RU2730841C2 - Модульная аналитическая система - Google Patents

Модульная аналитическая система Download PDF

Info

Publication number
RU2730841C2
RU2730841C2 RU2015134205A RU2015134205A RU2730841C2 RU 2730841 C2 RU2730841 C2 RU 2730841C2 RU 2015134205 A RU2015134205 A RU 2015134205A RU 2015134205 A RU2015134205 A RU 2015134205A RU 2730841 C2 RU2730841 C2 RU 2730841C2
Authority
RU
Russia
Prior art keywords
analytical
analysis
unit
units
installation according
Prior art date
Application number
RU2015134205A
Other languages
English (en)
Other versions
RU2015134205A (ru
Inventor
ВОН Др. Кен ЧЖИ
Дейвид Хью УИЛЛЬЯМС
Айан МАКЕЛАРНИ
Элизабет ДЖИЛЛИС
Original Assignee
Маст Груп Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Маст Груп Лимитед filed Critical Маст Груп Лимитед
Publication of RU2015134205A publication Critical patent/RU2015134205A/ru
Application granted granted Critical
Publication of RU2730841C2 publication Critical patent/RU2730841C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/54Labware with identification means
    • B01L3/545Labware with identification means for laboratory containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/605Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using visual determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00871Communications between instruments or with remote terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/02Identification, exchange or storage of information
    • B01L2300/021Identification, e.g. bar codes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J2003/466Coded colour; Recognition of predetermined colour; Determining proximity to predetermined colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00306Housings, cabinets, control panels (details)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00742Type of codes
    • G01N2035/00752Type of codes bar codes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00821Identification of carriers, materials or components in automatic analysers nature of coded information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00821Identification of carriers, materials or components in automatic analysers nature of coded information
    • G01N2035/00851Identification of carriers, materials or components in automatic analysers nature of coded information process control parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0441Rotary sample carriers, i.e. carousels for samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/024Modular construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/025Mechanical control of operations
    • G01N2201/0256Sensor for insertion of sample, cuvette, test strip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/04Batch operation; multisample devices
    • G01N2201/0407Batch operation; multisample devices with multiple optical units, e.g. one per sample

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Группа изобретений относится к области модульных аналитических систем. Установка для проведения множественных анализов содержит источник питания; несколько аналитических блоков, функционально соединенных друг с другом, причем каждый из нескольких аналитических блоков содержит ящик, который может выборочно открываться и закрываться; несколько аналитических устройств, каждое из которых выполнено с возможностью загрузки образцом, предназначенным для анализа, и размещения в соответствующем ящике соответствующего одного из нескольких аналитических блоков; и контрольный блок, содержащий контроллер для взаимодействия с каждым из аналитических блоков для выборочного открытия и закрытия соответствующего ящика и управления каждым анализом. Каждый аналитический блок содержит вилку и розетку, вилка одного аналитического блока выполнена с возможностью сопряжения с розеткой другого аналитического блока, когда один аналитический блок стыкуется с другим аналитическим блоком, и каждый аналитический блок функционально соединен посредством вилки и розетки с другим аналитическим блоком, так что они могут взаимодействовать друг с другом и передавать сигналы друг через друга, и вилка одного аналитического блока сопрягается с розеткой другого аналитического блока, так что взаимные соединения между аналитическими блоками устанавливаются автоматически, когда аналитические блоки стыкуются с другими аналитическими блоками. Также раскрывается аналитический блок, аналитическое устройство, способ проведения анализа образца. Группа изобретений обеспечивает создание и использование аналитического устройства, которое может быть выполнено более портативным и универсальным для проведения высококачественных биологических анализов. 4 н. и 10 з.п. ф-лы, 8 ил., 1 табл.

Description

Настоящее изобретение относится к модульной аналитической системе/установке.
На удаленных территориях или аналогичных местах наблюдения за пациентами анализы биологических образцов затруднены по нескольким причинам. Наиболее часто аналитические устройства, требуемые для проведения сложных анализов или обработки большого количества образцов, настолько габаритны, что не представляется возможным разместить такое устройство на месте получения образца от пациента и, следовательно, оперативно провести исследование. Образцы нужно посылать в лаборатории, имеющие площади и доступ к большим аналитическим устройствам.
Желательно иметь надежное аналитическое устройство, которое было бы портативным и обеспечивающим место наблюдения за пациентом анализом биологических образцов, и которое было бы достаточно универсальным для проведения высококачественных биологических анализов.
Согласно первой идее настоящего изобретения обеспечена система для выполнения анализа, содержащая источник питания, контроллер для управления анализом и группу аналитических блоков, оперативно соединенных друг с другом так, чтобы контроллер мог взаимодействовать с аналитическими блоками, и система была способна проводить анализ.
В одном из вариантов выполнения аналитический блок имеет средство для оперативного соединения с другим блоком.
В другом варианте выполнения средство для оперативного соединения с другим блоком содержит один элемент сопрягающейся пары. В другом варианте выполнения сопрягающаяся пара содержит вилку и розетку. Сопрягающаяся пара выполнена с возможностью соединения соседних блоков в вертикальном направлении.
В другом варианте выполнения группа аналитических блоков компонуется в сойку, в которой соседние блоки устанавливаются друг на друга.
Группа стоек может быть оперативно соединена друг с другом.
В другом варианте выполнения система может содержать контроллер в виде контрольного блока.
В другом варианте выполнения каждый аналитический блок содержит фиксирующее средство для установки данного блока в положение, состыкованное с другим аналитическим блоком. Фиксирующее средство может содержать первый элемент на первом блоке и второй элемент на втором блоке.
Как первый, так и второй элемент может содержать один из следующих компонентов: фиксирующий кронштейн и упорный выступ.
В другом варианте выполнения первый элемент содержит фиксирующий кронштейн, и второй элемент содержит упорный выступ. Каждый аналитический блок может содержать как фиксирующий кронштейн, так и упорный выступ, так чтобы он был выполнен с возможностью соединения с двумя другими отдельными блоками.
В другом варианте выполнения каждый блок содержит группу первых и вторых фиксирующих элементов.
В другом варианте выполнения система может содержать крепежное средство для скрепления блоков друг с другом. Крепежное средство может содержать первый элемент, расположенный на первом блоке, и второй элемент, расположенный на втором блоке. Первый элемент крепежного средства может содержать язычок, и второй элемент может содержать выемку сопряженной формы. Крепежное средство может дополнительно содержать резьбовой крепежный элемент, проходящий через отверстие в язычке и выемку сопряженной формы.
В другом варианте выполнения в каждом аналитическом блоке может содержаться нагревательное средство для воздействия на образец и (или) реагенты локальным нагревом. Локальный нагрев обеспечивается индукционным и (или) резистивным средством. Предпочтительно локальный нагрев осуществляется за счет возбуждения этого средства, установленного в аналитическом блоке.
Приложение тепла может проводиться с различных мест в аналитическом блоке. Оно может проводиться за счет управления поворотом аналитического устройства в каждом аналитическом блоке, так чтобы, при необходимости и по запросу, различные части аналитического устройства могли обращаться к нагревательному средству, подвергая нагреву конкретный образец.
Система может содержать несколько нагревательных средств.
Нагревательное средство может содержать беспроводную индукционную нагревательную систему или передавать тепло с использованием резистивной нагревательной фольги.
Аналитическое устройство может иметь один или несколько участков или элементов, содержащих металл. Метал может представлять собой один или несколько элементов из группы, включающей никель, железо или медь. Предпочтительно используемый металл это никель. Металл может включать индукционный нагревательный элемент.
Нагревательное средство может включать средство для приложения переменного магнитного поля с использованием электромагнита, через который пропускается высокочастотный переменный ток.
Каждый аналитический блок может содержать оптический детектор, используемый при проведении анализа. Оптический детектор может быть выполнен с возможностью распознавания цвета и направления соответствующих сигналов в контроллер.
Система может содержать средство для определения температуры. Предпочтительно, это средство выполнено с возможностью определения температуры в локальной области системы. Более предпочтительно, это средство выполнено с возможностью определения температуры в локальной области аналитического устройства.
Средство для определения температуры может содержать термохромное покрытие. Термохромное покрытие может быть нанесено на одну или несколько частей аналитического устройства. Покрытие может иметь вид метки на аналитическом устройстве.
Термохромное покрытие может определять, что температура в конкретной области достигла заданного значения (покрытие поменяет цвет в заданной температурной области). Это может быть зарегистрировано системой, и соответствующий сигнал направлен в контроллер. Затем контроллер может выключить нагревательный элемент. Центральным контрольным блоком нагревательный элемент может выборочно включаться/выключаться.
Термохромная метка может также использоваться для определения положения/установки аналитического устройства в правильной ориентации в системе.
Термохромное покрытие может включать один или несколько компонентов из группы, содержащей термохромную краску, цветную бумагу или жидкие кристаллы.
Для управления процессами, например анализом в диске, существует несколько известных возможностей остановки или подачи жидкостей в заданные точки и в регулируемое время. Один из примеров - это локальная гидрофобизация, как приведено в М. Madou et al., "Lab on a CD", Annual Review of Biomedical Engineering, Vol. 8, p. 601-628, 2006. C.T. Schembri et al., "Centrifugation and Capillarity Integrated Into A Multiple Analyte Whole-Blood Analyzer", Journal of Automatic Chemistry, Vol. 17, No. 3, p. 99-104, May 1995, где описано заполнение сифонной конструкции под воздействием дополнительного центробежного поля. При падении частоты вращения ниже определенного порога сифон заполняется капиллярно, и передний мениск может спадать радиально наружу от уровня жидкости в находящийся выше по потоку резервуар. Затем увеличенная скорость вращения переносит жидкость дальше.
Кроме упомянутых клапанов в основном многоразового использования существуют так называемые разрывные (мембранные) клапаны, которые не могут использоваться повторно после одноразового действия. Одним из примеров таких клапанов могут служить мембраны из воска или тонкие фольги, устанавливаемые в канале прохождения потока и расплавляемые лазерным лучом, обеспечивая прохождение потока (см. Y.K. Cho et al., "One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device", Lab on a Chip, Vol. 7, No. 5, p. 565-573, Feb. 2007).
Согласно другой идее настоящего изобретения обеспечено аналитическое устройство, содержащее в основном круглый кожух, имеющий группу камер, сообщающихся друг с другом таким образом, что текучая среда может проходить между этими камерами, а также центральную втулку, имеющую приемник образца, расположенный в ней и предназначенный для ввода образца.
В одном из вариантов выполнения аналитическое устройство имеет в основном плоский круглый кожух.
В другом варианте выполнения аналитическое устройство содержит уникальный серийный идентификатор.
Уникальный серийный идентификатор для каждого аналитического устройства может определять вид испытания или гарантировать, что устройство не используется после истечения срока годности. Что более важно, уникальный серийный идентификатор может быть выполнен так, чтобы каждый введенный в аналитическое устройство образец мог быть однозначно определен для предотвращения риска несоответствия результата и (или) данного образца.
Для обеспечения этого каждый уникальный идентификатор может быть закодирован и скреплен с аналитическим устройством.
В дополнительном варианте выполнения уникальный идентификатор содержит линейный цветной штрих-код, двухмерный штрих-код или радиочастотную метку.
Могут использоваться такие технологии, как двухмерный цветной код от компании Микрософт.
Физически уникальный серийный идентификатор может быть скреплен с аналитическим устройством или объединен с ним. Недостаток использования простого линейного штрих кода состоит в том, что длина знака становится неприемлемой. Могут быть использованы другие способы, такие как двухмерный штрих-код или радиочастотная метка. Знак двухмерного штрих-кода имеет преимущество благодаря большему количеству данных, которые могут быть занесены на квадратный участок размером 0,75ʺ×0,75ʺ. Двухмерный штрих-код может считываться двухмерным сканером, используемым в технологии обработки изображений. Существует минимальное расстояние, требуемое для считывания двухмерного штрих-кода, из-за оптического пути. Для уменьшения оптического пути требуются дополнительные зеркало и оптические компоненты.
Радиочастотная метка может быть альтернативой благодаря ее компактности и способности хранить достаточно большое количество информации. Основное преимущество над линейным и двухмерным штрих-кодами заключается в возможности изменения контента для хранения, при необходимости, дополнительной информации. Однако стоимость радиочастотных меток повышает потребительские дополнительные расходы на радиочастотные метки небольшого размера, не занимающие много пространства на диске.
Для преодоления ограничения, связанного с длиной линейного штрих-кода, экономически эффективный путь для получения системы кодирования того же уровня состоит в использовании одного и того же оптического детектора для регистрации флуоресцентного сигнала при считывании многоцветных меток, которые могут представлять собой точки или линии.
В основном цветные метки наносятся или печатаются по окружности аналитического устройства. При вращении диска каждая цветная метка сканируется последовательно оптическим датчиком, образуя линейную последовательность данных. При повороте аналитического устройства каждая цветная метка может быть просканирована оптическим датчиком, образуя линейный радиальный цветной штрих-код. При использовании группы цветных меток достигается более высокая плотность данных.
Ниже в Таблице 1 приведен перечень отдельных цветов, которые могут использоваться в качестве цветового кода с идеальными значениями RGB, измеренными оптическим датчиком.
Figure 00000001
В таблице 1 приведены идеальные величины RGB, необходимые для того, чтобы быть измеренными оптическим датчиком. В реальности цвета должны тщательно подбираться так, чтобы могло обеспечиваться минимальной цветовое разрешение, равное 128. Например, если согласно приведенной выше таблице используются цвета R, G и В, то минимальное цветовое разрешение для каждого цвета составляет 256.
Типичный сигнал считывания с оптического детектора.
Figure 00000002
Figure 00000003
В одном из вариантов выполнения код представляется следующим образом:
Figure 00000004
В таблице 2 приведены 94 читаемых символов, которые могут быть закодированы цифровыми кодами.
В одном из вариантов выполнения при использовании трех видов цветовых меток (R, G, В) требуется сочетание четырех меток для представления 94-х читаемых символов, причем для каждого читаемого символа требуется три метки.
Например, последовательность из 20 символов потребовала бы 4×20 (80) меток при использовании трехцветных меток при 3×20 (60) метках при использовании восьмицветных меток.
Для дальнейшего увеличения плотности данных каждый символ может быть преобразован в двоичную форму и затем закодирован с использованием приведенной ниже таблицы:
Figure 00000005
Например, последовательность символов "ABCD241212CODELOT###" будучи преобразованной в двоичную форму выглядит как
Figure 00000006
При кодировании с использованием трех двоичных разрядов закодированная последовательность приходит к виду:
Figure 00000007
что уменьшает число цветовых меток до 45.
Пример:
Figure 00000008
Рассматривается несколько способов размещения цветовых меток. Ниже описаны два способа такого размещения:
1. Непрерывный;
2. В чередовании с пустой меткой.
В непрерывном способе цветовые метки располагаются таким образом, чтобы разные цвета находились очень близко друг к другу, давая непрерывный оптический сигнал, измеряемый оптическим детектором. Преимущество такого формата заключается в том, что длина кодов существенно снижается. Однако длину метки необходимо выбирать таким образом, чтобы она соответствовала по меньшей мере двум минимальным углам поворота шагового двигателя. Это должно предотвращать пропуск некоторых меток при считывании. В этом режиме каждая из меток должна помещаться перед оптическим датчиком и выполнять последовательное пошаговое перемещение. В системе это может привести к потере точности считывания, если метка не совмещается с датчиком. В порядке усовершенствования вводится второй способ.
Во втором способе между двумя цветовыми метками вводится пустая метка. Пустая метка (черная) при считывании оптическим детектором вызывает низкий сигнал. Это действует как реперная отметка, обозначающая, что достоверные данные располагаются между двумя реперными отметками. Этот способ должен повысить точность считывания, так как мы знаем местоположение достоверных данных. Однако при этом длина кода удваивается.
Figure 00000009
В измерительном средстве может использоваться директивная система, применяемая для перепрограммирования устройства на выполнение различных задач. Директивы содержат информацию о совокупности параметров и условиях, которые должны быть использованы для настройки системы на выполнение конкретной задачи, а также об обстоятельствах, которые должны использоваться для конфигурации системы на выполнение конкретного испытания. Как правило, эта директивная информация может быть распечатана на бумажном носителе в виде штрих-кода, и затем просканирована и сохранена в устройстве в качестве новой директивы или замены существующей директивы. При установке параметров для нового диска такой способ снижает трудности для оператора, которому нужно только следовать основным правилам использования системы. Это устраняет ошибки при перезаписи данных, которые могут загубить результаты испытаний, если исходные данные введены неверно.
С другой стороны, если эта директивная информация может быть занесена на диск, устройство может автоматически загрузить с него директиву, и новый диск может быть незамедлительно использован, сокращая операцию, необходимую для настройки нового диска. При необходимости обновления директивы устройство может автоматически заменить старую директиву и не дать пользователю возможности случайно работать со старыми параметрами исследования.
В одном из вариантов выполнения само цветовое кодирование может иметь низкий уровень безопасности, если оно выполнено недостаточно корректно с точки зрения отклика оптического детектора, и картинка цветового кода фактически сложна для распознавания. Однако имеется возможность извлечь содержимое и без всякого кодирования. Директивная информация является ключом для работы установки (аппарата). Желательно, чтобы пользователь не имел проблем с установками, которые, возможно, сведут на нет результаты испытаний. В данной системе цветового кодирования шифрование может быть выполнено просто. Наиболее прямой способ заключается в том, чтобы зашифровать картинку цветового кода с помощью двоичных данных, используя некоторый ключ. Этот ключ будет использоваться в процессе расшифровки.
В одном из вариантов выполнения штрих-код печатается с применением чернил, чувствительных к ультрафиолету, так что этот штрих-код не виден человеческому глазу, но может быть считан соответствующими регистрирующими устройствами.
Каждый аналитический блок может содержать оптический детектор, используемый при проведении анализа. В одном из вариантов выполнения один и тот же оптический детектор может использоваться для считывания штрих-кода и, например, для последующей регистрации флуоресцентного выхода от анализа.
Нижеследующие примеры, приведенные исключительно в качестве иллюстрации, раскрывают частные варианты выполнения настоящего изобретения с использованием прилагаемых чертежей, на которых показано:
на фиг. 1а и б - система, выполненная согласно настоящему изобретению;
на фиг. 2 - стойка согласно настоящему изобретению;
на фиг. 3а и б - кожух и соединители аналитического блока согласно настоящему изобретению;
на фиг. 4а и б - аналитические блоки, соединенные друг с другом согласно настоящему изобретению;
на фиг. 5 - крышка, используемая в системе согласно настоящему изобретению; и
на фиг. 6 - батарейный блок согласно настоящему изобретению;
на фиг. 7 - система согласно настоящему изобретению; и
на фиг. 8 - центральная втулка аналитического устройства согласно настоящему изобретению.
На фиг. 1а представлена базовая система 10, включающая контрольный блок 13 и батарейный блок 16. На фиг. 1б представлена система 10, включающая стойку 12, состоящую из контрольного блока 13 и дискретного аналитического блока 14, установленного на блок 16 питания. В контрольном блоке 13 находится считыватель 15 штрих-кода и интерфейсный сенсорный экран 17, предназначенный для взаимодействия пользователя с контрольным блоком 13. Считыватель штрих-кода выполнен с возможностью распознавания находящегося на аналитическом устройстве штрих-кода для ввода его в систему.
На фиг. 2 показана стойка 21, включающая несколько отдельных аналитических блоков 14 и источник питания в виде батарейного блока 16, соединенных с аналитическим блоком.
В данном варианте выполнения контрольный блок включает сенсорный экран, установленный под углом относительно пользователя для облегчения рассмотрения и считывания с экрана в условиях высокой освещенности. В альтернативном варианте выполнения экран может быть установлен на контрольном блоке с возможностью поворота, так чтобы его можно было повернуть вокруг его оси для облегчения работы, например для устранения бликов при ярком солнечном освещении. В открытом выдвижном ящике 20 нижнего аналитического блока 14 находится аналитическое устройство 22, имеющее доскообразный кожух 24 и центральную втулку 200. Аналитическое устройство соединено с валом двигателя, выполненным с возможностью вращения аналитического устройства по сигналам, посылаемым контроллером контрольного блока.
Батарейный блок 16 содержит один коннектор 74 постоянного тока (12V DC штырек) и два "сигнальных" гнезда 70, 72, например D-типа под 9 штырьков. Может использоваться более высокое напряжение, как правило 12-15 В.
Каждый блок имеет вид в основном прямоугольника, и имеет переднюю 80 и заднюю 82 стенки и две боковые стенки 84, 86.
На каждой боковой стенке расположены пара фиксирующих кронштейнов 88, 90 и два упорных выступа 92, 94. Фиксирующие кронштейны 88, 90 находятся на верхнем краю каждой боковой стенки, и упорные выступы 92, 94 - на нижнем краю каждой боковой стенки, выдаваясь перпендикулярно относительно плоскости каждой боковой стенки, так чтобы упорные выступы не выходили за нижний край каждой боковой стенки. Напротив фиксирующие кронштейны продолжаются выше верхнего края каждой боковой стенки. Фиксирующие кронштейны имеют в основном L-образную форму, причем один край неразъемно соединен с боковой стенкой, в то время как свободный край ориентирован в направлении, параллельном верхнему краю боковой стенки.
На верхнем краю задней стенки каждого блока расположены два крепежных язычка 100, 102. На нижнем краю задней стенки 82 находятся две выемки 104, 106, имеющие форму, сопряженную с формой язычков 100, 102. При сборке крепежные язычки 100, 102 входят в выемки 104, 106 соседнего блока. Каждый язычок и выемка имеет отверстия 108, которые после совмещения образуют сквозной канал, в который может вводиться крепежный элемент, состыковывающий соседние блоки.
Для быстрого соединения соседних аналитических блоков предусмотрены стыкующиеся в горизонтальном направлении вилка 110 и розетка 112. Каждый блок имеет розетку для стыковки со вторым блоком и вилку для стыковки с третьим блоком. Как правило, вилка выполняется с возможностью взаимодействия и стыковки с блоком, расположенным под данным блоком, в то время как розетка выполняется с возможностью взаимодействия и стыковки с блоком, расположенным над рассматриваемым блоком.
Для сборки стойки один блок состыковывается с другим.
Второй блок состыковывается с первым блоком путем скользящего продвижения второго блока в положение поверх первого блока. При этом вилка 112 может прийти в сопряжение с розеткой 110. Фиксирующие кронштейны 88, 90 могут сцепиться с упорными выступами 92, 94, и крепежные язычки 100, 102 могут войти в выемки 104, 106. Для надежного закрепления блоков в состыкованном положении могут использоваться два крепежных элемента (винта), фиксирующих блоки.
Каждый блок оперативно соединяется через вилку 110 и розетку 112 с другим блоком, так что они могут взаимодействовать друг с другом и передавать сигналы.
Передняя стенка 80 каждого аналитического блока имеет проем 120, в который входит ящик 20, выполненный с возможностью размещения в нем аналитического устройства 24. Аналитическое устройство в общем по форме представляет собой плоский диск с центральной втулкой, вокруг которой располагаются аналитические камеры, соединенные друг с другом капиллярами и выполненные с возможностью введения в них реагентов.
При необходимости, каждый ящик может открываться и закрываться по-отдельности. Основной контрольный блок выполнен с возможностью посылки команд на один или несколько аналитических блоков системы, по которым открывается или закрывается данный ящик, или, при необходимости, индикации, какой из аналитических блоков или какие блоки используются. В процессе проведения анализа аналитическое устройство 24 загружается образцом и устанавливается в аналитический ящик при его открытом положении. Затем контрольный блок используется для запуска аналитической программы, и ящик перемещается в свое закрытое положение, перемещая тем самым диск внутрь аналитического блока для проведения анализа в соответствии с программным обеспечением, заложенным в контрольный блок.
Все внутренние соединения в стойке между блоками устанавливаются автоматически, когда новый блок задвигается на место. Сигналы между каждым отсеком дисковода и основным контрольным блоком, находящимся наверху первой стойки, могут сводиться в параллельную "шину", так чтобы, подключая две розетки в задней части батарейного блока, пользователь мог подсоединять одну или несколько дополнительных стоек (без контрольного блока) наиболее удобным образом. Например, две дополнительные стойки, помещенные по обе стороны от "контрольной" стойки, могут подсоединяться к ближайшей розетке на батарейном блоке. Не имеет значения, какая из розеток используется для дополнительных блоков. Если оба дополнительных блока помещены на одной стороне контрольного блока, один кабель может соединять розетку на батарейном блоке с розеткой на первом дополнительном блоке, и второй кабель может подключаться к его второй розетке и подводиться ко второму дополнительному блоку. Третья стойка может подсоединяться таким же образом, как вторая стойка.
Проводники от этой сигнальной шины и проводники подачи напряжения постоянного тока будут вводиться в аналитические блоки с использованием контактов гибкой печатной платы и соответствующих соединителей (не показаны).
На фиг. 5 показана крышка 130, используемая как верхняя часть стойки, не имеющей контрольного блока. Крышка отделяет находящийся под ней блок от окружающей среды. Каждая крышка имеет по два упорных выступа 132, 134 на каждой боковой стенке и две крепежные выемки 136, 138, которые взаимодействуют с фиксирующими кронштейнами и крепежными язычками, соответственно, находящегося ниже блока.
Контрольный блок сопрягается в верхним отсеком дисковода так же, как другие отсеки дисковода, но не требует крышки. В контрольном блоке для упрощения внутренней разводки монтируется несколько дополнительных портов, например USB или сетевых.
В альтернативном варианте выполнения контрольный блок имеет экран в фиксированном положении, эргономично расположенный относительно пользователя во время работы.
На фиг. 7 изображена группа стоек 21, соединенных с основной стойкой 12, имеющей контрольный блок. Каждая из стоек 21 соединена со стойкой с контрольным блоком или непосредственно или через стойки 21, последовательно соединенные кабелями 190.
На фиг. 8 показана центральная втулка 200 аналитического устройства согласно одному из вариантов выполнения настоящего изобретения. Втулка устанавливается по центру дискообразного аналитического устройства (не показано). Вблизи ее периферии располагается приемник 202 образца, и рядом с ним ниппель 204. Приемник 202 содержит сквозной канал 206 с боковой стенкой 208. В первой конфигурации приемник образца 202 совмещен с приемником образца (не показан), расположенным на дисковой части аналитического устройства, и сообщается с ним, так что текучая среда может поступать из приемника 202 в дисковую часть аналитического устройства. После введения образца центральная втулка 200 может поворачиваться относительно диска и своего входа. При этом ниппель или затворное средство поворачивается до совмещения со входом диска, изолируя тем самым образец в диске от окружающей среды и предотвращая загрязнение образца и аналитических реагентов.
Приемнику образца придана такая форма, чтобы относительно упрощать для пользователя загрузку образца в аналитическое устройство. Как правило, образец представляет собой жидкость, которую можно вводить в аналитическое устройство через приемник образца 202.

Claims (23)

1. Установка для проведения множественных анализов, содержащая:
источник питания;
несколько аналитических блоков, функционально соединенных друг с другом, причем каждый из нескольких аналитических блоков содержит ящик, который может выборочно открываться и закрываться;
несколько аналитических устройств, каждое из которых выполнено с возможностью загрузки образцом, предназначенным для анализа, и размещения в соответствующем ящике соответствующего одного из нескольких аналитических блоков; и
контрольный блок, содержащий контроллер для взаимодействия с каждым из аналитических блоков для выборочного открытия и закрытия соответствующего ящика и управления каждым анализом,
причем каждый аналитический блок содержит вилку и розетку, вилка одного аналитического блока выполнена с возможностью сопряжения с розеткой другого аналитического блока, когда один аналитический блок стыкуется с другим аналитическим блоком, и каждый аналитический блок функционально соединен посредством вилки и розетки с другим аналитическим блоком, так что они могут взаимодействовать друг с другом и передавать сигналы друг через друга, и
и вилка одного аналитического блока сопрягается с розеткой другого аналитического блока, так что взаимные соединения между аналитическими блоками устанавливаются автоматически, когда аналитические блоки стыкуются с другими аналитическими блоками.
2. Установка по п. 1, в которой каждое из нескольких аналитических устройств имеет уникальный серийный идентификатор и расположено в ящике соответствующего одного из нескольких аналитических блоков.
3. Установка по п. 1, в которой аналитическое устройство имеет вид аналитического диска, а аналитический блок обеспечивает вращательное движение аналитического диска для выполнения анализа.
4. Установка по п. 2, в которой уникальный серийный идентификатор физически прикреплен к аналитическому устройству или объединен с ним.
5. Установка по п. 2, в которой уникальный серийный идентификатор представляет собой штрих-код или радиочастотную метку.
6. Установка по п. 2, содержащая средство считывания уникального серийного идентификатора и передачи этой информации в контроллер.
7. Установка по п. 1, в которой каждый аналитический блок содержит оптический детектор, используемый при анализе, и, опционально, в которой оптический детектор выполнен с возможностью регистрации флуоресцентного выхода от анализа или с возможностью распознавания цвета, опционально, красного, зеленого и/или синего.
8. Установка по п. 1, содержащая группу аналитических блоков, скомпонованных в одну или несколько стоек, в которых соседние блоки установлены один поверх другого.
9. Установка по п. 1, в которой аналитические блоки выполнены с возможностью установки потребителем таким образом, чтобы при введении дополнительного аналитического блока автоматически обеспечивалось взаимное соединение между аналитическими блоками и функциональное соединение с контроллером.
10. Аналитический блок, приспособленный для использования в установке по п. 9.
11. Аналитическое устройство, приспособленное для использования в установке по любому из пп. 1-9.
12. Способ проведения анализа образца, при выполнении которого:
загружают образец в аналитическое устройство установки по любому из пп. 1-9, причем аналитическое устройство несет идентификатор для отображения одной или нескольких следующих составляющих информации: вид проводимого анализа или испытания; или директивную информацию или параметры, которых нужно придерживаться при проведении испытания; или идентификационную информацию о данном образце; или другие инструкции;
считывают идентификатор и передают указанную информацию в контроллер; и
помещают аналитическое устройство в аналитический блок и обеспечивают выполнение аналитическим блоком анализа в соответствии с информацией, обеспеченной идентификатором.
13. Способ по п. 12, в котором идентификатор представляет собой штрих-код или радиочастотную метку.
14. Способ по п. 12 или 13, включающий использование оптического детектора для интерпретации результатов анализа, опционально, в котором оптический детектор способен регистрировать флуоресцентный выход от анализа или распознавать цвета, опционально, красный, зеленый и/или синий.
RU2015134205A 2013-01-16 2014-01-16 Модульная аналитическая система RU2730841C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1300813.1A GB2512564B (en) 2013-01-16 2013-01-16 Modular assay system
GB1300813.1 2013-01-16
PCT/GB2014/050124 WO2014111719A1 (en) 2013-01-16 2014-01-16 Modular assay system

Publications (2)

Publication Number Publication Date
RU2015134205A RU2015134205A (ru) 2017-02-22
RU2730841C2 true RU2730841C2 (ru) 2020-08-26

Family

ID=47758085

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015134205A RU2730841C2 (ru) 2013-01-16 2014-01-16 Модульная аналитическая система

Country Status (11)

Country Link
US (1) US10908085B2 (ru)
EP (1) EP2946215B1 (ru)
AU (4) AU2014206681A1 (ru)
CA (1) CA2898136C (ru)
ES (1) ES2893398T3 (ru)
GB (1) GB2512564B (ru)
NZ (1) NZ710267A (ru)
RU (1) RU2730841C2 (ru)
SA (1) SA515360794B1 (ru)
WO (1) WO2014111719A1 (ru)
ZA (1) ZA201505256B (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3314224A4 (en) 2015-06-26 2019-05-15 Abbott Laboratories MOVABLE REACTION VESSEL FOR MOVING REACTION VESSES FROM A PROCESSING RAIL TO A ROTATING DEVICE IN A DIAGNOSTIC ANALYZER
USD822844S1 (en) * 2015-10-21 2018-07-10 Theranos Ip Company, Llc Sample processing device
USD822222S1 (en) * 2015-10-21 2018-07-03 Theranos Ip Company, Llc Sample processing device
CA3038063A1 (en) * 2016-09-23 2018-03-29 ArcherDX, Inc. System for nucleic acid preparation
USD931747S1 (en) * 2019-02-15 2021-09-28 Mettler-Toledo Gmbh Gas analyzer
USD978369S1 (en) * 2020-09-21 2023-02-14 Cepheid Diagnostic assay system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3555284A (en) * 1968-12-18 1971-01-12 Norman G Anderson Multistation, single channel analytical photometer and method of use
US6066243A (en) * 1997-07-22 2000-05-23 Diametrics Medical, Inc. Portable immediate response medical analyzer having multiple testing modules
WO2002020160A1 (en) * 2000-09-06 2002-03-14 Provalis Diagnostics Limited Description
EP2241893A2 (en) * 2008-02-14 2010-10-20 Samsung Electronics Co., Ltd. Bio-disc reading apparatus and assay method using same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756883A (en) * 1986-09-16 1988-07-12 E. I. Du Pont De Nemours And Company Analysis device
IT1272457B (it) * 1993-05-26 1997-06-23 Bticino Spa Dispositivo di accoppiamento di sicurezza tra due apparecchiature elettriche modulari
DE19546952C2 (de) * 1994-12-17 1999-06-17 Horiba Ltd Gasanalysator-Einschubanordnung
US5928952A (en) * 1997-11-05 1999-07-27 Zymark Corporation Scheduled system and method for processing chemical products
EP1410044A2 (en) * 2000-11-08 2004-04-21 Burstein Technologies, Inc. Interactive system for analyzing biological samples and processing related information and the use thereof
WO2005016527A2 (en) * 2003-08-04 2005-02-24 Irm, Llc Non-pressure based fluid transfer in assay detection systems and related methods
DE102005028897A1 (de) * 2005-06-17 2006-12-28 Eckert & Ziegler Eurotope Gmbh Anordnung und Verfahren zur Verarbeitung von chemischen Stoffen, Computerprogramm zur Steuerung einer solchen Anordnung sowie ein entsprechendes computerlesbares Speichermedium
WO2009026339A2 (en) * 2007-08-20 2009-02-26 Advanced Liquid Logic, Inc. Modular droplet actuator drive
US8168137B2 (en) * 2008-06-02 2012-05-01 Agilent Technologies, Inc. Nestable, stackable pipette rack for nestable pipette tips
JP5492207B2 (ja) * 2008-08-27 2014-05-14 ライフ テクノロジーズ コーポレーション 生物学的サンプルの処理装置および処理方法
EP2350673B1 (en) * 2008-10-24 2022-05-11 Leica Biosystems Richmond, Inc. Modular system for performing laboratory protocols and associated methods
EP2277624A3 (en) * 2009-07-20 2013-12-18 Samsung Electronics Co., Ltd. Disk type microfluidic device and blood testing apparatus using the same
JP5606875B2 (ja) * 2010-10-29 2014-10-15 シスメックス株式会社 検体処理装置及びコンピュータプログラム
EP2455762A1 (en) * 2010-11-17 2012-05-23 M-u-t AG Messgeräte für Medizin- und Umwelttechnik Laboratory automation system
US9632102B2 (en) * 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3555284A (en) * 1968-12-18 1971-01-12 Norman G Anderson Multistation, single channel analytical photometer and method of use
US6066243A (en) * 1997-07-22 2000-05-23 Diametrics Medical, Inc. Portable immediate response medical analyzer having multiple testing modules
WO2002020160A1 (en) * 2000-09-06 2002-03-14 Provalis Diagnostics Limited Description
EP2241893A2 (en) * 2008-02-14 2010-10-20 Samsung Electronics Co., Ltd. Bio-disc reading apparatus and assay method using same

Also Published As

Publication number Publication date
AU2018202142A1 (en) 2018-04-19
ES2893398T3 (es) 2022-02-09
ZA201505256B (en) 2017-11-29
GB2512564A (en) 2014-10-08
GB201300813D0 (en) 2013-02-27
AU2022201787B2 (en) 2023-12-14
AU2022201787A1 (en) 2022-05-12
RU2015134205A (ru) 2017-02-22
WO2014111719A1 (en) 2014-07-24
CA2898136C (en) 2023-05-23
AU2020200209A1 (en) 2020-02-06
CA2898136A1 (en) 2014-07-24
US10908085B2 (en) 2021-02-02
EP2946215A1 (en) 2015-11-25
EP2946215B1 (en) 2021-07-14
GB2512564B (en) 2020-01-22
US20150362431A1 (en) 2015-12-17
NZ710267A (en) 2019-01-25
SA515360794B1 (ar) 2021-03-11
AU2014206681A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
RU2730841C2 (ru) Модульная аналитическая система
EP0952890B1 (en) Analytical system and method
US20140098252A1 (en) Universal Docking Bay and Data Door in a Fluidic Analysis System
CN104914260A (zh) 便携式生化及特定蛋白分析仪
CN104865397A (zh) 便携式多通道生化及特定蛋白分析仪
CN102943032B (zh) 生物芯片阅读仪及分型方法
CN204649755U (zh) 便携式生化及特定蛋白分析仪
EP3535592B1 (en) System and method for operating a microplate reader
WO2009049675A1 (en) Measurement device with motion-triggered data exchange
JP2007322247A (ja) 分析装置、通信方法および通信プログラム
WO2024069149A1 (en) A health monitoring or diagnostic system comprising a reader unit
GB2624268A (en) System
EP4070116A1 (en) Device for handling samples and method of operating such device
CN115843276A (zh) 用于多个测试装置的并行处理的托盘
Goldberg et al. Bench-top self-contained laser-scanning cytometer with liquid handling capabilities for arbitrary fluid-based clinical diagnostic assays
Pascal et al. GPS and ship head recording system: technical reference for hardware interface and software
MXPA99001146A (en) Analytical system and method
CA2558669A1 (en) Analytical system and method