RU2732959C2 - Способ лазерного структурирования поверхности титановых дентальных имплантов - Google Patents
Способ лазерного структурирования поверхности титановых дентальных имплантов Download PDFInfo
- Publication number
- RU2732959C2 RU2732959C2 RU2019107622A RU2019107622A RU2732959C2 RU 2732959 C2 RU2732959 C2 RU 2732959C2 RU 2019107622 A RU2019107622 A RU 2019107622A RU 2019107622 A RU2019107622 A RU 2019107622A RU 2732959 C2 RU2732959 C2 RU 2732959C2
- Authority
- RU
- Russia
- Prior art keywords
- implant
- parts
- laser
- titanium
- radiation
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C8/00—Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Dental Prosthetics (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
Изобретение относится к способу лазерного структурирования поверхности титановых дентальных имплантов. Благодаря лазерному структурированию поверхности импланта, заключающемуся в последовательном воздействии лазерного излучения на все части поверхности импланта с плотностью мощности излучения 630 МВт/см2, при этом воздействие на цилиндрические части импланта производят с одновременным вращением импланта с линейной скоростью 5 мм/с, а на плоские части поверхности импланта с шагом 2 мкм, причем для создания каждой следующей микроканавки на всех частях поверхности импланта сканирование осуществляют с шагом 30 мкм, предлагаемый способ обеспечивает получение микроструктуры с наношероховатостью на поверхности импланта, обеспечивающей повышение биосовместимости, коррозионной стойкости и бактерицидных свойств импланта. 4 ил.
Description
Изобретение относится к области медицины и конкретно касается структурирования поверхности титановых дентальных имплантов (с целью формирования биоактивного, антибактериального и износостойкого покрытия), предназначенных для введения в костную ткань с целью устранения костных дефектов.
Известен способ изготовления стоматологического импланта с многослойным биоактивным покрытием (патент РФ №2146535, МПК A61L 27/00, дата приоритета 20.07.1998, дата публикации 20.03.2000). Данный способ включает предварительную пескоструйную обработку импланта с целью структурирования поверхности и последующее плазменное напыление, которое позволяет обеспечить адгезионную прочность.
Недостатком данного способа является отсутствие возможности формирования упорядоченной микро- и наноструктуры с заданными геометрическими параметрами - периодом и высотой, в результате чего не достигается нужный уровень остеоинтеграции импланта.
Известен способ нанесения покрытия на имплант из титана и его сплавов (патент РФ №2154463, МПК А61К 6/033, дата приоритета 07.07.1999, дата публикации 20.08.2000), заключающийся в анодировании титана и его сплавов. Сущность способа заключается в следующем: берется электролит (представляющий собой фосфорную кислоту), в него добавляется порошок гидроксиапатита, готовый к покрытию имплантат помещается в ванну с электролитом. Через электролит пропускается импульсный или постоянный ток напряжением до 80-150 В с частотой следования импульсов 0,5-10,0 Гц в течение 2-30 минут. Процесс ведется при постоянном перемешивании и температуре 20°С. Полученная толщина покрытия составляет 3-20 мкм.
Недостатком данного способа также является отсутствие возможности получить упорядоченную пористость покрытия с заданными значениями периода и высоты, что снижает его остеоинтеграционные свойства. Включения в состав покрытия оксидов меди, гидроксиаппатитов, фосфора и кальция нарушает сплошность оксидной пленки из TiO2 и может приводить к сколам, что также отрицательно влияет на остеоинтеграцию.
Известен способ создания наноструктурной пористой поверхности имплантов из титана и его сплавов (патент РФ №2469744, МПК A61L 31/08, дата приоритета 30.06.2011, дата публикации 20.12.2012). Данный способ включает пескоструйную обработку для придания поверхности титана шероховатости, с последующим травлением в кислотах для удаления примесей и получения на поверхности чистого титана и обжигом в печи для структурирования кристаллов и удаления связанной воды из пор поверхности.
Недостатком данного способа является низкая точность обработки имплантатов, использование последующих дополнительных этапов обработки, не экологичное использование кислот для удаления примесей, а также невозможность получения упорядоченной структуры, что также снижает остеоинтеграцию.
Недостатком всех вышеупомянутых методов является большое количество технологических этапов, что ведет к временным и экономическим потерям, а также к повышению вероятности возникновения брака на производстве. Кроме того, рассмотренные способы не позволяют локально формировать разномасштабные структуры: макро- (для замещения утраченной части кости), микро- (для клеток костной ткани) и наноразмеров (для белков) с заданным химическим составом.
Известен способ лазерного структурирования поверхности подложки, в том числе из титана, взятый за прототип (патент US №20050211680 А1, МПК В23K 26/0624, дата приоритета 23.05.2003, дата публикации 29.09.2005). Данный способ лазерного структурирования поверхности титановых дентальных имплантов заключается после предварительной очистки и стерилизации поверхности импланта в создании на поверхности импланта микроканавок с глубиной и шириной в диапазоне от 20 мкм до 30 мкм ее обработкой воздействием излучения лазера с наносекундной длительностью импульсов его сканированием.
Несомненным преимуществом предложенного способа является то, что обработка поверхности происходит бесконтактным воздействием на материал и без использования химических добавок при формировании структуры.
Недостатком предложенного способа является формирование только одного типа структур - микроканавки, в то время как для приживаемости дентальных имплантов на раннем этапе остеоинтеграции необходима наношероховатость, а также необходимость ручного изменения положения импланта для его обработки со всех сторон.
Задачей, на решение которой направлено предлагаемое изобретение, является получение поверхности титанового дентального импланта, удовлетворяющей высокой степени остеоинтеграции импланта в организме человека.
Поставленная задача решается за счет достижения технического результата, заключающегося в формировании упорядоченной микроструктуры с наношероховатостью по всей поверхности импланта.
Указанный технический результат достигается путем лазерного структурирования поверхности титановых дентальных имплантов, включающей цилиндрические части в виде резьбы и шейки, а также плоские части. После предварительной очистки и стерилизации поверхности импланта, а также его закреплении в наклонно-поворотном устройстве, на поверхности импланта создаются микроканавки с глубиной и шириной в диапазоне от 20 мкм до 30 мкм ее обработкой воздействием излучения лазера с наносекундной длительностью импульсов его сканированием при плотности мощности излучения 630 МВт/см2, ориентируя имплант с помощью наклонно-поворотного устройства для обеспечения падения излучения на обрабатываемую часть поверхности. При этом лазерное воздействие производят последовательно на боковые поверхности резьбы импланта, ее выступы и впадины, затем на шейку импланта с одновременным вращением импланта с линейной скоростью 5 мм/с, после чего осуществляют только сканирование лазерного излучения по плоским частям поверхности импланта с шагом 2 мкм, причем для создания каждой следующей микроканавки на всех частях поверхности импланта сканирование осуществляют с шагом 30 мкм.
Сущность изобретения поясняется чертежами, где:
- на фиг. 1 показана схема и пример готового устройства, с помощью которого реализуется предлагаемый способ лазерного структурирования поверхности титановых дентальных имплантов, на выноске показан внешний вид дентального импланта до и после лазерного структурирования его поверхности;
- на фиг. 2 представлены СЭМ- снимки поверхностей дентального импланта: плоской части импланта (слева от фотографии импланта) и резьбы импланта (справа от фотографии импланта) после лазерного структурирования;
- на фиг. 3 показаны СЭМ и ПЭМ-снимки с разным увеличением поверхности дентального импланта после лазерного структурирования;
- на фиг. 4 продемонстрированы результаты проведенных исследований in vitro, которые показывают процесс дифференциации клеток на поверхности титана до и после лазерного воздействия.
Реализация предлагаемого способа происходит с помощью устройства для лазерного структурирования поверхности титановых дентальных имплантов, например, на базе твердотельного импульсного волоконного лазера 1 с диодной накачкой наносекундной длительности импульсов, в состав которого также входят устройство оптической транспортировки излучения 2 к обрабатываемому импланту 3, контроллер 4, сканаторы 5, фокусирующая система 6 и наклонно-поворотное устройство 7 (Фиг. 1). В управляющий персональный компьютер 8 заносится алгоритм получения заданных микроструктур. Имплант после предварительной очистки и стерилизации закрепляется в наклонно-поворотном устройстве 7, после этого вся поверхность изделия подвергается воздействию лазерного излучения, при этом лазерный пучок и имплант перемещаются в соответствии с программой по заданному алгоритму в соответствии с формой импланта: последовательно на боковые поверхности резьбы импланта, ее выступы и впадины, затем на шейку импланта.
Используемый режим лазерного воздействия позволяет нагреть поверхность титана выше температуры кипения металла и приводит к образованию упорядоченной микроструктуры по всей поверхности импланта в виде канавок с глубиной и шириной в диапазоне от 20 мкм до 30 мкм (Фиг. 2). Полученные геометрические размеры канавок соответствуют размерам клеток костной ткани (например, размер ядра стволовых мезенхемальных клеток человека составляет порядка 20÷30 мкм, а продольный размер клетки при хорошей адгезии - 100÷150 мкм), что обеспечивает лучшую остеоинтеграцию импланта в организме человека. Одновременно с образованием микроструктуры на ее поверхности формируется наношероховатость (Фиг. 3), возникающая при конденсации испаренного металла с его одновременным окислением при обработке в воздушной среде. На Фиг. 3 показаны морфология и состав образовавшейся многослойной оксидной пленки. Характерный размер полученной наношероховатости соответствует размеру белков (в среднем 1÷100 нм), что играет важную роль на ранних этапах остеоинтеграции.
Импланта из диоксида титана обладают повышенной биосовместимостью (показано, например, в [De Nardo L, Raffaini G, Ganazzoli F, Chiesa R. Metal surface oxidation and surface interactions. In: Williams R, ed. Surface modification of biomaterials: methods, analysis and applications. Cambridge, UK: Woodhead Publishing; 2011: 102-142]), также они являются антибактериальными, губительными для широкого круга микроорганизмов, среди которых бактерии и эндоспоры [Foster НА, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011; 90(6):1847-1868].
На Фиг. 4 показаны результаты проведенных исследований in vitro, которые показывают процесс дифференциации клеток на поверхности титана до и после лазерного воздействия. На образцах титана до и после лазерного структурирования было проведено культивирование стволовых мезенхимальных стромальных клеток (МСК) человека в течение 24 часов и 20 дней. Анализ пролиферации клеток с использованием красителя TurboFP635 был выполнен с помощью флуоресцентной микроскопии и показал, что после 24 часов высаженные клетки были найдены на всех типах образцов и показывали хорошую адгезию клеток к поверхности титана (как до, так и после лазерного структурирования). После 20 дней количество клеток на структурированных образцах значительно увеличилось, в то время как на образцах до лазерной обработки количество клеток даже уменьшилось. На структурированном титане клетки располагаются не только на поверхности, но и в порах, что поможет импланту надежнее зафиксироваться в формирующейся костной ткани.
Согласно отличительным признакам изобретения способ лазерного структурирования поверхности титановых дентальных имплантов, изложенный выше, позволяет улучшить остеоинтеграцию импланта в организме человека за счет микроструктурирования его поверхности канавками с глубиной и шириной в диапазоне от 20 мкм до 30 мкм, покрытыми по всей поверхности нанорельефом, состоящем из оксидов титана, которые обеспечивают хорошие бактерицидные свойства и повышают коррозионную стойкость покрытия.
Вышеупомянутый технический результат доказывает, что способ лазерного структурирования поверхности дентальных имплантов является действующим и конкуреноспособным (за счет использования наклонно-поворотного устройства происходит обработка всей поверхности импланта при бесконтакном воздействии на материал и без использования химических добавок) для получения микроструктуры с наношероховатостью на поверхности импланта, обеспечивающей повышение биосовместимости, коррозионной стойкости и бактерицидных свойств импланта.
Claims (1)
- Способ лазерного структурирования поверхности титановых дентальных имплантов, включающей цилиндрические части в виде резьбы и шейки, а также плоские части, заключающийся, после предварительной очистки и стерилизации поверхности импланта, в создании на поверхности импланта микроканавок с глубиной и шириной в диапазоне от 20 мкм до 30 мкм обработкой сканирующим импульсным лазером с наносекундной длительностью импульсов, отличающийся тем, что после очистки и стерилизации имплант закрепляют в наклонно-поворотном устройстве, воздействие лазерного излучения на все части поверхности импланта производят при плотности мощности излучения 630 МВт/см2, ориентируя имплант с помощью наклонно-поворотного устройства для обеспечения нормального падения излучения на обрабатываемую часть поверхности, при этом воздействие производят последовательно на боковые поверхности резьбы импланта, ее выступы и впадины, затем на шейку импланта с одновременным вращением импланта с линейной скоростью 5 мм/с, после чего осуществляют только сканирование лазерного излучения по плоским частям поверхности импланта с шагом 2 мкм, причем для создания каждой следующей микроканавки на всех частях поверхности импланта сканирование осуществляют с шагом 30 мкм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019107622A RU2732959C2 (ru) | 2019-03-15 | 2019-03-15 | Способ лазерного структурирования поверхности титановых дентальных имплантов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019107622A RU2732959C2 (ru) | 2019-03-15 | 2019-03-15 | Способ лазерного структурирования поверхности титановых дентальных имплантов |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2019107622A3 RU2019107622A3 (ru) | 2020-09-15 |
RU2019107622A RU2019107622A (ru) | 2020-09-15 |
RU2732959C2 true RU2732959C2 (ru) | 2020-09-25 |
Family
ID=72922432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019107622A RU2732959C2 (ru) | 2019-03-15 | 2019-03-15 | Способ лазерного структурирования поверхности титановых дентальных имплантов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2732959C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU207683U1 (ru) * | 2021-07-08 | 2021-11-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" (ФГБОУ ВО "СибГИУ") | Внутрикостный зубной имплантат |
RU227164U1 (ru) * | 2024-02-01 | 2024-07-09 | Максим Игоревич Захаров | Дентальный имплантат, структурированный лазером |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2248266C2 (ru) * | 2003-01-22 | 2005-03-20 | Северо-Кавказский государственный технический университет (СевКавГТУ) | Способ формирования микрорельефа поверхности изделий |
US8784104B2 (en) * | 2009-06-01 | 2014-07-22 | Grant Layton | Dental implant system and method of use |
RU2567138C2 (ru) * | 2009-03-30 | 2015-11-10 | Боэгли-Гравюр С.А. | Способ и устройство для структурирования поверхности твердого тела, покрытого твердым материалом, с помощью лазера |
US20170014169A1 (en) * | 2014-03-11 | 2017-01-19 | Ohio State Innovation Foundation | Methods, devices, and manufacture of the devices for musculoskeletal reconstructive surgery |
-
2019
- 2019-03-15 RU RU2019107622A patent/RU2732959C2/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2248266C2 (ru) * | 2003-01-22 | 2005-03-20 | Северо-Кавказский государственный технический университет (СевКавГТУ) | Способ формирования микрорельефа поверхности изделий |
RU2567138C2 (ru) * | 2009-03-30 | 2015-11-10 | Боэгли-Гравюр С.А. | Способ и устройство для структурирования поверхности твердого тела, покрытого твердым материалом, с помощью лазера |
US8784104B2 (en) * | 2009-06-01 | 2014-07-22 | Grant Layton | Dental implant system and method of use |
US20170014169A1 (en) * | 2014-03-11 | 2017-01-19 | Ohio State Innovation Foundation | Methods, devices, and manufacture of the devices for musculoskeletal reconstructive surgery |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU207683U1 (ru) * | 2021-07-08 | 2021-11-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" (ФГБОУ ВО "СибГИУ") | Внутрикостный зубной имплантат |
RU227164U1 (ru) * | 2024-02-01 | 2024-07-09 | Максим Игоревич Захаров | Дентальный имплантат, структурированный лазером |
Also Published As
Publication number | Publication date |
---|---|
RU2019107622A3 (ru) | 2020-09-15 |
RU2019107622A (ru) | 2020-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Makurat-Kasprolewicz et al. | Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods | |
Kung et al. | Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation | |
KR100714244B1 (ko) | 생체용 골유도성 금속 임플란트 및 그 제조방법 | |
Teker et al. | Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications | |
Molaei et al. | Enhancing cytocompatibility, antibacterial activity and corrosion resistance of PEO coatings on titanium using incorporated ZrO2 nanoparticles | |
US9254351B2 (en) | Method for the surface treatment of titanium bone implants using, in order, a sodium hydroxide bath and anodization | |
Oyane et al. | Biomimetic apatite coating on yttria-stabilized tetragonal zirconia utilizing femtosecond laser surface processing | |
Louarn et al. | Nanostructured surface coatings for titanium alloy implants | |
Salou et al. | Comparative bone tissue integration of nanostructured and microroughened dental implants | |
Moravec et al. | Cell interaction with modified nanotubes formed on titanium alloy Ti-6Al-4V | |
Aufa et al. | Surface enhancement of Ti–6Al–4V fabricated by selective laser melting on bone-like apatite formation | |
He et al. | Titanium-based implant comprising a porous microstructure assembled with nanoleaves and controllable silicon-ion release for enhanced osseointegration | |
Li et al. | Antibacterial and microstructure properties of titanium surfaces modified with Ag-incorporated nanotube arrays | |
RU2732959C2 (ru) | Способ лазерного структурирования поверхности титановых дентальных имплантов | |
Hsu et al. | Fabrication of nanotube arrays on commercially pure titanium and their apatite-forming ability in a simulated body fluid | |
RU2677271C1 (ru) | Способ изготовления микро-наноструктурированного пористого слоя на поверхности титановых имплантатов | |
Ming et al. | Micro-arc oxidation in titanium and its alloys: Development and potential of implants | |
WO2013124693A1 (en) | Methods of manufacturing superhydrophilic implants | |
Zhang et al. | Fabrication of micro/nano-textured titanium alloy implant surface and its influence on hydroxyapatite coatings | |
RU2687792C1 (ru) | Способ изготовления внутрикостного имплантата | |
Chuan et al. | Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA) | |
Karaji et al. | Surface Modification of Porous Titanium Granules for Improving Bioactivity. | |
Lee | Surface properties, crystallinity and optical properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA) | |
RU2580627C1 (ru) | Способ получения биоактивного покрытия с антибактериальным эффектом | |
Smeets et al. | Implant surface modification and osseointegration-Past, present and future |