RU2728735C1 - Способ получения радиопоглощающего материала - Google Patents
Способ получения радиопоглощающего материала Download PDFInfo
- Publication number
- RU2728735C1 RU2728735C1 RU2019136660A RU2019136660A RU2728735C1 RU 2728735 C1 RU2728735 C1 RU 2728735C1 RU 2019136660 A RU2019136660 A RU 2019136660A RU 2019136660 A RU2019136660 A RU 2019136660A RU 2728735 C1 RU2728735 C1 RU 2728735C1
- Authority
- RU
- Russia
- Prior art keywords
- radio
- base
- application
- coating
- textile material
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q17/00—Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Использование: для применения в виде покрытия, которое наносится на изделие исследовательского медицинского, бытового и другого назначения или в виде конструкционного материала для изделий, не испытывающих большие механические нагрузки. Сущность изобретения заключается в том, что для нанесения радиопоглощающего покрытия на основу из нетканого текстильного материала органического или неорганического происхождения, в качестве радиопоглощающего покрытия используют полимерную композицию, содержащую силиконовый полимер, отвердитель и нанокристаллический порошок ферромагнитного материала в соотношении по массе 10:1:(10-20) соответственно, которые перемешивают и выдерживают при комнатной температуре до полного удаления пузырьков воздуха, а после этого наносят полученную смесь равномерным слоем на основу из нетканого текстильного материала путем заливки, причем удельная масса силикона на единицу площади основы должна быть не менее 0,2 г/см2. Технический результат: обеспечение возможности применения полученного с использованием предложенного способа материала в качестве конструкционного для изделий, не подвергающихся высоким механическим нагрузкам. 1 табл.
Description
Изобретение относится к радиоэлектронной технике, в частности к материалам, поглощающим радиоизлучение, и предназначено для применения в виде покрытия, которое наносится на изделия исследовательского медицинского, бытового и другого назначения. Также может применяться как конструкционный материал для изделий не подвергающихся высоким механическим нагрузкам.
Известен способ получения радиопоглощающего покрытия, заключающийся в нанесении радиопоглощающего материала на защищаемую поверхность в несколько слоев с промежуточной сушкой каждого слоя, по крайней мере в один из слоев поглощающего покрытия перед сушкой помещают разрезные кольца из электропроводного материала толщиной более скин-слоя, с различным диаметром [1].
Недостаток данного способа заключается в том, что частотная характеристика данного покрытия имеет резонансный характер, достигая высокого значения поглощения вблизи одной частоты, определяемой диаметром колец, а на остальных частотах поглощение весьма низкое. То есть покрытие на обеспечивает защиту от электромагнитного излучения в широком диапазоне частот.
Известен способ получения полимерной композиции для поглощения высокочастотной энергии, основанный на том, что полимерную композицию для поглощения высокочастотной энергии, содержащую основной полимер (каучук низкомолекулярный диметилсилоксановый), отвердитель (катализатор холодного отверждения) и мелкодисперсный магнитный материал (железо карбонильное) тщательно перемешивают в течение 10 мин при температуре 25±10°С, выдерживают при температуре 25±10°С в течение 10 мин для удаления пузырьков воздуха и отверждают при температуре 25±10°С не менее 20 часов, затем при температуре 160±5°С в течение 7 часов [2].
Недостатками данного способа являются использование повышенной температуры для отверждения материала а также сравнительно низкий диапазон рабочих температур, обусловленный используемым полимерным материалом. Это ограничивает возможность использования получаемого по данному способу материала для защиты изделий, работающих при повышенных температурах.
Наиболее близким к предполагаемому изобретению, взятым за прототип, является способ получения радиопоглощающего материала, в котором на основу из нетканого текстильного материала органического или неорганического происхождения наносится при помощи вакуумного распыления радиопоглощающее покрытие. Радиопоглощающее покрытие представляет собой пленки металлов, или их сплавов, или их соединений с азотом или кислородом, или углеродом [3].
Недостатки данного способа состоят в том, что для изготовления материала требуется специальное дорогостоящее вакуумное оборудование а также полученный материал не может служить в качестве конструкционного, так как не обладает механической прочностью.
Техническим результатом изобретения является уменьшение материальных затрат способа получения радиопоглощающего материала, а также возможность применения полученного с использованием предложенного способа материала в качестве конструкционного для изделий, не подвергающихся высоким механическим нагрузкам.
Технический результат предлагаемого способа получения радиопоглощающего материала состоит в том, что для нанесения радиопоглощающего покрытия на основу из нетканого текстильного материала органического или неорганического происхождения, в качестве радиопоглощающего покрытия используют полимерную композицию, содержащую силиконовый полимер, отвердитель и нанокристаллический порошок ферромагнитного материала в соотношении по массе 10:1:(10-20) соответственно, которые перемешивают и выдерживают при комнатной температуре до полного удаления пузырьков воздуха, а после этого наносят полученную смесь равномерным слоем на основу из нетканого текстильного материала путем заливки, причем удельная масса силикона на единицу площади основы должна быть не менее 0,2 г/см2.
Технический результат предлагаемого способа состоит в значительном снижении материальных затрат на изготовление радиопоглощающего материала, так как используются не дорогостоящие вакуумные установки, а дешевые легкодоступные приспособления. Кроме того, при полимеризации (отверждении) полимерной композиции, пропитывающей основу из нетканого текстильного материала, он приобретает определенную жесткость и может выполнять функцию не только защитного покрытия, но и конструкционного материала в изделиях, не подвергающихся высоким механическим нагрузкам. Выбор удельной массы силикона обусловлен тем, что при заливке полимерная композиция должна пропитать весь объем основы из нетканого текстильного материала.
Реализация предлагаемого способа может быть пояснена на примерах.
Пример 1 осуществления предлагаемого способа.
В химический стакан вводят 50 г силиконового полимера, засыпают 100 г нанокристаллического порошка карбонильного железа и тщательно перемешивают при комнатной температуре. В полученную смесь добавляют 5 г отвердителя, тщательно перемешивают и выдерживают до удаления пузырьков воздуха. Полученную смесь выливают на лист размером 20×20 см2 нетканого текстильного материала из полиэфирных волокон, лежащий на горизонтальной поверхности и оставляют на сутки до полной полимеризации силикона.
Пример 2. В химический стакан вводят 100 г силиконового полимера, засыпают 200 г нанокристаллического порошка карбонильного железа и тщательно перемешивают при комнатной температуре. В полученную смесь добавляют 10г отвердителя, тщательно перемешивают и выдерживают до удаления пузырьков воздуха. Полученную смесь выливают на лист размером 20×20 см2 нетканого текстильного материала из полиэфирных волокон, лежащий на горизонтальной поверхности и оставляют на сутки до полной полимеризации силикона.
Пример 3. В химический стакан вводят 100 г силиконового полимера, засыпают 200 г нанокристаллического порошка карбонильного железа и тщательно перемешивают при комнатной температуре. В полученную смесь добавляют 10г отвердителя, тщательно перемешивают и выдерживают до удаления пузырьков воздуха. Половину полученной смеси выливают на лист размером 20×20 см2 нетканого текстильного материала из полиэфирных волокон, лежащий на горизонтальной поверхности, затем лист переворачивают и оставшуюся половину смеси выливают на обратную сторону листа. После этого залитый с двух сторон смесью силиконового полимера с отвердителем и нанокристаллическим порошком карбонильного железа лист нетканого текстильного материала оставляют на сутки до полной полимеризации силикона.
Пример 4. В химический стакан вводят 80 г силиконового полимера, засыпают 20 г нанокристаллического порошка карбонильного железа и тщательно перемешивают при комнатной температуре. В полученную смесь добавляют 8 г отвердителя, тщательно перемешивают и выдерживают до удаления пузырьков воздуха. Полученную смесь выливают на лист размером 20×20 см2 нетканого текстильного материала из полиэфирных волокон, лежащий на горизонтальной поверхности и оставляют на сутки до полной полимеризации силикона.
Полученные образцы размещались на металлическом основании и измерялся коэффициент отражения электромагнитного излучения, падающего по нормали на образцы. Результаты представлены в таблице.
Как видно из таблицы, наилучшими характеристиками (минимальный коэффициент отражения) обладают образцы, описанные в примерах 2 и 3. Более высокая величина коэффициента отражения в примере 1 обусловлена недостаточным количеством смеси полимерной композиции (масса силикона всего 0,125 г/см2). В образце по примеру 4 повышение коэффициента отражения обусловлено малым количеством нанокристаллического порошка карбонильного железа в смеси. Отношение массы карбонильного железа к силикону составляет 1:4 вместо от 2:1 до 1:1. Снижение доли нанокристаллического порошка карбонильного железа в смеси приводит к увеличению коэффициента отражения электромагнитного излучения от радиопоглощающего материала. Это увеличение происходит плавно и не имеет ярко выраженной границы, поэтому указанные в формуле соотношения в какой-то мере условны. Увеличение доли нанокристаллического порошка карбонильного железа в смеси выше указанного в формуле предела приводит к тому, что значительно повышается вязкость смеси и при нанесении на основу она не сможет равномерно заполнить весь объем основы. Это приводит к ухудшению механических характеристик полученного материала.
Как видно из представленных материалов, технический результат предлагаемого способа заключается в значительном снижении материальных затрат на изготовление радиопоглощающего материала, так как вместо дорогостоящих вакуумных установок используются дешевые легкодоступные приспособления. Кроме того, при полимеризации (отверждении) полимерной композиции, пропитывающей основу из нетканого текстильного материала, он приобретает определенную жесткость и может выполнять функцию не только защитного покрытия, но и конструкционного материала в изделиях, не подвергающихся высоким механическим нагрузкам.
Список литературы:
1. Патент РФ №2200177, МПК C09D 5/32, приоритет 07.08.2001.
2. Патент РФ №2633903, МПК H01Q 17/00, приоритет 19.04.2016.
3. Патент РФ №2659852, МПК H01Q 17/00, приоритет 29.11.2016.
Claims (1)
- Способ получения радиопоглощающего материала, включающий нанесение радиопоглощающего покрытия на основу из нетканого текстильного материала органического или неорганического происхождения, отличающийся тем, что в качестве радиопоглощающего покрытия используют полимерную композицию, содержащую силиконовый полимер, отвердитель и нанокристаллический порошок ферромагнитного материала в соотношении по массе 10:1:(10-20) соответственно, которые перемешивают и выдерживают при комнатной температуре до полного удаления пузырьков воздуха, а после этого наносят полученную смесь равномерным слоем на основу из нетканого текстильного материала путем заливки, причем удельная масса силикона на единицу площади основы должна быть не менее 0,2 г/см2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019136660A RU2728735C1 (ru) | 2019-11-15 | 2019-11-15 | Способ получения радиопоглощающего материала |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019136660A RU2728735C1 (ru) | 2019-11-15 | 2019-11-15 | Способ получения радиопоглощающего материала |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2728735C1 true RU2728735C1 (ru) | 2020-07-30 |
Family
ID=72085816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019136660A RU2728735C1 (ru) | 2019-11-15 | 2019-11-15 | Способ получения радиопоглощающего материала |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2728735C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6265466B1 (en) * | 1999-02-12 | 2001-07-24 | Eikos, Inc. | Electromagnetic shielding composite comprising nanotubes |
RU2197041C1 (ru) * | 2001-07-05 | 2003-01-20 | Назаров Виктор Геннадьевич | Способ получения радиопоглощающего материала |
CN101624508A (zh) * | 2009-07-28 | 2010-01-13 | 四川大学 | 用皮胶原纤维制备雷达吸波材料的方法 |
RU2482149C1 (ru) * | 2011-11-10 | 2013-05-20 | Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") | Радиопоглощающий материал |
RU2570003C1 (ru) * | 2014-08-26 | 2015-12-10 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Радиопоглощающий материал |
RU2580140C2 (ru) * | 2014-07-21 | 2016-04-10 | Открытое Акционерное Общество "Центральный Научно-Исследовательский Институт Комплексной Автоматизации Лёгкой Промышленности" | Текстильный композит для защиты от электромагнитных излучений |
-
2019
- 2019-11-15 RU RU2019136660A patent/RU2728735C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6265466B1 (en) * | 1999-02-12 | 2001-07-24 | Eikos, Inc. | Electromagnetic shielding composite comprising nanotubes |
RU2197041C1 (ru) * | 2001-07-05 | 2003-01-20 | Назаров Виктор Геннадьевич | Способ получения радиопоглощающего материала |
CN101624508A (zh) * | 2009-07-28 | 2010-01-13 | 四川大学 | 用皮胶原纤维制备雷达吸波材料的方法 |
RU2482149C1 (ru) * | 2011-11-10 | 2013-05-20 | Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") | Радиопоглощающий материал |
RU2580140C2 (ru) * | 2014-07-21 | 2016-04-10 | Открытое Акционерное Общество "Центральный Научно-Исследовательский Институт Комплексной Автоматизации Лёгкой Промышленности" | Текстильный композит для защиты от электромагнитных излучений |
RU2570003C1 (ru) * | 2014-08-26 | 2015-12-10 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Радиопоглощающий материал |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Multifunctional organic–inorganic hybrid aerogel for self‐cleaning, heat‐insulating, and highly efficient microwave absorbing material | |
Luo et al. | High-temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes | |
Kuhn et al. | Toward real applications of conductive polymers | |
Ting et al. | Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz | |
Liu et al. | Microwave absorption properties of a wave-absorbing coating employing carbonyl-iron powder and carbon black | |
Peng et al. | High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite | |
Saini et al. | Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization | |
US20200053920A1 (en) | High-dielectric-loss composites for electromagnetic interference (emi) applications | |
Pan et al. | Epoxy composite foams with excellent electromagnetic interference shielding and heat‐resistance performance | |
Egami et al. | Stacked polypyrrole-coated non-woven fabric sheets for absorbing electromagnetic waves with extremely high frequencies | |
US11369050B2 (en) | High frequency electromagnetic interference (EMI) composites | |
Gupta et al. | Microwave absorption in X and Ku band frequency of cotton fabric coated with Ni–Zn ferrite and carbon formulation in polyurethane matrix | |
Ting et al. | Synthesis and electromagnetic wave-absorbing properties of BaTiO 3/polyaniline structured composites in 2–40 GHz | |
Chen et al. | Study on microwave absorption properties of metal-containing foam glass | |
Fang et al. | Intrinsically atomic-oxygen-resistant POSS-containing polyimide aerogels: Synthesis and characterization | |
RU2728735C1 (ru) | Способ получения радиопоглощающего материала | |
Shafieizadegan‐Esfahani et al. | Electrically conductive foamed polyurethane/silicone rubber/graphite nanocomposites as radio frequency wave absorbing material: The role of foam structure | |
CN110054182A (zh) | 一种磁性石墨烯基吸波蜂窝材料及其制备方法 | |
Zhao et al. | Preparation of PS/Ag microspheres and its application in microwave absorbing coating | |
CN113856577B (zh) | 一种磁控吸波胶囊及其制备方法 | |
Lépine et al. | Preparation of a poly (furfuryl alcohol)‐coated highly porous polystyrene matrix | |
RU2414029C1 (ru) | Поглотитель электромагнитных волн | |
RU2375395C1 (ru) | Композиционный материал для поглощения электромагнитных волн | |
JPH03238895A (ja) | マイクロ波―吸収素材 | |
KR101124544B1 (ko) | 비할로겐계 전자파 흡수-수평 열전도 복합 시트 및 이의 제조방법 |