RU2730988C1 - Способ измерения частоты сердечных сокращений и частоты дыхательных движений и радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений - Google Patents

Способ измерения частоты сердечных сокращений и частоты дыхательных движений и радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений Download PDF

Info

Publication number
RU2730988C1
RU2730988C1 RU2019128389A RU2019128389A RU2730988C1 RU 2730988 C1 RU2730988 C1 RU 2730988C1 RU 2019128389 A RU2019128389 A RU 2019128389A RU 2019128389 A RU2019128389 A RU 2019128389A RU 2730988 C1 RU2730988 C1 RU 2730988C1
Authority
RU
Russia
Prior art keywords
heart rate
rate
distance
respiratory rate
respiratory
Prior art date
Application number
RU2019128389A
Other languages
English (en)
Inventor
Саркис Манукович Казарян
Владимир Евгеньевич Евсигнеев
Андрей Вячеславович Бычков
Валерий Владимирович Чудников
Григорий Львович Павлов
Original Assignee
Саркис Манукович Казарян
Владимир Евгеньевич Евсигнеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Саркис Манукович Казарян, Владимир Евгеньевич Евсигнеев filed Critical Саркис Манукович Казарян
Priority to RU2019128389A priority Critical patent/RU2730988C1/ru
Application granted granted Critical
Publication of RU2730988C1 publication Critical patent/RU2730988C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Группа изобретений относится к медицинской технике, а именно к диагностике частоты сердечных сокращений (ЧСС) и частоты дыхательных движений (ЧДД). Способ измерения ЧСС и ЧДД заключается в следующем: зондирующим радиолокационным сигналом облучается человек, находящийся в контролируемой зоне. Затем по отраженному сигналу от человека определяется расстояние R между человеком и приемной антенной. Из-за дыхания и сокращения сердца происходит изменение дистанции R. Предложен также радиолокационный измеритель ЧСС и ЧДД, содержащий передающий тракт, включающий облучатель в виде генератора управляемого напряжения, усилителя мощности, передающей антенны, соединенных последовательно, и приемного тракта, состоящего из последовательно соединенных приемной антенны, малошумящего усилителя, смесителя, усилителя промежуточной частоты, выход которого подключен блоку цифровой обработки информации, при этом второй вход смесителя подключен к второму выходу генератора управляемого напряжения передающего тракта. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к медицине, а именно к диагностике частоты сердечных сокращений (ЧСС) и частоты дыхательных движений (ЧДД).
Известны способ и устройство кардиографического исследования сердца путем измерения ЧСС и частоты дыхательных движений (ЧДД), позволяющие создание надежного метода для комплексного физиологического обследования людей, работающих в стрессорных условиях, с целью оперативной оценки их функционального состояния, (см. патент РФ №№73772, от 16.08.2007, МПК А61В 5/02)). Путем измерения и анализа указанных параметров создают единый комплекс с взаимно согласованными критериями оценки, которые совместно дают возможность определить адаптационные возможности организма и степень напряжения и функциональные резервы регуляторных систем.
Известно также устройство для диагностики дыхательной и сердечнососудистой деятельности человека, и дистанционной передачи частоты сердечных сокращений, путем зондирования электромагнитным излучением, направленного в область расположения сердца (см патент РФ №128091, от 08.08.2012 МПК А61В 5/0402, А61В 5/08), включающее блок съема и передачи сигнала, представляющее собой регистратор с пятью пьезодатчиками для регистрации ЭКГ и тензодатчиком для регистрации дыхания, усилитель биопотенциалов, аналого-цифровой преобразователь, интерфейс и плату для кодирования и передачи цифрового сигнала в виде радиосигнала для передачи через блок приема и преобразования радиосигнала в ЭКГ и респираторный потенциал, включающий Bluetooth адаптер и Router, блок обработки и хранения параметров дыхания и ЭКГ, расположенный на расстоянии 1000 м от блока съема и передачи сигнала, включающего ноутбук, для отображенияя результатов анализа записи ЭКГ и дыхания, графики с результатами ЭКГ и дыхания.
Недостатком данных способов является отсутствие возможности работы дистанционно, необходим непосредственный контакт с человеком.
Задачей предложенного решения является дистанционный бесконтактный метод диагностики параметров ЧСС и ЧДД, характеризующих жизненно важные показатели работы сердца, и расширение возможностей за счет использования определения параметров в реальном времени, увеличение дальности измерений и увеличение точности измерений.
Для реализации поставленной задачи в способе измерения ЧСС и ЧДД человек облучается дистанционно радиочастотным излучением, находящимся на любом расстоянии от него, не используя датчики (электроды), установленные непосредственно на пациенте или в его окружении. Способ измерения ЧСС и ЧДД заключается в следующем: зондирующим радиолокационным сигналом облучается человек, находящийся в контролируемой зоне. Затем по отраженному сигналу от человека определяется расстояние R между человеком и приемной антенной. Из-за дыхания и сокращения сердца происходит изменение дистанции R. Типичные параметры амплитуды смещения поверхности тела из-за дыхания составляет от 1 мм до 12 мм, из-за сердцебиения, что определят параметр ЧДД, который лежит в пределах от 0.1 мм до 0.5 мм. Для измерения этих мелкомасштабных изменений R, используется изменение фазы радиолокационного сигнала во времени. Как известно, изменение расстояния связанно с изменением фазы сигнала (Ширман Я.Д. (ред.). Теоретические основы радиолокации. - М.: Советское радио, 1970) по формуле Δϕ=4πλ*ΔR (1), где λ - длина волны радиолокационного сигнала, ΔR - изменение расстояния.
Измеряя изменения фазы Δϕ во времени, согласно формуле (1), определяются изменения расстояния. Как видно из формулы (1), чем меньше длина волны радиолокационного сигнала, тем выше чувствительность к изменению смещения до поверхности тела человека, соответственно, и чувствительность к смещению до поверхности тела человека, соответственно, и чувствительность к смещению дистанции связанной с ЧСС и ЧДД. Измеряя изменения Δϕ во времени формируется полоса частот, в которой располагается информация о ЧСС и ЧДД. Затем с помощью полосовой фильтрации, выделяется полоса частот соответствующая ЧСС, а затем выделяется полоса частота соответствующая ЧДД. Экспериментально обнаружено, что большая полоса частот соответствует ЧСС (полоса частот сердечных сокращений лежит в диапазоне от 0.8 Гц до 2 Гц), а меньшая - соответствует ЧДД (полоса частот дыхательных движений лежит в диапазоне от 0.1 Гц до 0.5 Гц).
Для реализации указанного способа предложен радиолокационный измеритель ЧСС и ЧДД, содержащий передающий тракт, включающий облучатель в виде генератора управляемого напряжения, усилителя мощности, передающей антенны, соединенных последовательно, и приемного тракта, состоящего из последовательно соединенных, приемной антенны, малошумящего усилителя, смесителя, усилителя промежуточной частоты, выход которого подключен блоку цифровой обработки информации, при этом второй вход смесителя подключен к второму выходу генератора управляемого напряжения передающего тракта. Далее блок цифровой обработки информации выведен к потребителю.
Изобретение поясняется чертежом, где показан радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений. Радиолокационный измеритель содержит передающий тракт 1, включающий облучатель в виде генератора 2 управляемого напряжением, усилитель 3 мощности, передающую антенну 4, соединенных последовательно. Прием радиочастотного излучения осуществляется приемной антенной 5, соединенной через малошумящий усилитель 6 с первым входом смесителя 7, выход которого подключен к усилителю 8 промежуточной частоты (ПЧ), выход усилителя 8 ПЧ подключен к блоку 9 цифровой обработки информации, при этом второй выход генератора 2 управляемого напряжения передающего тракта подключен к второму входу смесителя 7.
Далее блок 9 цифровой обработки информации выведен к потребителю.
Передающая и приемная антенны могут быть выполнены в виде микрополосковой или линзовой антенны.
Функционирование радиолокационного измерителя ЧСС и ЧДД заключается в следующем: В передающем тракте 1 формируется зондирующий радиочастотный сигнал, посредством антенны 4 облучается человек, находящийся в контролируемой зоне.
Принятый антенной 5 сигнал усиливается в малошумящем усилителе 6, на смеситель подается высокочастотный полезный сигнал, который понижается путем вычитания сигнала частоты гетеродина от генератора 2. В результате чего сигнал преобразуется на промежуточную частоту на выходе смесителя 7. Сигнал на промежуточной частоте с выхода смесителя 7 поступает в усилитель промежуточной частоты 8, где усиливается. Усиленный сигнал промежуточной частоты поступает в блок цифровой обработки сигналов 9. В блоке цифровой обработки сигналов 9 сигнал оцифровывается и подвергается цифровой обработке на основе математических преобразований, которые позволяют вычислить ЧСС и ЧДД.
Возможно одновременное круглосуточное исследование ЧСС и ЧДД бесконтактным способом и на расстоянии.
На выходе устройства выдается значения ЧСС и ЧДД.
Метод является безопасным для здоровья пациентов, т.к. выходная мощность передатчика соответствует требованиям СанПиН 2.2.4/2.1.8.055-96. Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ).
Таким образом, используя радиолокационный метод дистанционно, не внося контактные датчики на тело человека, так и вокруг него, возможно получить данные, свидетельствующие об измеряемых ЧСС и ЧДД.
Кроме того увеличивается чувствительность и точность измерений, т.к. измерение расстояний перенакладываются на измерение фазы радиолокационного сигнала (чем меньше длина волны радиочастотного сигнала, тем выше чувствительность к изменению смещения до поверхности тела человека), соответственно, и чувствительность к смещению до поверхности тела человека, соответственно, и чувствительность к смещению дистанции связанной с ЧСС и ЧДД.

Claims (2)

1. Способ бесконтактного измерения частоты сердечных сокращений и частоты дыхательных движений путем облучения пациента зондирующим электромагнитным излучением, регистрации отраженного сигнала, по величине которого судят об измеряемых величинах, отличающийся тем, что пациента облучают дистанционно радиочастотным излучением, по отраженному сигналу от человека определяют расстояние R между человеком и приемной антенной, фиксируют фазу ϕ, соответствующую расстоянию R, при смещении поверхности тела из-за дыхания измеряют изменение фазы Δϕ во времени, и изменения расстояния ΔR по формуле Δϕ=4πλ*ΔR, формируют полосу частот, соответствующую измеряемым параметрам, и выделяют полосы частот, соответствующие частоте сердечных сокращений и частоте дыхательных движений.
2. Радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений согласно способу по п. 1, содержащий передающий тракт, включающий облучатель электромагнитного излучения, цифровой блок обработки, отличающийся тем, что облучатель выполнен радиочастотным, в виде генератора управляемого напряжения, усилителя мощности, передающей антенны, соединенных последовательно, в радиолокационный измеритель введены также последовательно соединенные приемная антенна, малошумящий усилитель, соединенный с первым входом смесителя, усилитель промежуточной частоты, при этом второй вход смесителя подключен к второму выходу генератора управляемого напряжения передающего тракта, а выход усилителя промежуточной частоты подключен к блоку цифровой обработки информации.
RU2019128389A 2019-09-10 2019-09-10 Способ измерения частоты сердечных сокращений и частоты дыхательных движений и радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений RU2730988C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019128389A RU2730988C1 (ru) 2019-09-10 2019-09-10 Способ измерения частоты сердечных сокращений и частоты дыхательных движений и радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019128389A RU2730988C1 (ru) 2019-09-10 2019-09-10 Способ измерения частоты сердечных сокращений и частоты дыхательных движений и радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений

Publications (1)

Publication Number Publication Date
RU2730988C1 true RU2730988C1 (ru) 2020-08-26

Family

ID=72238040

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019128389A RU2730988C1 (ru) 2019-09-10 2019-09-10 Способ измерения частоты сердечных сокращений и частоты дыхательных движений и радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений

Country Status (1)

Country Link
RU (1) RU2730988C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361070A (en) * 1993-04-12 1994-11-01 Regents Of The University Of California Ultra-wideband radar motion sensor
RU128091U1 (ru) * 2012-08-08 2013-05-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт гигиены, профпатологии и экологии человека" Федерального медико-биологического агентства России Устройство для диагностики и дистанционной передачи дыхательной и сердечно-сосудистой деятельности человека
RU2559940C2 (ru) * 2013-06-06 2015-08-20 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" Способ дистанционного контроля параметров сердечной деятельности организма

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5361070A (en) * 1993-04-12 1994-11-01 Regents Of The University Of California Ultra-wideband radar motion sensor
US5361070B1 (en) * 1993-04-12 2000-05-16 Univ California Ultra-wideband radar motion sensor
RU128091U1 (ru) * 2012-08-08 2013-05-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт гигиены, профпатологии и экологии человека" Федерального медико-биологического агентства России Устройство для диагностики и дистанционной передачи дыхательной и сердечно-сосудистой деятельности человека
RU2559940C2 (ru) * 2013-06-06 2015-08-20 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" Способ дистанционного контроля параметров сердечной деятельности организма

Similar Documents

Publication Publication Date Title
US20240065569A1 (en) Individually wearable electromagnetic sensing systems and methods for non-invasive assessment of a biological tissue using blood flow information
US20210338086A1 (en) System and method for monitoring cardiorespiratory parameters
EP3181045B1 (en) Methods and systems for monitoring intrabody tissues
EP2506917B1 (en) Microwave monitoring of heart function
US20170296093A1 (en) Monitoring and diagnostics systems and methods
CA3044306A1 (en) Diagnostic system for detection of fluid changes
Singh et al. Pulse pressure monitoring through non-contact cardiac motion detection using 2.45 GHz microwave Doppler radar
Alizadeh et al. Remote heart rate sensing with mm-wave radar
JP2016005596A (ja) 脈波測定装置
KR100492862B1 (ko) 60GHz 마이크로웨이브를 이용한 비접촉식 심혈관-호흡신호분석 장치
Semernik et al. Automatic system for early diagnosis of pathological changes in the bronchopulmonary system based on radiofrequency scanning of the chest
RU2730988C1 (ru) Способ измерения частоты сердечных сокращений и частоты дыхательных движений и радиолокационный измеритель частоты сердечных сокращений и частоты дыхательных движений
CN210408412U (zh) 便携式动态心血管参数采集设备
Marty et al. Investigation of mmWave Radar Technology For Non-contact Vital Sign Monitoring
RU2559940C2 (ru) Способ дистанционного контроля параметров сердечной деятельности организма
CN110115585B (zh) 一种心动图的非接触测量方法
EP3437554A1 (en) Device and method for detecting atrial fibrillation of a subject
Petrini et al. Ambient assisted living electromagnetic sensor for continuous breathing monitoring applied to movement analysis: a preliminary study
Stergiopoulos et al. NonInvasive Monitoring of Vital Signs and Traumatic Brain Injuries
Krishnan A SURVEY OF CONTACTLESS
Přibil et al. PPG Signal Measurement in Weak Magnetic Field by a Wearable Sensor
Park et al. Cardiopulmonary signal sensing from subject wearing body armor
Ota et al. Model-Based Estimation of Heart Movements using Microwave Doppler Radar Sensor
Obeid et al. Microwave Doppler radar for heart beat detection versus electrocardiogram: a validation approach
CN115105035A (zh) 生理特征检测方法、装置、计算机设备和存储介质