RU2731842C1 - Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации - Google Patents

Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации Download PDF

Info

Publication number
RU2731842C1
RU2731842C1 RU2020109667A RU2020109667A RU2731842C1 RU 2731842 C1 RU2731842 C1 RU 2731842C1 RU 2020109667 A RU2020109667 A RU 2020109667A RU 2020109667 A RU2020109667 A RU 2020109667A RU 2731842 C1 RU2731842 C1 RU 2731842C1
Authority
RU
Russia
Prior art keywords
fluid
sample
volume
mass
computer
Prior art date
Application number
RU2020109667A
Other languages
English (en)
Inventor
Цзилинь Чжан
Стейси М. АЛЬТХАУС
Цзинь-Хун ЧЭНЬ
Original Assignee
Сауди Арабиан Ойл Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сауди Арабиан Ойл Компани filed Critical Сауди Арабиан Ойл Компани
Application granted granted Critical
Publication of RU2731842C1 publication Critical patent/RU2731842C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/32Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/081Making measurements of geologic samples, e.g. measurements of moisture, pH, porosity, permeability, tortuosity or viscosity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/082Measurement of solid, liquid or gas content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/448Relaxometry, i.e. quantification of relaxation times or spin density

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к способам и системам для определения плотности материнской породы или зерен породы подповерхностной формации. Они включают в себя измерение массы в воздухе флюидонасыщенного образца подповерхностной формации, при этом масса в воздухе включает в себя массу образца, массу флюида, окружающего образец, и массу флюида внутри образца. Объем флюида внутри образца, V ф , и объем флюида, окружающего образец, V sur , определяются с помощью ядерного магнитного резонанса (NMR). Образец может затем быть погружен в предварительно определенный объем взвешивающего флюида, и масса флюидонасыщенного образца во взвешивающем флюиде, m f , измеряется. С помощью измеренных и определенных значений можно определять объем образца, V c , объемную плотность образца, ρ b , объем материнской породы, V m и плотность материнской породы и зерен породы подповерхностной формации, ρ m . 14 з.п. ф-лы, 12 ил.

Description

Область техники, к которой относится изобретение
[0001] Варианты осуществления относятся к оценке коллектора. Более конкретно, примерные варианты осуществления относятся к способам и системам для определения объемной плотности, пористости и распределения размера пор подповерхностной формации. Эти способы и системы используют сочетание NMR (ядерный магнитный резонанс) и гравиметрических методов.
Уровень техники
[0002] Объемная плотность является одним из наиболее важных параметров в оценке коллектора. Она широко используется для оценки запасов углеводородов в коллекторах. Традиционно, каротажные диаграммы и измерения образцов породы из скважин являются двумя подходами, чтобы получать ключевые геофизические параметры для оценки и описания коллектора. Эти измерения являются дорогостоящими и многократными, они требуют лишнего времени бурения, которое также является дорогостоящим.
[0003] Например, объемная плотность может быть измерена в реальном времени с помощью геофизического исследования скважин во время плотностного каротажа в процессе бурения (LWD) или может быть измерена с помощью тросового (WL) плотностного каротажа. Оба способа используют источник гамма-излучения и измерение затухающего гамма-луча, приходящего к детектору после взаимодействия с породой. Вообще говоря, LWD-измерение плотности представляет объемную плотность горной породы с пластовыми флюидами в пористом пространстве, тогда как WL-плотность измеряет объемную плотность горной породы с вытесняющими флюидами; для слабо проницаемых нетиповых горных пород различие должно быть минимальным. Объемная плотность может быть точно измерена с помощью образцов керна, когда они являются доступными.
[0004] Получение точных геофизических параметров из буровых шламов является полезным и желательным, по меньшей мере, по двум причинам. Первое, буровые шламы являются легко доступными из любой буровой скважины и, таким образом, не добавляют лишнего времени бурения или лишних затрат к эксплуатации. Второе, измерение может быть выполнено на буровой площадке и предлагает данные для рабочих решений в реальном времени, таких как бурение и последующий гидроразрыв пласта.
[0005] Однако, точное измерение объема бурового шлама является проблемой, поскольку трудно устранять флюид на поверхности бурового шлама. Традиционный способ подготовки образца использует влажную бумажную салфетку, чтобы устранять избыточный флюид с поверхности, и вследствие неправильной формы особенностей поверхности, действенность тотального удаления поверхностного флюида всегда является сомнительной. Кроме того, если бумажная салфетка является слишком сухой, флюид в образце бурового шлама может быть потерян вследствие капиллярной силы.
Сущность изобретения
[0006] Примерные варианты осуществления, описанные в данном документе, относятся к улучшенным способам и системам для определения объемной плотности, пористости и распределения размера пор подповерхностной формации.
[0007] Один примерный вариант осуществления является способом для определения плотности материнской породы или зерен породы подповерхностной формации. Способ включает в себя измерение массы в воздухе флюидонасыщенного образца подповерхностной формации, при этом масса в воздухе включает в себя массу образца, массу флюида, окружающего образец, и массу флюида внутри образца. Масса в воздухе для насыщенного флюидом образца, m s , может быть задана формулой
Figure 00000001
[0008] где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца и, V sur - это объем флюида, окружающего образец. Способ также включает в себя отдельно определение объема флюида внутри образца, V ɸ , и объема флюида, окружающего образец, V sur , с помощью ядерного магнитного резонанса (NMR). Способ может дополнительно включать в себя размещение образца в предварительно определенном объеме взвешивающего флюида, и измерение массы флюидонасыщенного образца во взвешивающем флюиде. Масса образца во взвешивающем флюиде, m f , может быть задана формулой
Figure 00000002
[0009] где ρ f - это плотность взвешивающего флюида. Способ может дополнительно включать в себя определение объема образца, V c , с помощью формулы
Figure 00000003
.
[00010] Способ может также включать в себя определение объемной плотности образца, ρ b , с помощью формулы
Figure 00000004
.
[00011] Способ может дополнительно включать в себя определение объема материнской породы, V m , с помощью формулы
Figure 00000005
.
[00012] Способ может также включать в себя определение плотности материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы
Figure 00000006
.
[00013] Другой примерный вариант осуществления относится к компьютерным программам, сохраненным на компьютерно-читаемых носителях. Энергонезависимые компьютерно-читаемые носители могут иметь, например, исполняемые компьютером инструкции, которые инструктируют компьютеру выполнять операцию приема массы в воздухе для флюидонасыщенного образца подповерхностной формации, при этом масса в воздухе включает в себя массу образца, массу флюида, окружающего образец, и массу флюида внутри образца. Масса в воздухе флюидонасыщенного образца, m s , может быть задана формулой
Figure 00000007
[00014] где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца и, V sur - это объем флюида, окружающего образец. Исполняемые компьютером инструкции могут также инструктировать компьютеру определять объем флюида внутри образца, V ɸ , и объем флюида, окружающего образец, V sur , из NMR-измерений. Исполняемые компьютером инструкции могут также инструктировать компьютеру принимать массу флюидонасыщенного образца во взвешивающем флюиде. Масса образца во взвешивающем флюиде, m f , может быть задана формулой
Figure 00000008
[00015] где ρ f - это плотность взвешивающего флюида. Исполняемые компьютером инструкции могут также инструктировать компьютеру вычислять объем образца, V c , с помощью формулы
Figure 00000009
.
[00016] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру вычислять объемную плотность образца, ρ b , с помощью формулы
Figure 00000010
.
[00017] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру вычислять объем материнской породы, V m , с помощью формулы
Figure 00000011
.
[00018] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру вычислять плотность материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы
Figure 00000012
.
[00019] Другой примерный вариант осуществления является системой для определения плотности материнской породы или зерен породы подповерхностной формации. Система может включать в себя флюидонасыщенный образец подповерхностной формации и взвешивающие весы, которые могут быть сконфигурированы, чтобы принимать флюидонасыщенный образец и выводить массу в воздухе и массу во флюиде для образца. Система может также включать в себя компьютер, имеющий один или более процессоров и энергонезависимый компьютерно-читаемый носитель, который может включать в себя исполняемые компьютером инструкции, которые, когда исполняются посредством одного или более процессоров, инструктируют компьютеру извлекать массу в воздухе для флюидонасыщенного образца подповерхностной формации из взвешивающих весов. Масса в воздухе может включать в себя массу образца, массу флюида, окружающего образец, и массу флюида внутри образца. Масса в воздухе для флюидонасыщенного образца, m s , может быть задана формулой
Figure 00000013
[00020] где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца и, V sur - это объем флюида, окружающего образец. Система может также включать в себя устройство NMR, которое может быть функционально соединено с компьютером и сконфигурировано, чтобы определять объем флюида внутри образца, V ɸ , и объем флюида, окружающего образец, V sur , с помощью NMR. Компьютер может быть сконфигурирован, чтобы принимать объем флюида внутри образца, V ɸ , и объем флюида, окружающего образец, V sur , от NMR, и массу флюидонасыщенного образца во взвешивающем флюиде от взвешивающих весов. Масса образца во взвешивающем флюиде, m f , может быть задана формулой
Figure 00000014
[00021] где ρ f - это плотность взвешивающего флюида. Исполняемые компьютером инструкции могут также инструктировать компьютеру определять объем образца, V c , с помощью формулы
Figure 00000015
.
[00022] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру вычислять объемную плотность образца, ρ b , с помощью формулы
Figure 00000016
.
[00023] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру определять объем материнской породы, V m , с помощью формулы
Figure 00000017
.
[00024] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру определять плотность материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы
Figure 00000018
.
Краткое описание чертежей
[00025] Фиг. 1 иллюстрирует примерный образец или буровой шлам подповерхностной формации согласно одному примерному варианту осуществления изобретения.
[00026] Фиг. 2 иллюстрирует примерное оборудование для определения массы в воздухе для флюидонасыщенного образца подповерхностной формации, согласно одному примерному варианту осуществления изобретения.
[00027] Фиг. 3 иллюстрирует примерный NMR-спектр образца из подповерхностной формации с различными количествами добавленного флюида, согласно одному примерному варианту осуществления изобретения.
[00028] Фиг. 4 иллюстрирует примерный график, показывающий NMR-результаты для образца подповерхностной формации, согласно некоторым примерным вариантам осуществления изобретения.
[00029] Фиг. 5 иллюстрирует примерный NMR-спектр (один спектр в приращениях, а другой по нарастающей) для образца из подповерхностной формации без какого-либо лишнего добавленного флюида, согласно одному примерному варианту осуществления изобретения.
[00030] Фиг. 6 иллюстрирует примерный график, показывающий NMR-результаты образца подповерхностной формации, согласно одному примерному варианту осуществления изобретения.
[00031] Фиг. 7 иллюстрирует пример NMR-результатов из образца подповерхностной формации с лишним добавленным флюидом (1,5 мл для этого примера), согласно одному примерному варианту осуществления изобретения.
[00032] Фиг. 8 иллюстрирует примерный график, показывающий NMR-результаты от образца подповерхностной формации, согласно одному примерному варианту осуществления изобретения.
[00033] Фиг. 9 иллюстрирует примерное оборудование для определения массы во флюиде для флюидонасыщенного образца подповерхностной формации, согласно некоторым примерным вариантам осуществления изобретения.
[00034] Фиг. 10 иллюстрирует примерные этапы в способе для определения плотности материнской породы или зерен породы подповерхностной формации, согласно некоторым примерным вариантам осуществления изобретения.
[00035] Фиг. 11 - это примерный компьютер, настроенный для определения плотности материнской породы или зерен породы подповерхностной формации согласно некоторым примерным вариантам осуществления изобретения.
[00036] Фиг. 12 - это примерная система для определения плотности материнской породы или зерен породы подповерхностной формации согласно некоторым примерным вариантам осуществления изобретения.
Подробное описание изобретения
[00037] Примерные описанные варианты осуществления предлагают способ измерения и анализа буровых шламов с помощью сочетания измерений ядерного магнитного резонанса (NMR) и измерений массы в воздухе и во флюиде, чтобы получать множество ключевых геофизических параметров точно с небольшой подготовкой образца. Примерные варианты осуществления представляют новый и точный способ измерения объемной плотности с помощью насыщенных буровых шламов, которые являются легко доступными для любой буровой углеводородной скважины. Способ сочетает NMR и гравиметрические методы, и результаты включают в себя объемную плотность, плотность зерен, пористость и распределение размера пор буровых шламов.
[00038] Обращаясь теперь к чертежам, фиг. 1 иллюстрирует образец 10, такой как буровой шлам подповерхностной формации, например, из углеводородного коллектора. В примерном способе первым этапом является сбор буровых шламов 10, которые являются характерными для подповерхностной формации. Следующим этапом является сортировка по размеру с тем, чтобы устранять частицы большого размера, которые обычно существуют от обвала породы, и устранять частицы слишком малого размера, которые могут циркулировать множество раз посредством циклов восстающей скважины и нисходящей скважины с буровым раствором. В некоторых вариантах осуществления, по меньшей мере, один размер флюидонасыщенного образца может быть около 0,5-3 мм. Эти пределы, однако, могут быть отрегулированы согласно конкретной породе и бурам, используемым для бурения.
[00039] Дополнительно, собранные шламы могут быть промыты с помощью достаточного количества жидкости, так что это минимизирует влияние мелких частиц из бурового раствора, которые вонзаются в поверхность шлама или в окружающий флюид, что может влиять и на измерения массы, и на NMR-измерения. Промывка может также помогать другим последующим измерениям, таким как измерение с помощью гамма-лучей, на буровых шламах, поскольку воздействие мелких частиц на измерения с помощью гамма-лучей может быть значительным.
[00040] Фиг. 1 слева на фиг. 1, обозначенный A, иллюстрирует обломок 10 бурового шлама с флюидом 30 на поверхности, с объемом V sur . Объем шлама внутри флюидной оболочки может быть дан как V c . Чертеж справа на фиг. 1, обозначенный B, является увеличенным фрагментом внутренности обломка 10 шлама, состоящего из зерен 20 материнской породы (могут быть в виде сфер или других геометрических формах) с объемом V m и плотностью ρ m , и пористого пространства 15, с объемом V ɸ и заполненного флюидом с плотностью ρ l .
[00041] Следующим этапом способа является измерение массы в воздушной среде для собранного бурового шлама 10. Фиг. 2, например, иллюстрирует оборудование, такое как взвешивающие весы 25 с поддерживающим устройством 12, которое может быть использовано для измерения массы в воздухе для образца 10 шлама. Масса в воздухе включает в себя массу образца, массу флюида, окружающего образец, и массу флюида внутри образца. Масса в воздухе для флюидонасыщенного образца, m s , может быть задана формулой
Figure 00000019
[00042] где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца и, V sur - это объем флюида, окружающего образец.
[00043] Следующим этапом является отдельное определение объема флюида внутри образца, V ɸ , и объема флюида, окружающего образец, V sur , с помощью ядерного магнитного резонанса (NMR). Чтобы четко отделять NMR-сигналы для жидкости внутри и вокруг шламов, достаточное количество окружающего флюида может быть использовано однократно или пошаговым образом. Вследствие проблем чувствительности глины, множество скважин на нетрадиционных месторождениях бурятся с помощью бурового раствора на нефтяной основе (OBM). Примерные описанные варианты осуществления предлагают новый способ, чтобы отделять NMR-сигнал флюида на поверхностях шламов и флюидов из внутренних пор образцов шлама на основе двух предположений:(1) флюиды внутри глинистых шламов имеют короткое время релаксации, и (2) флюиды из OBM имеет более длительное T2, даже в присутствии шламов.
[00044] Фиг. 3 иллюстрирует примерный график 35, показывающий NMR-показания (спектр) образца подповерхностной формации с изменяющимся содержанием флюида, добавленного в образец, согласно одному примерному варианту осуществления изобретения. Последовательность NMR-экспериментов может быть выполнена на образце шлама, и спектр инкрементного распределения T2 может быть получен, как показано на фиг. 3, например. Известное количество буровой жидкости, дизельного топлива, например, может постепенно добавляться к образцу шлама, и измерение может быть выполнено, например, "1,5 мл дизельное топливо, инкр." обозначает кривую инкрементного T2-распределения, после того как 1,5 мл дизельного топлива было добавлено к исходному образцу шлама. Два режима T2-распределения могут быть отмечены, например, больший режим около 25 мс, представляющий свободный флюид, и меньший пик ниже 1 мс, представляющий флюид внутри образцов бурового шлама.
[00045] Последовательность NMR-экспериментов с буровыми шламами продемонстрировала, что позиция режима для T2-сигнала для OBM вне буровых шламов перемещается к более длительным временам релаксации, когда больше флюида постепенно добавляется (фиг. 3), и прекращает перемещаться, когда объем добавленного флюида является относительно большим по сравнению с первоначальным количеством флюида на поверхности. Следует также отметить, что отделение и количественная оценка жидкости внутри буровых шламов, когда большое количество бурового раствора присутствует, является достижимым, когда существуют два режима T2-распределения (фиг. 3). Больший пик около 25 мс представляет свободный флюид вне буровых шламов, а меньший пик ниже 1 мс представляет флюид внутри образцов бурового шлама. На верхней кривой (1,5 мл дизельное топливо, инкр., где слово "инкр." ставится для инкрементного T2-распределения), два режима являются более четко разделенными по сравнению с нижней кривой (непосредственно после получения, т. е. без добавленного лишнего дизельного топлива).
[00046] Фиг. 4 иллюстрирует примерный график 40 для общего количества флюида, измеренного посредством NMR (вертикальная ось) в зависимости от лишнего флюида, добавленного к образцу бурового шлама в мл (горизонтальная ось). Может быть видно из графика, что линия 45 пересекается с вертикальной осью непосредственно над 1, и это является суммарным количеством флюида на поверхности и внутри образца бурового шлама перед добавлением дизельного топлива. Фиг. 5 показывает график 50 без добавленного лишнего флюида; одноточечный способ разделения V sur и V ɸ . Здесь может быть видно, что суммарный объем 52 T2-распределения флюида из NMR-измерения (шкала справа) и инкрементный объем 53 флюида (шкала слева) из NMR-измерения нанесены на график.
[00047] Дополнительный флюид не добавляется в этой разновидности способа. Отсечка 51 выбирается от линии инкрементного T2-распределения (вертикальная пунктирная линия, начерченная во впадине на инкрементной кривой на фиг. 5, объем влево от которой представляет объем флюида внутри буровых шламов, и вправо от которой представляет объем на поверхности, или суммарный подвижный объем (BVM), когда больше флюида добавляется). Суммарный объем флюида внутри буровых шламов (54, штриховая линия) может быть считан из кумулятивной кривой 52, а объем на поверхности буровых шламов является различием между суммарным и объемом внутри буровых шламов (Vsur на фиг. 5, или BVM по экспериментам, когда известное количество лишнего флюида добавляется).
[00048] В случае, когда лишний флюид присутствует, график может быть начерчен, как видно на фиг. 6. Аналогично линии 45, показанной на фиг. 4, линия 65 на графике 60, показанная на фиг. 6, иллюстрирует, что показатель BVM-объема из NMR увеличивается, когда лишний флюид добавляется к образцу бурового шлама. График 60 показывает многоточечное измерение из BVM, чтобы разделять V sur и V ɸ , т. е. BVM в зависимости от количества флюидов, добавленных к образцу бурового шлама. Пересечение линии 65 регрессии показывает объем флюида на поверхности буровых шламов (V sur является точкой пересечения линии регрессии, т. е. 1,0073 мл для этого примера).
[00049] Фиг. 7 иллюстрирует другой примерный график 70, где 1,5 мл флюида добавлено к образцу. Опять, и суммарный объем 75 T2-распределения (шкала справа) флюида из NMR-измерения, и инкрементный объем 72 (шкала слева) T2-распределения флюида из NMR-измерения нанесены на график. Из инкрементного объема 72 (шкала слева) кривой T2-распределения может быть найдено среднее значение суммарного подвижного объема, обозначенный как "T2BVM". Когда различные количества флюида добавляются к образцу, последовательность значений "T2BVM" может быть получена в способе, кратко изложенном здесь, или других способах, аналогичных способу, кратко изложенному здесь, и использование "T2BVM" показано на фиг. 8. График 80, показанный на фиг. 8, иллюстрирует третий способ получить количество флюида на поверхности буровых шламов, V sur , с помощью значения T2BVM. Обратная величина для точки пересечения линии 85 регрессии является объемом флюида на поверхности образцов (V sur является обратной величиной точки пересечения линии регрессии, т. е. 1,00222 мл для этого примера, где T2bulkmud является временем релаксации T2 для флюида (может быть бурового раствора или других) для промывки образца.
[00050] Следующим этапом является измерение массы образца во взвешивающем флюиде. Фиг. 9 иллюстрирует примерную установку 90, включающую в себя оборудование 25 для измерения массы образца во флюиде, согласно одному примерному варианту осуществления. В этом примере флюидонасыщенный образец 10 может быть помещен во взвешивающий флюид 94, и взвешивающие весы 25 могут быть использованы для измерения массы образца 10 во флюиде. Взвешивающий флюид может быть буровым раствором, или флюидом с гравиметрическими свойствами, аналогичными буровому раствору. В одном примерном варианте осуществления взвешивающий флюид является дизельным топливом.
[00051] Масса образца во взвешивающем флюиде, m f , может быть задана формулой
Figure 00000020
[00052] где ρ f - это плотность взвешивающего флюида. Из объединения двух измерений масс и NMR-измерения множество ключевых параметров может быть получено, как кратко изложено в последующих разделах для характеризования коллектора. Эти параметры включают в себя пористость, общий объем бурового шлама, объемную плотность и плотность материнской породы/зерен. Например, способ может дополнительно включать в себя определение объема образца, V c , с помощью формулы
Figure 00000021
.
[00053] На следующем этапе способ может также включать в себя определение объемной плотности образца, ρ b , с помощью формулы
Figure 00000022
.
[00054] На следующем этапе способ может дополнительно включать в себя определение объема материнской породы, V m , с помощью формулы
Figure 00000023
.
[00055] В качестве последнего этапа способ может включать в себя определение плотности материнской породы или зерен подповерхностной формации, ρ m , с помощью формулы
Figure 00000024
.
[00056] Эти измерения могут быть выполнены на образцах бурового шлама по всей буровой скважине, и, таким образом, данные могут быть получены для оценки неоднородности вертикальных или горизонтальных скважин. Это может потенциально быть использовано в реальном времени, чтобы оптимизировать число и размещение стадий гидроразрыва пластов для нетрадиционных залежей.
[00057] Здесь, содействие устройства для поддержки образца (12 на фиг. 1) не учитывается, поскольку устройство для поддержки образца выбирается так, что объем является минимальным по сравнению с объемом буровых шламов. Существуют три типа флюидов, подразумеваемых в анализе буровых шламов: флюид внутри образцов бурового шлама, буровой раствор и взвешивающий флюид. На буровой площадке, в зависимости от проницаемости горной породы, флюид внутри может быть заменен буровым раствором до различной степени. Например, для буровых шламов нетиповых горных пород является вероятным, что флюид на поверхности буровых шламов отличается от флюида внутри, тогда как для буровых шламов очень проницаемых горных пород исходный флюид внутри буровых шламов заменяется буровым раствором вместо этого быстро. Если мы выбираем буровой раствор в качестве взвешивающего флюида, наиболее сложная ситуация подразумевает два типа флюидов: исходный флюид внутри пор и буровой раствор. В случае, когда все три флюида являются одинаковыми для высокопроницаемых горных пород, следующие вычисления могут быть упрощены даже более. Следующее вычисление использует два типа флюидов в качестве примера.
[00058] Фиг. 10 иллюстрирует примерный способ 100 для определения плотности материнской породы или зерен породы подповерхностной формации. Способ включает в себя измерение массы в воздухе для флюидонасыщенного образца подповерхностной формации на этапе 102, при этом масса в воздухе включает в себя массу образца, массу флюида, окружающего образец, и массу флюида внутри образца. Масса в воздухе для флюидонасыщенного образца, m s , может быть задана формулой
Figure 00000025
[00059] где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца и, V sur - это объем флюида, окружающего образец. Способ также включает в себя отдельно определение объема флюида внутри образца, V ɸ , и объема флюида, окружающего образец, V sur , с помощью ядерного магнитного резонанса (NMR), на этапе 104. Способ может дополнительно включать в себя размещение образца в предварительно определенном объеме взвешивающего флюида на этапе 106, и измерение массы флюидонасыщенного образца во взвешивающем флюиде, на этапе 108. Масса образца во взвешивающем флюиде, m f , может быть задана формулой
Figure 00000026
[00060] где ρ f - это плотность взвешивающего флюида. На этапе 110 способ может дополнительно включать в себя определение объема образца, V c , с помощью формулы
Figure 00000027
.
[00061] Способ может также включать в себя определение объемной плотности образца, ρ b , с помощью формулы
Figure 00000028
.
[00062] На этапе 112 способ может дополнительно включать в себя определение объема материнской породы, V m , с помощью формулы
Figure 00000029
.
[00063] Наконец, на этапе 114, способ может включать в себя определение плотности материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы
Figure 00000030
.
[00064] Компьютерно-читаемый носитель
[00065] Другой примерный вариант осуществления относится к компьютерным программам, сохраненным на компьютерно-читаемых носителях. Обращаясь к фиг. 11, вышеупомянутый процесс, который объяснен со ссылкой на фиг. 1-10, может быть осуществлен в компьютерно-читаемом коде. Код может быть сохранен, например, на энергонезависимом, компьютерно-читаемом носителе, таком как гибкий диск 164, CD-ROM 162, который может быть считан посредством дисковых накопителей 156, 158, или магнитный (или другого типа) накопитель 160 на жестком диске, формирующий часть программируемого компьютера общего назначения. Компьютер, как известно в области техники, включает в себя центральный процессор 150, устройство пользовательского ввода, такое как клавиатура 154, и пользовательский дисплей 152, такой как плоскопанельный LCD-дисплей или дисплей на катодно-лучевой трубке. Согласно этому варианту осуществления, компьютерно-читаемый носитель 160, 162, 164 включает в себя логику, работающую, чтобы инструктировать компьютеру выполнять действия, которые изложены выше и объяснены относительно предыдущих чертежей. Энергонезависимый компьютерно-читаемый носитель 160, 162, 164 может иметь, например, исполняемые компьютером инструкции, которые инструктируют компьютеру выполнять операции приема массы в воздухе для флюидонасыщенного образца подповерхностной формации, при этом масса в воздухе включает в себя массу образца, массу флюида, окружающего образец, и массу флюида внутри образца. Масса в воздухе для флюидонасыщенного образца, m s , может быть задана формулой
Figure 00000031
[00066] где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца и, V sur - это объем флюида, окружающего образец. Исполняемые компьютером инструкции могут также инструктировать компьютеру определять объем флюида внутри образца, V ɸ , и объем флюида, окружающего образец, V sur , с помощью ядерного магнитного резонанса (NMR). Исполняемые компьютером инструкции могут также инструктировать компьютеру принимать массу флюидонасыщенного образца во взвешивающем флюиде. Масса образца во взвешивающем флюиде, m f , может быть задана формулой
Figure 00000032
[00067] где ρ f - это плотность взвешивающего флюида. Исполняемые компьютером инструкции могут также инструктировать компьютеру определять объем образца, V c , с помощью формулы
Figure 00000033
.
[00068] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру вычислять объемную плотность образца, ρ b , с помощью формулы
Figure 00000034
.
[00069] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру вычислять объем материнской породы, V m , с помощью формулы
Figure 00000035
.
[00070] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру определять плотность материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы
Figure 00000036
.
[00071] Примерная система
[00072] Другой примерный вариант осуществления является системой 1200 для определения плотности материнской породы или зерен породы подповерхностной формации. Система 1200 может включать в себя флюидонасыщенный образец 10 подповерхностной формации, как иллюстрировано на фиг. 1, 2 и 9. Система 1200 может также включать в себя взвешивающие весы 25, как иллюстрировано на фиг. 2 и 9, которые могут быть сконфигурированы, чтобы принимать флюидонасыщенный образец 10 и выводить массу в воздухе и массу во флюиде для образца 10. Система 1200 может также включать в себя компьютер 200, имеющий один или более процессоров 150 и энергонезависимый компьютерно-читаемый носитель 160, который может включать в себя исполняемые компьютером инструкции, которые, когда исполняются посредством одного или более процессоров 150, инструктируют компьютеру 200 получать массу в воздухе для флюидонасыщенного образца 10 подповерхностной формации от взвешивающих весов 25. Масса в воздухе может включать в себя массу образца, массу флюида, окружающего образец, и массу флюида внутри образца. Масса в воздухе для флюидонасыщенного образца, m s , может быть задана формулой
Figure 00000037
[00073] где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ф - это объем флюида внутри образца и, V sur - это объем флюида, окружающего образец. Система 1200 может также включать в себя NMR-устройство 500, которое может быть функционально соединено с компьютером 200 и сконфигурировано, чтобы определять объем флюида внутри образца, V ф , и объем флюида, окружающего образец, V sur , с помощью ядерного магнитного резонанса (NMR). Компьютер 200 может быть сконфигурирован, чтобы принимать объем флюида внутри образца, V ф , и объем флюида, окружающего образец, V sur , от NMR-устройства 500, и массу флюидонасыщенного образца во взвешивающем флюиде от взвешивающих весов 25. Масса образца во взвешивающем флюиде, m f , может быть задана формулой
Figure 00000038
[00074] где ρ f - это плотность взвешивающего флюида. Исполняемые компьютером инструкции могут также инструктировать компьютеру определять объем образца, V c , с помощью формулы
Figure 00000039
.
[00075] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру определять объемную плотность образца, ρ b , с помощью формулы
Figure 00000040
.
[00076] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру вычислять объем материнской породы, V m , с помощью формулы
Figure 00000041
.
[00077] Исполняемые компьютером инструкции могут дополнительно инструктировать компьютеру определять плотность материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы
Figure 00000042
.
[00078] В то время как изобретение было описано относительно ограниченного числа вариантов осуществления, специалисты в области техники, имеющие пользу от этого изобретения, поймут, что другие варианты осуществления могут быть придуманы, которые не отступают от рамок настоящего изобретения, которые описаны в данном документе. Соответственно, рамки изобретения должны быть ограничены только прилагаемой формулой изобретения.

Claims (67)

1. Способ для характеризования подповерхностной формации, способ содержит этапы, на которых:
измеряют массу в воздухе для флюидонасыщенного образца подповерхностной формации, при этом масса в воздухе содержит массу материнской породы или зерен образца, массу флюида, окружающего образец, и массу флюида внутри образца, масса в воздухе для флюидонасыщенного образца, m s , задана формулой:
Figure 00000043
,
где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца, и V sur - это объем флюида, окружающего образец;
определяют объем флюида внутри образца, V ɸ , и объем флюида, окружающего образец, V sur , с помощью ядерного магнитного резонанса (NMR);
помещают образец в предварительно определенном объеме взвешивающего флюида;
измеряют массу флюидонасыщенного образца во взвешивающем флюиде, масса образца во взвешивающем флюиде, m f , задана формулой:
Figure 00000044
,
где ρ f - это плотность взвешивающего флюида; и
определяют объем флюидонасыщенного образца без окружающего флюида, V c , с помощью формулы:
Figure 00000045
.
2. Способ по п. 1, дополнительно содержащий этап, на котором:
определяют объемную плотность флюидонасыщенного образца без окружающего флюида, ρ b , с помощью формулы:
Figure 00000046
.
3. Способ по п. 2, дополнительно содержащий этап, на котором:
определяют объем материнской породы, V m , с помощью формулы:
Figure 00000047
.
4. Способ по п. 3, дополнительно содержащий этап, на котором:
определяют плотность материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы:
Figure 00000048
.
5. Способ по любому из предшествующих пунктов, дополнительно содержащий этап, на котором:
промывают образец с помощью промывочного раствора перед измерением, при этом промывочный раствор является таким же, что и буровой раствор.
6. Способ по любому из предшествующих пунктов, при этом, по меньшей мере, один размер флюидонасыщенного образца равен приблизительно 0,5-3 мм.
7. Способ по любому из предшествующих пунктов, при этом промывочный раствор является буровым раствором, или флюидом с гравиметрическими свойствами, аналогичными буровому раствору.
8. Способ по любому из предшествующих пунктов, при этом взвешивающий флюид является дизельным топливом.
9. Способ по любому из предшествующих пунктов, при этом флюидонасыщенный образец не требует физического устранения окружающего флюида.
10. Энергонезависимый компьютерно-читаемый носитель, имеющий исполняемые компьютером инструкции, чтобы инструктировать компьютеру выполнять операции:
приема массы в воздухе для флюидонасыщенного образца подповерхностной формации, при этом масса в воздухе содержит массу материнской породы или зерен образца, массу флюида, окружающего образец, и массу флюида внутри образца, масса в воздухе для флюидонасыщенного образца, m s , задана формулой:
Figure 00000049
,
где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца, и V sur - это объем флюида, окружающего образец;
определения объема флюида внутри образца, V ɸ , и объема флюида, окружающего образец, V sur , с помощью ядерного магнитного резонанса (NMR);
получения массы флюидонасыщенного образца во взвешивающем флюиде, масса образца во взвешивающем флюиде, m f , задана формулой:
Figure 00000050
,
где ρ f - это плотность взвешивающего флюида; и
определения объема флюидонасыщенного образца без окружающего флюида, V c , с помощью формулы:
Figure 00000051
.
11. Энергонезависимый компьютерно-читаемый носитель по п. 10, при этом компьютерно-читаемые инструкции дополнительно инструктируют компьютеру выполнять операцию:
определения объемной плотности флюидонасыщенного образца без окружающего флюида, ρ b , с помощью формулы:
Figure 00000052
.
12. Энергонезависимый компьютерно-читаемый носитель по п. 11, при этом компьютерно-читаемые инструкции дополнительно инструктируют компьютеру выполнять операцию:
определения объема материнской породы, V m , с помощью формулы:
Figure 00000053
.
13. Энергонезависимый компьютерно-читаемый носитель по п. 12, при этом компьютерно-читаемые инструкции дополнительно инструктируют компьютеру выполнять операцию определения плотности материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы:
Figure 00000054
.
14. Система для характеризования подповерхностной формации, система содержит:
флюидонасыщенный образец подповерхностной формации;
весы, сконфигурированные, чтобы принимать флюидонасыщенный образец и выводить массу в воздухе для флюидонасыщенного образца;
компьютер, содержащий один или более процессоров и энергонезависимый компьютерно-читаемый носитель, содержащий исполняемые компьютером инструкции, которые, когда исполняются посредством одного или более процессоров, инструктируют компьютеру:
получать массу в воздухе для флюидонасыщенного образца подповерхностной формации, при этом масса в воздухе содержит массу образца, массу флюида, окружающего образец, и массу флюида внутри образца, масса в воздухе для флюидонасыщенного образца, m s , задана формулой:
Figure 00000055
,
где ρ m - это плотность материнской породы подповерхностной формации, ρ l - плотность флюида внутри и вокруг образца, V m - это объем материнской породы, V ɸ - это объем флюида внутри образца, и V sur - это объем флюида, окружающего образец;
определять объем флюида внутри образца, V ɸ , и объем флюида, окружающего образец, V sur , с помощью ядерного магнитного резонанса (NMR);
получать массу флюидонасыщенного образца во взвешивающем флюиде,
определять массу флюидонасыщенного образца без окружающего флюида во взвешивающем флюиде, m f , задана формулой:
Figure 00000056
где ρ f - это плотность взвешивающего флюида; и
определять объем флюидонасыщенного образца без окружающего флюида, V c , с помощью формулы
Figure 00000057
.
15. Система по п. 14, при этом исполняемые компьютером инструкции дополнительно инструктируют компьютеру:
определять объемную плотность флюидонасыщенного образца без окружающего флюида, ρ b , с помощью формулы
Figure 00000058
.
16. Система по п. 15, при этом исполняемые компьютером инструкции дополнительно инструктируют компьютеру:
определять объем материнской породы, V m , с помощью формулы
Figure 00000059
.
17. Система по п. 16, при этом исполняемые компьютером инструкции дополнительно инструктируют компьютеру:
определять плотность материнской породы или зерен породы подповерхностной формации, ρ m , с помощью формулы:
Figure 00000060
.
RU2020109667A 2017-08-10 2018-08-09 Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации RU2731842C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/673,996 2017-08-10
US15/673,996 US10422916B2 (en) 2017-08-10 2017-08-10 Methods and systems for determining bulk density, porosity, and pore size distribution of subsurface formations
PCT/US2018/045931 WO2019032783A1 (en) 2017-08-10 2018-08-09 METHODS AND SYSTEMS FOR DETERMINING THE APPARENT DENSITY, POROSITY AND DISTRIBUTION OF POROUS RAYS OF UNDERGROUND FORMATIONS

Related Child Applications (2)

Application Number Title Priority Date Filing Date
RU2020128589A Division RU2020128589A (ru) 2017-08-10 2018-08-09 Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации
RU2020128590A Division RU2020128590A (ru) 2017-08-10 2018-08-09 Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации

Publications (1)

Publication Number Publication Date
RU2731842C1 true RU2731842C1 (ru) 2020-09-08

Family

ID=63371801

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2020109667A RU2731842C1 (ru) 2017-08-10 2018-08-09 Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации
RU2020128589A RU2020128589A (ru) 2017-08-10 2018-08-09 Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации
RU2020128590A RU2020128590A (ru) 2017-08-10 2018-08-09 Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации

Family Applications After (2)

Application Number Title Priority Date Filing Date
RU2020128589A RU2020128589A (ru) 2017-08-10 2018-08-09 Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации
RU2020128590A RU2020128590A (ru) 2017-08-10 2018-08-09 Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации

Country Status (8)

Country Link
US (3) US10422916B2 (ru)
EP (1) EP3665471B1 (ru)
JP (1) JP6739684B1 (ru)
CN (1) CN111051864B (ru)
CA (1) CA3071415A1 (ru)
RU (3) RU2731842C1 (ru)
SA (1) SA520411058B1 (ru)
WO (1) WO2019032783A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784104C1 (ru) * 2022-03-23 2022-11-23 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Способ отбора и реконструкции структуры шлама для определения коллекторских свойств и моделирования фильтрационных и петрофизических характеристик пород - технология "Псевдокерн"

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487835B (zh) * 2019-09-18 2022-04-05 西南石油大学 一种计算致密油气藏储层饱和度指数的新方法
CN111044430A (zh) * 2019-12-26 2020-04-21 中国科学院广州能源研究所 一种计算海洋沉积层孔隙分布的方法
CN111157424A (zh) * 2020-01-07 2020-05-15 中南大学 一种岩石材料孔径分布测定方法
CN112432889B (zh) * 2020-12-03 2022-02-22 中国科学院力学研究所 一种液体饱和法测岩石孔隙度的方法及校正方法
EP4024041A1 (en) 2020-12-30 2022-07-06 Armines Method for porosity estimation of a geological formation from a nmr relaxation spectrum, associated device
CN112505085B (zh) * 2021-02-05 2021-04-09 西南石油大学 基于核磁共振的孔隙度有效应力系数测定方法
US11598736B2 (en) 2021-04-01 2023-03-07 Saudi Arabian Oil Company Systems and methods for determining grain density of an untreated rock sample using a gas porosimeter and nuclear magnetic resonance
CN114216828B (zh) * 2021-11-23 2024-04-05 北京科技大学 一种测量溜井贮矿段物料空隙率的实验室装置及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291271A (en) * 1979-11-01 1981-09-22 Phillips Petroleum Company Method for determining pore size distribution and fluid distribution in porous media
US5289124A (en) * 1991-09-20 1994-02-22 Exxon Research And Engineering Company Permeability determination from NMR relaxation measurements for fluids in porous media
RU2134894C1 (ru) * 1994-10-20 1999-08-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ определения характеристики пористой подземной формации
RU2239180C1 (ru) * 2003-11-05 2004-10-27 Марийский государственный технический университет Способ определения объема микропор микропористых активных углей
WO2006034072A1 (en) * 2004-09-17 2006-03-30 Bp Oil International Limited Method of assaying a hydrocarbon-containing feedstock
RU2411508C1 (ru) * 2009-10-19 2011-02-10 Государственное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (КГЭУ) Способ оперативного контроля компонентов и отдельных органических соединений в их смесях
JP2011095170A (ja) * 2009-10-30 2011-05-12 Jx Nippon Oil & Energy Corp 燃料油の分析方法
RU2513630C1 (ru) * 2012-12-24 2014-04-20 Сергей Борисович Зверев Способ геохимической разведки для геоэкологического мониторинга морских нефтегазоносных акваторий
RU2535527C1 (ru) * 2013-08-23 2014-12-10 Шлюмберже Текнолоджи Б.В. Способ определения количественного состава многокомпонентной среды (варианты)
US20160230482A1 (en) * 2013-06-20 2016-08-11 Aspect International (2015) Private Limited An NMR/MRI-Based Integrated System for Analyzing and Treating of a Drilling Mud for Drilling Mud Recycling Process and Methods Thereof

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3494188A (en) 1967-01-10 1970-02-10 Schlumberger Technology Corp Well logging during drilling
US3409092A (en) 1967-01-17 1968-11-05 Gulf Oil Corp Method for determining mud weight requirements from bulk density measurements of shale cuttings
FR2781053B1 (fr) * 1998-07-10 2000-08-11 Commissariat Energie Atomique Caracterisation d'un milieu permeable poreux par rmn de gaz polarise
FR2810736B1 (fr) 2000-06-23 2002-09-20 Inst Francais Du Petrole Methode pour evaluer des parametres physiques d'un gisement souterrain a partir de debris de roche qui y sont preleves
WO2003025625A1 (en) 2001-09-19 2003-03-27 Halliburton Energy Services, Inc. Method and system for using conventional core data to calibrate bound water volumes derived from nmr logs
FR2836228B1 (fr) 2002-02-21 2005-08-19 Inst Francais Du Petrole Methode et dispositif pour evaluer des parametres physiques d'un gisement souterrain a partir de debris de roche qui y sont preleves
US6765380B2 (en) 2002-05-23 2004-07-20 Schlumberger Technology Corporation Determining wettability of an oil reservoir using borehole NMR measurements
FR2853071B1 (fr) 2003-03-26 2005-05-06 Inst Francais Du Petrole Methode et dispositif pour evaluer des parametres physiques d'un gisement souterrain a partir de debris de roche qui y sont preleves
US6958604B2 (en) 2003-06-23 2005-10-25 Schlumberger Technology Corporation Apparatus and methods for J-edit nuclear magnetic resonance measurement
FR2864238B1 (fr) 2003-12-17 2006-06-02 Inst Francais Du Petrole Methode pour determiner la permeabilite d'un milieu souterrain a partir de mesures par rmn de la permeabilite de fragments de roche issus du milieu
US20060272812A1 (en) 2005-06-04 2006-12-07 Gang Yu Method for analyzing drill cuttings using nuclear magnetic resonance techniques
DE102006015307A1 (de) 2005-11-17 2007-05-24 Terex-Demag Gmbh & Co. Kg Mobiler Großkran
US7924001B2 (en) 2008-05-23 2011-04-12 Schlumberger Technology Corp. Determination of oil viscosity and continuous gas oil ratio from nuclear magnetic resonance logs
US8120357B2 (en) 2008-05-30 2012-02-21 Schlumberger Technology Corporation Method and system for fluid characterization of a reservoir
US8427145B2 (en) 2010-03-24 2013-04-23 Schlumberger Technology Corporation System and method for emulating nuclear magnetic resonance well logging tool diffusion editing measurements on a bench-top nuclear magnetic resonance spectrometer for laboratory-scale rock core analysis
WO2011133859A1 (en) 2010-04-23 2011-10-27 The Boards of Regents of the University of Oklahoma Nmr quantification of the gas resource in shale gas reservoirs
US8332155B2 (en) 2010-09-13 2012-12-11 Chevron U.S.A. Inc. System and method for hydrocarbon gas pay zone characterization in a subterranean reservoir
WO2013023011A2 (en) 2011-08-10 2013-02-14 Schlumberger Canada Limited Logging in gas shale and other unconventional reservoirs
WO2013066549A1 (en) 2011-10-31 2013-05-10 Baker Hughes Incorporated Hydrocarbon determination in unconventional shale
US9405036B2 (en) 2011-11-04 2016-08-02 Schlumberger Technology Corporation Multiphysics NMR logging techniques for the determination of in situ total gas in gas reservoirs
WO2013148632A1 (en) * 2012-03-29 2013-10-03 Ingrain, Inc. A method and system for estimating properties of porous media such as fine pore or tight rocks
US8857243B2 (en) 2012-04-13 2014-10-14 Schlumberger Technology Corporation Methods of measuring porosity on unconventional rock samples
US8967249B2 (en) 2012-04-13 2015-03-03 Schlumberger Technology Corporation Reservoir and completion quality assessment in unconventional (shale gas) wells without logs or core
WO2013158382A1 (en) 2012-04-20 2013-10-24 Baker Hughes Incorporated System and method to determine volumetric fraction of unconventional reservoir liquid
US20140107928A1 (en) 2012-06-26 2014-04-17 Schlumberger Technology Corporation Evaluation of Low Resistivity Low Contrast Productive Formations
US9176251B2 (en) 2012-11-09 2015-11-03 Schlumberger Technology Corporation Asphaltene evaluation based on NMR measurements and temperature / pressure cycling
CN103018153B (zh) * 2012-12-25 2015-05-27 上海大学 一种渗流流场端部效应的评价方法
WO2014172002A1 (en) 2013-04-19 2014-10-23 Schlumberger Canada Limited Total gas in place estimate
CN103267708A (zh) * 2013-05-29 2013-08-28 重庆市计量质量检测研究院 一种贵金属快速检测方法
GB2542406B (en) 2015-09-18 2018-04-11 Schlumberger Holdings Determining properties of porous material by NMR
CN106093299B (zh) * 2016-06-02 2019-06-11 西南石油大学 一种致密气储层钻井液伤害评价实验方法
RU2654315C1 (ru) * 2017-05-10 2018-05-17 Владислав Игнатьевич Галкин Способ определения коэффициента вытеснения нефти башкирских карбонатных отложений Соликамской депрессии
CN106990019A (zh) * 2017-06-01 2017-07-28 成都理工大学 一种测量矿石体重的方法
CN107677587A (zh) * 2017-11-21 2018-02-09 北京清控人居环境研究院有限公司 一种透水混凝土孔隙率的测试方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4291271A (en) * 1979-11-01 1981-09-22 Phillips Petroleum Company Method for determining pore size distribution and fluid distribution in porous media
US5289124A (en) * 1991-09-20 1994-02-22 Exxon Research And Engineering Company Permeability determination from NMR relaxation measurements for fluids in porous media
RU2134894C1 (ru) * 1994-10-20 1999-08-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ определения характеристики пористой подземной формации
RU2239180C1 (ru) * 2003-11-05 2004-10-27 Марийский государственный технический университет Способ определения объема микропор микропористых активных углей
WO2006034072A1 (en) * 2004-09-17 2006-03-30 Bp Oil International Limited Method of assaying a hydrocarbon-containing feedstock
RU2411508C1 (ru) * 2009-10-19 2011-02-10 Государственное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (КГЭУ) Способ оперативного контроля компонентов и отдельных органических соединений в их смесях
JP2011095170A (ja) * 2009-10-30 2011-05-12 Jx Nippon Oil & Energy Corp 燃料油の分析方法
RU2513630C1 (ru) * 2012-12-24 2014-04-20 Сергей Борисович Зверев Способ геохимической разведки для геоэкологического мониторинга морских нефтегазоносных акваторий
US20160230482A1 (en) * 2013-06-20 2016-08-11 Aspect International (2015) Private Limited An NMR/MRI-Based Integrated System for Analyzing and Treating of a Drilling Mud for Drilling Mud Recycling Process and Methods Thereof
RU2535527C1 (ru) * 2013-08-23 2014-12-10 Шлюмберже Текнолоджи Б.В. Способ определения количественного состава многокомпонентной среды (варианты)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784104C1 (ru) * 2022-03-23 2022-11-23 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Способ отбора и реконструкции структуры шлама для определения коллекторских свойств и моделирования фильтрационных и петрофизических характеристик пород - технология "Псевдокерн"

Also Published As

Publication number Publication date
US20190331825A1 (en) 2019-10-31
CA3071415A1 (en) 2019-02-14
RU2020128590A (ru) 2020-09-10
JP2020527725A (ja) 2020-09-10
EP3665471A1 (en) 2020-06-17
RU2020128589A (ru) 2020-10-08
US11022715B2 (en) 2021-06-01
US11022716B2 (en) 2021-06-01
CN111051864A (zh) 2020-04-21
WO2019032783A1 (en) 2019-02-14
JP6739684B1 (ja) 2020-08-12
CN111051864B (zh) 2021-07-16
US20190331826A1 (en) 2019-10-31
US10422916B2 (en) 2019-09-24
SA520411058B1 (ar) 2021-07-17
EP3665471B1 (en) 2021-03-17
US20190049616A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
RU2731842C1 (ru) Способы и системы для определения объемной плотности, пористости и распределения размера пор подповерхностной формации
US11112525B2 (en) Data processing system for measurement of hydrocarbon content of tight gas reservoirs
CA2903451C (en) Determining continuous capillary pressure curves for subsurface earth formations using saturation and nmr log data
RU2146380C1 (ru) Определение ядерным магнитным резонансом петрофизических свойств геологических структур
US6748328B2 (en) Determining fluid composition from fluid properties
US10190999B2 (en) Nuclear magnetic resonance and saturation well logs for determining free water level and reservoir type
MXPA01007823A (es) Metodo de estimacion de parametros petrofisicos utilizando datos nmr modificados por temperatura.
EA012156B1 (ru) Определение насыщенности углеводородами с использованием скоростей распространения акустических волн, измеряемых через обсадную колонну
US10436727B2 (en) Prediction of gas production rates from time-dependent NMR measurements
US20170138871A1 (en) Estimating Subterranean Fluid Viscosity Based on Nuclear Magnetic Resonance (NMR) Data
US11754518B2 (en) Methods and systems to determine tortuosity of rock and fluids in porous media
US11460602B2 (en) Systems and methods for saturation logging of hydrocarbon wells
CN114428049B (zh) 一种计算古老碳酸盐岩储层沥青含量的方法
RU2771802C1 (ru) Способ дифференциации пустотности неоднородных карбонатных пластов
Dodge Sr et al. Capillary pressure: the key to producible porosity
Fattakhov et al. Comparison of the Porosity Determination on the Whole Core and Petrophysical Samples
Hawke et al. Determination of formation specific NMR calibrations for water well evaluation in a semi-consolidated aquifer
Filiptsova et al. Determining petrophysical and hydrogeological parameters from historical bore logs for the Leederville-Parmelia aquifer, northern Perth Basin, using regression methods
NO20191505A1 (en) Method for estimating rock brittleness from well-log data