RU2725899C1 - Способ детектирования терагерцовых электромагнитных волн - Google Patents

Способ детектирования терагерцовых электромагнитных волн Download PDF

Info

Publication number
RU2725899C1
RU2725899C1 RU2019129596A RU2019129596A RU2725899C1 RU 2725899 C1 RU2725899 C1 RU 2725899C1 RU 2019129596 A RU2019129596 A RU 2019129596A RU 2019129596 A RU2019129596 A RU 2019129596A RU 2725899 C1 RU2725899 C1 RU 2725899C1
Authority
RU
Russia
Prior art keywords
radiation
complex
response
hybrid structure
nanotube
Prior art date
Application number
RU2019129596A
Other languages
English (en)
Inventor
Ольга Евгеньевна Глухова
Владислав Викторович Шунаев
Михаил Михайлович Слепченков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского"
Priority to RU2019129596A priority Critical patent/RU2725899C1/ru
Application granted granted Critical
Publication of RU2725899C1 publication Critical patent/RU2725899C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Использование: для создания нанодетекторов терагерцовых электромагнитных волн. Сущность изобретения заключается в том, что способ детектирования терагерцового электромагнитного излучения включает направление потока излучения на преобразователь, регистрацию отклика, по которому судят о наличии излучения, при этом в качестве преобразователя выбирают гибридную структуру, представляющую собой эндоэдральный комплекс К+@C,где x=36 или 60 или 80, находящийся в полости одностенной углеродной нанотрубки c триммером фуллерена С, преобразователь располагают таким образом, чтобы поток электромагнитного излучения был направлен поперек оси нанотрубки, а в качестве отклика выходного параметра регистрируют изменение электропроводности гибридной структуры. Технический результат: обеспечение возможности расширения диапазона детектируемых частот и рабочих температур. 1 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области твердотельной наноэлектроники и может быть использовано для создания нанодетекторов терагерцовых электромагнитных волн, которые могут найти широкое применение в медицине, дистанционном зондировании и широкополосной связи в космосе и для обеспечения безопасности человека, в том числе для борьбы с терроризмом.
Известен способ детектирования электромагнитного излучения в гигагерцовом и терагерцовом диапазонах с помощью полупроводниковой структуры, содержащей двумерный слой носителей заряда, по меньшей мере, с одним дефектом. В рамках этого способа структуру подвергают воздействию электромагнитного излучения, посредством чего вызывают в ней возбуждение плазмонов (см. патент РФ №2507544, МПК G01V 3/12, опубл. 20.02.2014).
Недостатком данного способа является малый диапазон детектируемых частот 0.1 – 0.6 ТГц.
Известен способ детектирования терагерцового излучения с помощью массива из графеновых наноленточных матриц, размеры которых контролируются с помощью сетки (см. заявку на изобретение Китая №104795411, МПК H01L27/144; опубл. 22.07.2015). Идея способа состоит в том, что под воздействием терагерцового излучения меняется энергетическая щель графена.
Недостатком данного способа является технологическая сложность в измерении энергетической щели низкоразмерных объектов с высокой точностью, что делает обнаружение терагерцового излучения недостаточно надежным.
Для детектирования электромагнитного излучения терагерцового (ТГц) диапазона также используются углеродные нанотрубки (УНТ) (см. патент РФ на полезную модель №186169, МПК B82Y 99/00, B82Y 40/00, H01L 31/0256, опубл. 11.01.2019). В качестве основного механизма детектирования рассматривается широкополосное детектирование за счет затухающих плазменных волн. В этом случае функциональная зависимость отклика от затвора должно повторять G-1*(dG/dVg), где G - проводимость, a Vg - напряжение на затворе. Отметим также возможный вклад термоэлектрического механизма в наблюдаемый отклик. Переменный ток, возникающий под воздействием ТГц излучения, протекает преимущественно между истоком и затвором, что приводит к более сильному нагреву электронной подсистемы в окрестности истока, чем в окрестности стока. Это в свою очередь приводит к возникновению термо-ЭДС в устройствах. Третьим возможным механизмом детектирования ТГц излучения в таких устройствах является диодный эффект, связанный с выпрямлением на барьере, образующемся на границе УНТ - металл. В подобных устройствах все три механизма должны давать вклад одного знака, что приводит к усилению отклика устройства.
Существенным недостатком является невозможность детектировать терагерцовые волны на частотах свыше 2 ТГц.
Наиболее близким к предлагаемому решению является способ детектирования субтерагерцового излучения, заключающийся в направлении потока излучения на преобразователь и регистрации отклика, по которому судят о наличии излучения (см. патент РФ №2697568, МПК B82B 1/00, H01L 27/14, опубл. 15.08.2019). Способ реализуется с помощью графенового детектора, включающего двумерную электронную систему, выпрямляющий нелинейный элемент и измерительную схему. В качестве двумерного проводящего слоя используется высокоподвижный графен с реализацией нелинейного элемента в виде асимметричных проводящих затворов, с использованием туннельного эффекта, при помощи использования контактной разности потенциалов. В качестве преобразователя используется графен, который обладает рекордной подвижностью электронов при комнатной температуре.
Существенным недостатком изобретения является то, что использование асимметричных проводящих затворов приведёт к нагреванию графена, вследствие чего он неизбежно перестанет быть плоским и примет волнообразную форму, а это, в свою очередь, значительно изменит как его механические, так и проводящие свойства.
Техническая проблема заключается в разработке способа детектирования терагерцовых электромагнитных волн, в том числе при высоких температурах.
Технический результат, на достижение которого направлено изобретение, заключается в расширении диапазона детектируемых частот и рабочих температур за счет повышения устойчивости преобразователя, свойства которого не меняются даже при температурах свыше 1000 К.
Технический результат достигается тем, что в способе детектирования терагерцового электромагнитного излучения, включающем направление потока излучения на преобразователь, регистрацию отклика, по которому судят о наличии излучения, согласно решению, в качестве преобразователя выбирают гибридную структуру, представляющую собой эндоэдральный комплекс К+@Cx, где x=36 или 60 или 80, находящийся в полости одностенной углеродной нанотрубки (ОУНТ) c триммером фуллерена С60, преобразователь располагают таким образом, чтобы поток электромагнитного излучения был направлен поперек оси нанотрубки, а в качестве отклика регистрируют изменение электропроводности гибридной структуры. Дополнительно на преобразователь подают напряжение в диапазоне меньше - 4 В или больше 3 В.
Изобретение поясняется чертежами, где на фиг.1 изображена атомистическая модель гибридной структуры ОУНТ/С60 с заряженным комплексом К+@C60 внутри. Позициями обозначены:
1 – триммер фуллерена С60;
2 – эндоэдральный комплекс К+С60;
3 – углеродная нанотрубка длиной 9,5 нм и диаметром 1.4 нм.
На фиг. 2 изображена спектральная характеристика комплекса К+@C60, полученная в результате быстрого преобразования Фурье зависимости координаты центра масс К+@C60 поперек оси трубки от времени под воздействием температуры 300К. Из фиг. 2 видно, что собственная частота эндоэдрального комплекса составляет 0.132 ТГц.
На фиг. 3 приведён график изменения проводимости нанотрубки при различных расстояниях между комплексом К+@C60 и стенкой трубки.
На фиг. 4 представлены вольтамперные характеристики гибридной структуры ОУНТ/С60 с комплексом К+@C60 при прямом (U>0) и обратном (U<0) смещениях. Сплошная линия соответствует равновесному положению комплекса К+@C60 внутри начальной потенциальной ямы при отсутствии терагерцового электромагнитного излучения, пунктирная линия – случаю приближению комплекса К+@C60 к стенке ОУНТ на расстояние 0,17 нм.
На фиг. 5 представлена зависимость амплитуды колебания комплекса K+@C60 вдоль плоскости XY от частоты электромагнитного излучения мощностью 21,2 мкВт.
Эндоэдральная наноструктура представляет собой фрагмент ОУНТ типа armchair (10,10) диаметром 1,39 нм и длиной 9,5 нм (Фиг. 1). Вблизи каждого из краев нанотрубки расположены цепочки из трех фуллеренов С60, химически соединенных друг с другом и трубкой. Между цепочками из трех фуллеренов внутри нанотрубки также находится свободный фуллерен С60, который может нести положительный заряд и перемещаться. Химически связанные друг с другом и трубкой три фуллерена С60 создают для свободного фуллерена потенциальные ямы, из которых он не может выйти без внешней вынуждающей силы, но внутри которых он может колебаться. Глубина потенциальной ямы в области левого края нанотрубки составляет Е1=-1,979 эВ, в области правого края -Е2=-1,973 эВ. При температуре 300К собственная частота колебания эндоэдрального комплекса поперек оси трубки К+@C60 – 0.132 ТГц (Фиг.2).
Описание методики допирования фуллерена С60 ионами щелочных металлов, способ инкапсуляции эндоэдральной структуры К+@C60 в полость ОУНТ, а также методика синтеза гибридной структуры ОУНТ/С60 приведены в патенте РФ № 2546052.
Комплекс К+@C60 в полости гибридной структуры ОУНТ/С60 чувствителен к широкому диапазону частот 132 ГГц÷2.5 ТГц и даже более благодаря нелинейному поведению этой системы. Откликом на ГГц–ТГц волны является рост амплитуды колебаний комплекса К+@C60 и, как следствие, его сближение со стенкой трубки на расстояние 0.17÷0.19 нм. При этом, если мощность внешнего поля превышает 212 мкВт, то комплекс К+@C60 покидает начальную потенциальную яму и осциллирует между двумя потенциальными ямами. При мощности свыше 1060 мкВт структура разрушается.
Предлагается фиксировать факт взаимодействия с ГГц÷ТГц-волнами по изменению электропроводности гибридной структуры, которое обусловлено перераспределением электронной плотности в моменты приближения эндоэдрального комплекса к стенкам ОУНТ/С60 на расстояние 0,17÷0,19 нм. В эти моменты происходит перетекание электронного заряда с ОУНТ на комплекс К+@C60, что приводит к изменению электропроводности гибридной структуры ОУНТ/С60. График величины относительного изменения электропроводности в зависимости от приложенного напряжения для трех различных величин расстояния между комплексом К+@C60 и стенкой трубки показывает, что с уменьшением расстояния между нанотрубкой и комплексом К+@С60 электропроводность гибридной структуры ОУНТ/С60 становится более чувствительной к приложенному напряжению (Фиг. 3). Наиболее заметный всплеск проводимости наблюдается при величине напряжения 4В в момент приближения К+@C60 к стенкам трубки на расстояние 0.17 нм. В этом случае изменение электропроводности достигает 9%. Надо отметить, что подобные колебания электропроводности могут наблюдаться как в случае вынужденных колебаний в потенциальной яме, так и в случае вынужденных колебаний между потенциальными ямами. Основную роль в этом процессе играет расстояние между комплексом К+@С60 и нанотрубкой.
В результате изменения электропроводности гибридной структуры ОУНТ/С60 меняется и её вольтамперная характеристика (Фиг. 4). Полученные ВАХ при прямом и обратном смещениях показывают, что в области омического участка видимых изменений характеристики не наблюдается. Напротив, в области насыщения (меньше -4В и больше 3В) появляется разброс значений тока. В отдельных точках кривой величина отклонения тока с изменением расстояния достигает 10÷12 мкА. Таким образом, приложение вышеупомянутого напряжения усиливает изменение электропроводности структуры, а значит, упрощает детектирование терагерцового сигнала.
В качестве элемента преобразователя может также использоваться эндоэдральный комплекс К+@C36 и К+@C80. Фуллерен С80 обладает большим количеством атомов по сравнению с фуллереном С60 и при сближении со стенками структуры ОУНТ/С60 может передать больше количество заряда, что значительнее изменит электропроводность объекта, а значит, упростит процесс детектирования. Фуллерен С36 обладает меньшим количеством атомов по сравнению с фуллереном С60, а значит, изначально находится в потенциальной яме с меньшей энергией, следовательно, привести его в движение может терагерцовое излучение меньшей мощности.
Следствием нелинейности исследуемой системы является существование резонанса на частотах высших гармоник внешней силы. Эти частоты удовлетворяют условию ω=nω0, где n – целое число, а ω0 – основная частота. Следует отметить, что амплитуда вынужденных колебаний практически не уменьшается при переходе к частотам высших гармоник вследствие малых размеров потенциальной ямы, внутри которой колеблется комплекс K+@C60 (фиг. 5). В связи с этим детектирование возможно во всем терагерцовом диапазоне (до 10 ТГц). 
Осциллиривание внутреннего эндоэдрального комплекса возможно при температуре вплоть до 1500 К (см. Michail M. Slepchenkov, Anna S. Kolesnikova, George V. Savostyanov, Igor S. Nefedov, Ilya V. Anoshkin, Albert G. Nasibulin, Olga E. Glukhova. Giga - and terahertz range nanoemitter based on a peapod structure // Nano Research. 2015. Vol. 8. I. 8. P. 2595-2602).

Claims (2)

1. Способ детектирования терагерцового электромагнитного излучения, включающий направление потока излучения на преобразователь, регистрацию отклика, по которому судят о наличии излучения, отличающийся тем, что в качестве преобразователя выбирают гибридную структуру, представляющую собой эндоэдральный комплекс К+@Cx, где x=36 или 60 или 80, находящийся в полости одностенной углеродной нанотрубки c триммером фуллерена С60, преобразователь располагают таким образом, чтобы поток электромагнитного излучения был направлен поперек оси нанотрубки, а в качестве отклика регистрируют изменение электропроводности гибридной структуры.
2. Способ по п. 1, отличающийся тем, что дополнительно на преобразователь подают напряжение в диапазоне меньше - 4 В или больше 3 В.
RU2019129596A 2019-09-20 2019-09-20 Способ детектирования терагерцовых электромагнитных волн RU2725899C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019129596A RU2725899C1 (ru) 2019-09-20 2019-09-20 Способ детектирования терагерцовых электромагнитных волн

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019129596A RU2725899C1 (ru) 2019-09-20 2019-09-20 Способ детектирования терагерцовых электромагнитных волн

Publications (1)

Publication Number Publication Date
RU2725899C1 true RU2725899C1 (ru) 2020-07-07

Family

ID=71509853

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019129596A RU2725899C1 (ru) 2019-09-20 2019-09-20 Способ детектирования терагерцовых электромагнитных волн

Country Status (1)

Country Link
RU (1) RU2725899C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795746C1 (ru) * 2022-12-26 2023-05-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Энергонезависимая троичная ячейка памяти на основе углеродного нанокомпозита

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121598A1 (en) * 2006-04-21 2007-11-01 Eth Zurich Broadband terahertz radiation generation and detection system and method
WO2010050637A1 (en) * 2008-10-31 2010-05-06 Snu R&Db Foundation A nanogap device for field enhancement and a system for nanoparticle detection using the same
RU2448399C2 (ru) * 2009-12-16 2012-04-20 Государственное учебно-научное учреждение физический факультет Московского государственного университета имени М.В. Ломоносова (Физический факультет МГУ) Способ детектирования электромагнитных волн в терагерцовом диапазоне и устройство для его осуществления
RU2546052C1 (ru) * 2013-11-21 2015-04-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" Способ получения электромагнитного излучения гига- и терагерцового диапазона частот
RU2599332C1 (ru) * 2015-05-13 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") Способ детектирования электромагнитных волн в терагерцовом диапазоне
RU186169U1 (ru) * 2018-06-22 2019-01-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский педагогический государственный университет" Детектор терагерцового излучения на основе углеродных нанотрубок

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121598A1 (en) * 2006-04-21 2007-11-01 Eth Zurich Broadband terahertz radiation generation and detection system and method
WO2010050637A1 (en) * 2008-10-31 2010-05-06 Snu R&Db Foundation A nanogap device for field enhancement and a system for nanoparticle detection using the same
RU2448399C2 (ru) * 2009-12-16 2012-04-20 Государственное учебно-научное учреждение физический факультет Московского государственного университета имени М.В. Ломоносова (Физический факультет МГУ) Способ детектирования электромагнитных волн в терагерцовом диапазоне и устройство для его осуществления
RU2546052C1 (ru) * 2013-11-21 2015-04-10 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Профессионального Образования "Саратовский Государственный Университет Имени Н.Г. Чернышевского" Способ получения электромагнитного излучения гига- и терагерцового диапазона частот
RU2599332C1 (ru) * 2015-05-13 2016-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВПО МГТУ "СТАНКИН") Способ детектирования электромагнитных волн в терагерцовом диапазоне
RU186169U1 (ru) * 2018-06-22 2019-01-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский педагогический государственный университет" Детектор терагерцового излучения на основе углеродных нанотрубок

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2795746C1 (ru) * 2022-12-26 2023-05-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского" Энергонезависимая троичная ячейка памяти на основе углеродного нанокомпозита

Similar Documents

Publication Publication Date Title
JP5473616B2 (ja) テラヘルツ電磁波検出装置とその検出方法
Ivanov et al. Role of edge engineering in photoconductivity of graphene nanoribbons
Liu et al. Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers
Zhang et al. Performance and service behavior in 1-D nanostructured energy conversion devices
Wang et al. 2D piezotronics in atomically thin zinc oxide sheets: Interfacing gating and channel width gating
Zhou et al. Mechanical− electrical triggers and sensors using piezoelectric micowires/nanowires
Fei et al. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire
Jensen et al. Ultrafast photoconductivity of graphene nanoribbons and carbon nanotubes
Leek et al. Charge pumping in carbon nanotubes
US8766330B2 (en) Method and system for generating a photo-response from MoS2 Schottky junctions
Kibis et al. Generation of terahertz radiation by hot electrons in carbon nanotubes
Suzuki et al. Fermi-level-controlled semiconducting-separated carbon nanotube films for flexible terahertz imagers
JP5107183B2 (ja) テラヘルツ光検出装置とその検出方法
Akturk et al. Electron transport and velocity oscillations in a carbon nanotube
Foxe et al. Graphene field-effect transistors on undoped semiconductor substrates for radiation detection
Bergfield et al. Probing Maxwell’s demon with a nanoscale thermometer
Girit et al. Tunable graphene dc superconducting quantum interference device
Zhang et al. Flexible piezoelectric nanogenerators based on a CdS nanowall for self-powered sensors
Borunda et al. Imaging universal conductance fluctuations in graphene
Zhang et al. High performance piezotronic devices based on non-uniform strain
Panth et al. Flexible zinc oxide nanowire array/graphene nanohybrid for high-sensitivity strain detection
Sun et al. Effect of flexoelectricity on a bilayer molybdenum disulfide Schottky contact
RU2725899C1 (ru) Способ детектирования терагерцовых электромагнитных волн
Ke et al. Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics
Chudow et al. Terahertz spectroscopy of individual single-walled carbon nanotubes as a probe of luttinger liquid physics