очаге разрушения.
Тензометрия, а также численное моделирование полей напряжений высоконагруженных элементов показало, что значения величины коэффициента П в возможном очаге разрушения широкого класса конструкции лежит в диапазоне значений
Figure 00000003
Примером учета вида НДС (П<0, [6]) ответственных конструктивных элементов является расчет на прочность зоны контакта тела качения подшипника букс железнодорожных вагонов и его неподвижного кольца. В этом случае значение величины П близко к - 2 и для стали типа ШХ4, используемой для изготовления подшипников, нормативные допускаемые контактные напряжения равны 3500 МПа [8], что более чем вдвое превышают допускаемые напряжения для этой стали в условиях одноосного растяжения, равные ≈1250 МПА. Эксперименты, показывающие противоположный эффект - снижение прочностных свойств материала в условиях двухосного растяжения (так называемый «жесткий вид НДС», соответствующий первому из неравенств (3) [6]), приведены в [9, 10].
Учет вида напряженного состояния при оценке прочности высоконагруженных элементов конструкций необходимо осуществлять как на стадии лабораторных исследований материала конструкций, так и на стадии длительных и представительных натурных исследований их прочности [11].
Известен образец для оценки прочности материала при сложном напряженном состоянии, имеющий форму прямоугольной пластины с концентраторами механических напряжений, выполненных в виде U- и V-образных вырезов одинакового размера и конфигурации, расположенных на узких противоположных сторонах (ребрах) пластины [ГОСТ 25.504-82.
Расчеты и испытания на прочность. Методы расчета характеристик сопротивления усталости. - М., ИКП Издательство стандартов, 2004. Стр. 8, 46, чертеж 11]. Использование таких образцов при оценке прочности конструкций, в материале которых возникает сложное напряженное состояние, характеризуемое одним из неравенств (3), не обеспечивает необходимой точности оценки прочности моделируемых конструкций. По этой причине указанный образец не позволяет осуществлять моделирование напряженно-деформированного состояния во всем диапазоне изменения величины П, соответствующем неравенствам (3).
Известен также образец для оценки прочности материала при сложном напряженном состоянии [Описание изобретения к патенту РФ №2091748 на «Способ испытания металла трубы на усталость при двухосном напряженном состоянии (варианты)». МПК G01N 3/32. Опубл. 27.09.1997]. Образец является частью цилиндрической оболочки, имеет крестообразную форму и две взаимно перпендикулярные плоскости симметрии. Указанный образец подвергают одновременному поперечному и продольному сжатию-растяжению с помощью двух различных синхронно работающих гидравлических приводов. Недостаток такого образца состоит в том, что при его испытании требуется сложное нестандартное испытательное оборудование, имеющее два независимых силовых привода. При этом указанные приводы должны создавать усилия, действующие на образец и изменяющиеся в процессе испытаний пропорционально и одновременно по двум перпендикулярным осям, что существенно усложняет и повышает стоимость процесса испытания указанного образца.
Известен образец для оценки прочности материала, испытывающего двухосное НДС, имеющий форму призмы, продольную и поперечную плоскости симметрии, два боковых выступа, расположенных продольно. Указанный образец имеет в поперечном сечении L - или V - образную форму с наружным галтельным переходом, по концам призмы [Описание изобретения к патенту РФ №2516599 на «Призматический образец для оценки прочности материала». МПК G01N 1/28//Зеньков Е.В., Цвик Л.Б., Пыхалов А.А. и др. Опубл. 20.05.2014 г., Бюл. №14]. При проведении механических испытаний указанный призматический образец своими концами опирается на концевые опоры и, одновременно, L-образными выступами с упорными скосами - на боковую опору. При этом происходит контактное взаимодействие упорного скоса с боковой опорой, имеющей те же углы скоса. Под действием испытательного усилия, в рабочей зоне, расположенной на поверхности галтельного перехода в средней части образца, примыкающей к его поперечной плоскости симметрии, может создаваться НДС, удовлетворяющее одному из неравенств (3). Недостатками указанного образца являются сложность его формы (наличие системы выемок и выступов) и двухопорная схема его базирования в опорных элементах приспособления, требующая использования как массивных боковых призматических опор, так и концевых опор образца, что существенно повышает требования к точности изготовления и качеству контактирующих поверхностей, необходимых для создания двухосного НДС.
Известен образец для определения характеристик трещиностойкости при статическом нагружении [ГОСТ 25.506-85. Расчеты и испытания на прочность. Методы механических испытаний металлов. Определения характеристик трещиностойкости при статическом нагружении. Сб. стандартов. - М.: Стандартинформ, 2005 год. Стр. 145, чертеж 4]. Образец используется для лабораторных механических испытаний до разрушения материала с целью оценки конструкционной прочности несущих элементов различных высоконагруженных конструкций. Образец имеет форму толстостенной относительно узкой прямоугольной пластины, опирающийся на две концевые опоры, имеет, кроме того, краевой надрез, расположенный в средней части поверхности опирания, а также поверхность нагружения, в средней части которой прикладывается испытательная нагрузка, в направлении, поперечном для испытываемого образца. Использование такого образца при определении конструкционной прочности материала не обеспечивает необходимой точности оценки прочности в тех случаях, когда конструктивные элементы конструкции находятся в сложном НДС. Это связано с тем, что главные напряжения в указанном образце создают в зоне V-образного надреза (рабочей зоне образца) НДС, как правило, не соответствующее НДС оцениваемой конструкции, что не позволяет осуществлять расчетно-экспериментальную оценку прочности конструкции во всем диапазоне изменения вида НДС, определяемом неравенствами (3).
Известен образец для оценки прочности материала при сложном напряженном состоянии, принятый в качестве прототипа [Описание изобретения к патенту РФ №2360227 на «Образец для оценки прочности материала при сложном напряженном состоянии». МПК G01N 3/08//Цвик Л.Б., Пыхалов А.А., Храменок М.А. и др. Опубл. 27.06.2009 г., Бюл. №18], имеющий форму круглой пластины с U- или V-образными канавками, расположенными на противоположных сторонах пластины. В процессе испытаний образца он опирается по наружной кромке и при этом в его рабочей зоне, расположенной в центре круглой пластины на поверхности нижней U-образной канавки, может создаваться НДС, удовлетворяющее одному из неравенств (3). Недостатком указанного образца является то, что, как показало вычислительное моделирование, изменение его геометрических параметров (глубины и ширины канавок, а также радиусов их скругления в рабочей зоне) не приводит к необходимому изменению величины П во всем диапазоне, описываемом неравенствами (3). Другими словами, значение величины П указанного образца не является достаточно управляемым и чувствительным к изменению его геометрических параметров.
Задача данного предложения является создание дискового образца для расширения диапазона возможного изменения коэффициента вида НДС, характеризующего НДС используемого образца, для оценки прочности материалов конструкций.
Поставленная задача решается тем, что предлагаемый дисковый образец для оценки прочности материала в условиях сложного НДС выполнен в виде усеченной круглой пластины постоянной толщины (далее - основной пластины), имеющей поверхности опирания и нагружения, ограниченные внешними круговыми контурами, центры которых совпадает с геометрическими центрами этих поверхностей. Указанная пластина снабжена краевым надрезом (канавкой), расположенным на одной из этих поверхностей, а усечение основной пластины осуществляется двумя плоскостями, симметричными относительно ее геометрического центра и перпендикулярными ее срединной поверхности (далее - плоскостями усечения). Краевой надрез предлагаемого образца представляет собой канавку, которая может иметь в поперечном сечении U- или V-образную форму, симметричную относительно плоскости, перпендикулярной срединной поверхности основой пластины и проходящей через геометрический центр этой поверхности.
Технический результат изобретения выражается в расширении диапазона изменения вида НДС, возникающего в рабочей зоне образца во всем диапазоне (3), за счет соответствующего изменения расстояния между двумя плоскостями усечения образца, а также изменения соотношения ширин и глубин краевого надреза, изменения радиуса скругления его канавки в рабочей зоне. Указанный результат позволяет создать в предлагаемом образце НДС, уровень которого необходим для его разрушения и характеризуется при этом заданным значением П, лежащим в пределах диапазона (3).
Сущность предложенного изобретения поясняется чертежами. На фиг. 1 схематично показан вид четверти дискового образца для оценки прочности материала, имеющего продольную и поперечную плоскости симметрии; на фиг. 2 - вид на дисковый образец для оценки прочности материала сверху; на фиг. 3 - поперечный разрез дискового образца для оценки прочности материала по линии А-А на фиг. 2; на фиг. 4 - продольный разрез дискового образца для оценки прочности материала по линии Б-Б на фиг. 2: на фиг. 5 - результаты численного моделирования НДС предлагаемого дискового образца.
Предлагаемый дисковый образец для механических испытаний материала на прочность в условиях сложного НДС выполнен в форме пластины 1, имеющей поверхность опирания 2, ограниченную внешним контуром 3, канавку 4, расположенной на этой поверхности, а также поверхность нагружения 5. В свою очередь пластина 1 представляет собой диск, усеченный двумя плоскостями 6, симметричными относительно центра диска и перпендикулярными его срединной поверхности так, что пластина 1 имеет симметричную форму, а внешний контур 3 поверхности опирания 2 представляет собой часть окружности.
В процессе механических испытаний образца он опирается своим внешним контуром 3 на кольцевую опору 7. В центральной части образца к его поверхности нагружения 5 прикладывается поперечное (на фиг. 2 - вертикальное) испытательное усилие 8, распределенное по поверхности круговой формы 9. Под действием этой силы на поверхности радиуса скругления 10, которая является рабочей зоной - концентратором механических напряжений, канавки 4 на оси вращения образца возникает сложное напряженно-деформированное состояние.
Предлагаемый дисковый образец для оценки прочности материала в условиях сложного НДС деформируется в процессе испытаний следующим образом. При проведении механических испытаний образец базируется по своему внешнему контуру 3 поверхности опирания 2. Под действием испытательного усилия 8, распределенного по поверхности круговой формы 9, пластина 1 изгибается и в рабочей зоне поверхности радиуса скругления 10 возникает изгибающий момент, вызывающий положительные главные напряжения σ1, которые являются растягивающими напряжениями, действующими перпендикулярно направлению канавки 4. Одновременно в процессе нагружения в рабочей зоне по направлению канавки 4 на поверхности радиуса скругления 10 возникает изгибающий момент, вызывающий положительные главные напряжения σ2, которые также являются растягивающими напряжениями, действующими по направлению канавки 4. Напряжения σ3 на поверхности радиуса скругления 10 (напряжения в направлении нормали к поверхности радиуса скругления 10) равны в процесс испытания нулю, что создает на поверхности радиуса скругления 10 двухосное НДС.
При моделировании на лабораторном образце напряженных состояний, характеризуемых двухосным сжатием (случай первого из неравенств (3)), необходимый вид НДС в этом образце создается сменой положения образца в испытательной машине: поверхность нагружения и поверхность опирания образца при этом меняются местами, а сам образец для этого переворачивается.
При использовании предлагаемого образца предварительно должна быть осуществлена оценка НДС детали конструкции, прочность которой оценивается. Для выбора соответствующих геометрических параметров образца необходимы зависимости уровня величины П, характеризующей его НДС от значений геометрических параметров, представленные на фиг. 5.
Как показали результаты численного моделирования НДС, уровень значений интенсивности напряжений σi в рабочей зоне имеет максимальное значение для предлагаемого образца в целом. По этой причине очаг разрушения указанного образца локализуется в средней его части на поверхности на поверхности радиуса скругления 10 (в рабочей зоне дискового образца). При варьировании значений конструктивных параметров рассматриваемого образца - расстоянием между двумя усеченными плоскостями диска образца 6 (на фиг. 5 параметр S), ширины и глубины канавки 4, радиуса скругления 10 канавки 4 величине коэффициента П может быть придано любое значение, удовлетворяющее неравенствам (3).
Список использованной литературы
1. Когаев В.П., Махутов Н.А., Гусенков А.П. Расчеты деталей машин и конструкций на прочность и долговечность. - М.: Машиностроение, 1985. - 224 с.
2. Махутов Н.А. Конструкционная прочность, ресурс и техногенная безопасность. - Новосибирск: Наука, 2005. - 610 с.
3. Цвик Л.Б., Пимштейн П.Г, Борсук Е.Г. Экспериментальные исследования напряженно-деформированного состояния многослойного цилиндра с монолитным вводом // Проблемы прочности. - 1978. - №4. - С. 74-77.
4. Л.Б. Цвик [и др.] Укрепление отверстий и статическая прочность осесимметричных штуцерных узлов // Проблемы машиностроения и надежности машин. - 1993. - №1. - С. 58-65.
5. Писаренко Г.С., Яковлев А.П., Матвеев В.В. Справочник по сопротивлению материалов. - К.: Изд-во Дельта, 2008. - 816 с.
6. Смирнов-Аляев Г.А. Механические основы пластической обработки металлов. Инженерные методы. - Л.: Машиностроение, 1968. - 272 с.
7. Agogino A.M. Notch effects, stress state and ductility // Journal of Engineering Materials and Technology, Transactions of the ASME. - 1978. - V. 100. - pp. 348-355.
8. Нормы для расчета и проектирования вагонов железных дорог МПС колеи 1520 мм (несамоходных), ГосНИИВ. - М.: ВНИИЖТ, 1996 (с изменениями и дополнениями).
9. Zenkov E.V., Tsvik L.B. Formation of divergent testing efforts and experimental evaluation of material strength under biaxial stretching // PNRPU Mechanics Bulletin. - 2015. - No. 4. - pp. 110-120.
10. Вилимок Я.А., Назаров К.А., Евдокимов A.K. Напряженное состояние плоских образцов при одноосном и двухосном растяжении // Известия ТулГТУ. Технические науки. - 2013. - №11. - С. 388-393.
11. ГОСТ 33783-2016. Колесные пары железнодорожного подвижного состава Методы определения показателей прочности: межгосударственный стандарт: дата введения 2017-05-01 / разраб. ОАО "Научно-исследовательский конструкторско-технологический ин-т подвижного состава". - Москва: Стандартинформ, 2016. - III, 57 с.

Claims (1)

  1. Дисковый образец для оценки конструкционной прочности материала в виде пластины, имеющей поверхность опирания, ограниченную внешним контуром, поверхность нагружения, а также канавку, расположенную на одной из этих поверхностей, образованную движением U- или V-образного сечения канавки вдоль ее направляющей линии, отличающийся тем, что пластина представляет собой часть круглого диска, образованную его усечением двумя плоскостями, симметричными относительно геометрического центра диска и перпендикулярными его срединной поверхности.
RU2019133638A 2019-10-22 2019-10-22 Дисковый образец для оценки конструкционной прочности материала RU2734276C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019133638A RU2734276C1 (ru) 2019-10-22 2019-10-22 Дисковый образец для оценки конструкционной прочности материала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019133638A RU2734276C1 (ru) 2019-10-22 2019-10-22 Дисковый образец для оценки конструкционной прочности материала

Publications (1)

Publication Number Publication Date
RU2734276C1 true RU2734276C1 (ru) 2020-10-14

Family

ID=72940461

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019133638A RU2734276C1 (ru) 2019-10-22 2019-10-22 Дисковый образец для оценки конструкционной прочности материала

Country Status (1)

Country Link
RU (1) RU2734276C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2360227C2 (ru) * 2007-07-18 2009-06-27 Открытое акционерное общество "Иркутский научно-исследовательский и конструкторский институт химического и нефтяного машиностроения" (ОАО "ИркутскНИИхиммаш") Образец для оценки прочности материала при сложном напряженном состоянии
CN201477012U (zh) * 2009-08-14 2010-05-19 阳建红 变角度剪切试验夹具
RU2511214C2 (ru) * 2012-06-25 2014-04-10 Федеральное государственное бюджетное учреждение науки Казанский научный центр Российской академии наук Способ определения долговечности дисков турбомашин
RU2516599C1 (ru) * 2012-09-21 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО ИрГУПС) Призматический образец для оценки прочности материала

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2360227C2 (ru) * 2007-07-18 2009-06-27 Открытое акционерное общество "Иркутский научно-исследовательский и конструкторский институт химического и нефтяного машиностроения" (ОАО "ИркутскНИИхиммаш") Образец для оценки прочности материала при сложном напряженном состоянии
CN201477012U (zh) * 2009-08-14 2010-05-19 阳建红 变角度剪切试验夹具
RU2511214C2 (ru) * 2012-06-25 2014-04-10 Федеральное государственное бюджетное учреждение науки Казанский научный центр Российской академии наук Способ определения долговечности дисков турбомашин
RU2516599C1 (ru) * 2012-09-21 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ФГБОУ ВПО ИрГУПС) Призматический образец для оценки прочности материала

Similar Documents

Publication Publication Date Title
US9513200B1 (en) Determination of a threshold crack length
Regazzi et al. Improving fatigue resistance of railway axles by cold rolling: Process optimisation and new experimental evidences
JP2018536868A (ja) 接触力学を通した局所張力下の材料特性の測定
Cerullo et al. Micromechanical study of the effect of inclusions on fatigue failure in a roller bearing
Prinz et al. On the low-cycle fatigue capacity of unanchored steel liquid storage tank shell-to-base connections
Zenkov Update of the equations of the limit state of the structural material with the realization of their deformation
JP2015028441A (ja) 転がり疲労き裂進展試験方法及び転がり疲労寿命予測方法
Lu et al. Influence of inclusion size on S‐N curve characteristics of high‐strength steels in the giga‐cycle fatigue regime
Ghahremani et al. Fatigue strength improvement of aluminum and high strength steel welded structures using high frequency mechanical impact treatment
RU2734276C1 (ru) Дисковый образец для оценки конструкционной прочности материала
Chen et al. Investigations into the local buckling and post-buckling behaviour of fixed-ended hybrid I-section stub columns with slender web
RU2516599C1 (ru) Призматический образец для оценки прочности материала
Terán-Guillén et al. Structural integrity assessment of the cast Steel upper anchorage elements used in a cable stayed bridge
Ovuoba On the fatigue of headed shear studs in steel-concrete composite bridge girders
Chehrazi et al. Fretting fatigue tests and microstructure analysis of bridge stay cable wires
RU2413195C1 (ru) Способ определения остаточного ресурса трубопроводов
RU2590224C1 (ru) Способ оценки изгибных напряжений в элементах конструкций
Lai et al. The prediction of residual life of liquid-storage tank considering the tank wall surface state
RU2678781C1 (ru) Способ определения огнестойкости железобетонного сжатого элемента кольцевого сечения
Filinov et al. The monitoring of technological stresses by the method of magnetic noise
RU2700328C2 (ru) Способ определения предела выносливости материала при изгибе
Firdaus et al. Detection of high stress concentration zone using magnetic flux leakage method
Ghahremani Predicting the effectiveness of post-weld treatments applied under load
Beskopylny et al. Diagnostics of steel structures with the dynamic non-destructive method
Zenkov Numerical Simulation of the Stress-Strain State of a Whole-Rolled Railway Car Wheel on a Sample Used for Mechanical Testing