RU2725606C2 - Состав и способ получения биодеградируемой термопластичной композиции - Google Patents

Состав и способ получения биодеградируемой термопластичной композиции Download PDF

Info

Publication number
RU2725606C2
RU2725606C2 RU2019127883A RU2019127883A RU2725606C2 RU 2725606 C2 RU2725606 C2 RU 2725606C2 RU 2019127883 A RU2019127883 A RU 2019127883A RU 2019127883 A RU2019127883 A RU 2019127883A RU 2725606 C2 RU2725606 C2 RU 2725606C2
Authority
RU
Russia
Prior art keywords
composition
thermoplastic composition
polypropylene
biodegradable thermoplastic
starch
Prior art date
Application number
RU2019127883A
Other languages
English (en)
Other versions
RU2019127883A3 (ru
RU2019127883A (ru
Inventor
Наталья Николаевна Протасова
Артём Викторович Протасов
Владимир Иванович Корчагин
Original Assignee
ООО "Вектор полимир"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО "Вектор полимир" filed Critical ООО "Вектор полимир"
Priority to RU2019127883A priority Critical patent/RU2725606C2/ru
Publication of RU2019127883A publication Critical patent/RU2019127883A/ru
Publication of RU2019127883A3 publication Critical patent/RU2019127883A3/ru
Application granted granted Critical
Publication of RU2725606C2 publication Critical patent/RU2725606C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

Настоящее изобретение относится к составу биодеградируемой термопластичной композиции и способу получения биодеградируемой термопластичной композиции. Состав биодеградируемой термопластичной композиции содержит: полипропилен 32-34 мас.%, крахмал 55-47 мас.%, карбонат кальция 4,5-8 мас.%, этиленвинилацетат 4-5 мас.%, оксид кальция 1-2 мас.%, карбоксилат железа 0.5-1 мас.%. Способ получения биодеградируемой термопластичной композиции включает смешение полипропилена 32-34 мас.%, карбоната кальция 4,5-8 мас.% и оксида кальция 1-2 мас.% в центробежном смесителе в течение 1 минуты и подачу их посредством дозатора в первую зону двухшнекового экструдера (поток 1); смешение этиленвинилацетата 4-5 мас.%, крахмала 55-47 мас.%, моностеарата глицерина 3 мас.% и карбоксилата железа 0.5-1 мас.% и направление их в аппарат плавильно-нагревательный, где при температуре 100-110°С получается тестообразная масса (поток 2). Тестообразная масса (поток 2) совмещается с гомогенным расплавом (поток 1) в пятой зоне двухшнекового экструдера и при температуре 180°С потоки 1 и 2, проходя последовательные стадии транспортирования, нагнетания, смешения, дегазации, образуют термопластичную композицию. Термопластичная композиция с помощью шестеренчатого насоса-бустера дополнительно перемешивается и нагнетается в головку, где образуется листовая заготовка. Листовая заготовка поступает на охлаждаемый каландр и в виде полотна формируется в рулон. Технический результат – разработка состава и способа получения биодеградируемой термопластичной композиции для производства пластмассовых изделий краткосрочного использования с повышенным индексом деструкции в условиях окружающей среды, соответствующих требованиям ГОСТ 57432-2017. 2 н.п. ф-лы, 3 табл., 13 пр.

Description

Изобретение относится к технологиям создания материалов, способных к биологической деструкции при воздействии факторов окружающей среды, и может быть использовано при изготовлении пластмассовых изделий краткосрочного использования.
Изделия из полиэтилена, полипропилена или полистирола после использования не способны к биодеградации при совместном воздействии природных факторов - ультрафиолетового света, микрофлоры, кислорода, влаги и температуры. В настоящее время рассматриваются проекты по существенному ограничению на использование изделий из традиционных пластиков, что затронет крупный сегмент рынка. Поэтому создание полимерных композиций на основе широко используемых синтетических пластиков для изготовления изделий с регулируемым сроком службы является актуальным направлением, развитие которого позволит устранить негативное воздействие на окружающую среду, снизить производственные и экономические риски для производителей сырья, оборудования и конечных изделий.
Известны технологические приемы получения материалов, способных к биологической деструкции, в которых для придания традиционным пластикам способности к биоразлажению в материалы добавляют наполнители из растительного сырья: крахмал, микроцеллюлозу, отходы производств агропромышленного комплекса и т.д.
Например, полимерная композиция на основе полипропилена (Патент RU № 2635565 от 14.11.2017 г.), в состав которой входит полипропилен (первичный или вторичный), полиолефиновый эластомер, наполнитель из биологического сырья - размолотая скорлупа кокосовых орехов, древесное волокно или волокна агавы, синтетическое волокно и минеральный наполнитель - тальк. Также в состав могут быть включены армирующее вещество, нуклеатор и усилитель текучести расплава для улучшения эксплуатационных характеристик и обработки продукта.
Недостатком данной композиции является высокая дисперсность наполнителя из биологического сырья - 150 мкм, в результате чего возникают центры напряжений и, как следствие, снижаются физико-механические показатели, а также происходит повышенный износ применяемого оборудования.
В патенте (RU 2480495 от 27.04.2013 г.) предложен способ и рецептура новой биоразлагаемой полимерной композиции, пригодной для получения биоразлагаемого пластика, которая включает смесь полимера, выбранного из полиэтилена, полипропилена, полистирола, поливинилхлорида или их смеси, целлюлозы, нитрата аммония, питательных компонентов, выбранных из сине-зеленых водорослей и/или дрожжей, и воды. Эта композиция может быть смешана с чистым базовым полимером для получения маточной полимерной смеси. В способе получения предлагается смешение всех компонентов в различных пропорциях и выдерживание полученной композиции в покое в течение периода от 12 до 36 ч. Недостатками указанного решения являются низкая технологичность, вследствие получения композиции через стадию суспендирования и длительное время выдерживания полученной смеси в состоянии покоя.
Известна биоразлагаемая полимерная композиция (Патент RU 2 674 212 от 05.12.2018 г.), которая содержит смесь полиэтиленов высокого и низкого давления преимущественно из отходов производства и/или вторичного сырья и порошковую целлюлозу, выделенную из морских бурых водорослей, в основном рода фукус, при следующем содержании компонентов, мас.%: полиэтилен 50-90, порошковая целлюлоза 10-50.
Недостатком указанной композиции является ограниченность применения в результате использования вторичных материалов, использование смеси полиэтиленов низкого и высокого давления в виде матрицы лимитируется термодинамической совместимостью из-за различной температуры плавления, смешивание при одновременном нагревании до 140-150°С в течение 10-25 мин требует дополнительного контроля из-за возможной агломерации полиэтилена при температуре выше температуры плавления (от 103 до 137°С) с помощью высокоскоростного лопастного смесителя для сыпучих материалов.
Известен биоразлагаемый полимерный композиционный материал на основе смеси полиэтилена низкого давления и вторичного полипропилена (RU 2661230 от 13.07.2018 г.), который получен путем формования композиции, содержащей древесную муку, полиэтилен низкой плотности с размерами частиц 0,15 мкм, полученные путем одновременного воздействия высокого давления и сдвиговой деформации в аппаратах экструзионного типа при температурах, близких к температуре плавления полиэтилена низкой плотности, и углеродный материал с размером частиц 50 мкм в качестве минерального наполнителя, формование осуществляют путем термобарического прессования при давлении 128 кПа и температуре 125°С в течение 2-3 мин с получением цилиндрических гранул, при этом материал в качестве связующего дополнительно содержит вторичный полипропилен. Недостатком предложенной рецептуры является высокая вязкость смеси из-за использования полипропилена при температуре переработки полиэтилена низкой плотности.
Наиболее близким по технической сущности и достигаемому эффекту является биологически разрушаемая термопластичная композиция (Патент RU 2 681 909 от 13.03.2019 г.), содержащая полипропилен 35-40 мас. %, кукурузный крахмал 50-55 мас. %, этиленвинилацетат 4-5 мас. %, моностеарат глицерина 3-4 мас. %, воск полиэтиленовый 1 мас. %, двуокись титана 2 мас. %.
Недостатками рецептуры получаемой композиции являются неопределенные сроки начала биодеструкции вследствие капсулирования крахмала в матрице полипропилена и снижение экологичности получаемой композиции из-за применения в рецептуре диоксида титана, при этом в примерах, иллюстрирующих способ получения можно выделить: 1) высокое содержание порошкообразного наполнителя, что требует эффективной герметизации при сухом смешении и сушке, а также стадий перегрузки и дозирования; 2) длительное время сушки наполнителя при перемешивании; 3) постоянный контроль влагосодержания крахмала; 4) пульсации при дозировании смеси вследствие разного фракционного состава применяемых ингредиентов; 5) механотермическая деструкция крахмала в процессе экструзии в условиях трения, высоких температур и сдвиговых напряжений.
Техническая задача изобретения заключается в разработке состава и способа получения биодеградируемой термопластичной композиции для производства пластмассовых изделий краткосрочного использования с повышенным индексом деструкции в условиях окружающей среды соответствующих требованиям ГОСТ 57432-2017 за счет:
- уменьшения в составе биоразлагаемой термопластической композиции содержания синтетических полимеров;
- применения в рецептуре карбоксилата железа, карбоната кальция и оксида кальция;
- организации непрерывного технологического процесса с совмещением стадии смешения и сушки в аппарате плавильно-нагревательном при использовании в рецептуре в качестве влагопоглащающего агента - оксида кальция;
- использования низко- и высокомолекулярных добавок для модификации крахмала с последующим смешением его с матрицей полипропилена в пятой зоне двухшнекового экструдера;
- снижения механотермической деструкции крахмала;
- повышения гомогенности и экологичности получаемого композита.
Техническая задача изобретения достигается тем, что в составе биодеградируемой термопластичной композиции, содержащей полипропилен, этиленвинилацетат, кукурузный крахмал и моностеарат глицерина, новым является то, что рецептура композиции содержит карбонат кальция, осушитель на основе оксида кальция и карбоксилат железа при следующем соотношении компонентов: полипропилен 32-34 мас. %, крахмал 55-47 мас. %, карбонат кальция 4,5-8 мас. %, этиленвинилацетат 4-5 мас. %, моностеарат глицерина 3 мас. %, оксид кальция 1-2 мас. %, карбоксилат железа 0.5-1 мас. %, а в способе получения биодеградируемой термопластичной композиции, включающий смешение полипропилена 32-34 мас. %, карбоната кальция 4,5-8 мас. % и оксида кальция 1-2 мас. % в центробежном смесителе в течение 1 минуты и подачу их посредством дозатора в первую зону двухшнекового экструдера (поток 1), смешение этиленвинилацетата 4-5 мас. %, крахмала 55-47 мас. %, моностеарата глицерина 3 мас. % и карбоксилата железа 0.5-1 мас. % и направление их в аппарат плавильно-нагревательный, где при температуре 100÷110°С получается тестообразная масса (поток 2), которая совмещается с гомогенным расплавом (поток 1) в пятой зоне двухшнекового экструдера и при температуре 180°С потоки 1 и 2, проходя последовательные стадии транспортирования, нагнетания, смешения, дегазации, образуют термопластичную композицию, которая с помощью шестеренчатого насоса-бустера дополнительно перемешивается и нагнетается в головку, где образуется листовая заготовка, которая поступает на охлаждаемый каландр и в виде полотна формируется в рулон.
Технический результат изобретения заключается в разработке рецептуры термопластичной композиции, интенсивно разрушающейся в условиях окружающей среды, и по физико-механическим показателям соответствующей требованиям ГОСТ 57432-2017 при повышении технологичности процесса ее получения.
В составе и способе получения биодеградируемой термопластичной композиции для производства пластмассовых изделий краткосрочного использования применяются следующие материалы:
- полипропилен PPG 1035-08 ТУ 2211-008-50236110-2006 производитель ООО " Ставролен" - используют в качестве полиолефиновой матрицы;
- сэвилен 12306-020 TУ 6-05-1636-97 производитель ОАО «НЕФТЕХИМСЭВИЛЕН» - агент сочетания;
- крахмал кукурузный ГОСТ Р 32159-13 производитель ООО "Сельскохозяйственное предприятие "Дон" - биоразлагаемая основа;
- моностеарат глицерина GMS 40 T производитель FENGCHEN GROUP CO., LTD - агент сочетания, технологическая добавка;
- оксид кальция ГОСТ 8677-76 - добавка осушитель;
- карбонат кальция М90-Г производитель АО «Мелстром» - минеральный наполнитель применяется для улучшения равномерности диспергирования и придания белизны;
- карбоксилат железа (по патенту 2 607 207) - олеохимическое вещество (органическая соль), полученное на основе смеси предельных и непредельных жирных кислот, выделенных из сопутствующих продуктов стадии рафинации растительных масел. Выполняет роль многофункциональной добавки-пластификатора и каталитической системы для инициирования процесса окислительной деструкции полипропилена.
Состав и способ получения биодеградируемой термопластичной композиции для производства пластмассовых изделий краткосрочного использования осуществляют следующим образом. В центробежном смесителе в течение 1 минуты смешивают полипропилен 32-34 мас. %, карбонат кальция 4,5-8 мас. % и оксид кальция 1-2 мас. % и дозатором смесь подают в первую зону двухшнекового экструдера (поток 1). Этиленвинилацетат 4-5 мас. %, крахмал 55-47 мас. %, моностеарат глицерина 3 мас. % и карбоксилат железа 0.5-1 мас. % также смешивают и направляют в аппарат плавильно-нагревательный, где при температуре 100÷110°С получается тестообразная масса (поток 2), которая совмещается с гомогенным расплавом (поток 1) в пятой зоне двухшнекового экструдера и при температуре 180°С потоки 1 и 2, проходя последовательные стадии транспортирования, нагнетания, смешения, дегазации, образуют термопластичную композицию, которая с помощью шестеренчатого насоса-бустера дополнительно перемешивается и нагнетается в головку, где формируется листовая заготовка, которая поступает на охлаждаемый каландр и в виде полотна наматывается на шпулю.
Состав и способ получения биодеградируемой термопластичной композиции поясняется следующими примерами:
Пример 1
Композицию готовили по способу, предлагаемому в примерах прототипа, по следующей рецептуре ПП - 3,8 кг, этиленвинилацетат - 0,4 кг, крахмал - 5,2 кг, моностеарат глицерина 0,4 кг, полиэтиленовый воск 0,1 кг и двуокись титана 0,1 кг. Доля синтетических полимеров в композиции составляет - 42 мас. %.
Пример 2
В центробежный смеситель загружают 3,4 кг полипропилена, 0,8 кг карбоната кальция, 0,2 кг оксида кальция и перемешивают в течение 1 минуты. Смесь направляют в питатель двухшнекового экструдера (поток 1). В параллельный смеситель засыпают 4,7 кг крахмала, 0,5 кг сэвилена, 0,3 кг моностеарата глицерина, 0,1 кг карбоксилата железа и перемешивают в течение 1 минуты, полученную смесь направляют в бункер аппарата плавильно-нагревательного (поток 2).
По потоку 1 устанавливают скорость подачи материала 0,44 кг/мин, а по потоку 2-0,56 кг/мин., получаемая в двухшнековом экструдере, термпопластичная композиция дополнительно перемешивается в шестеренчатом насосе бустера-расплава и в головке формируется в листовальную заготовку, которая раскатывается на вальцах каландровой системы с получением листа толщиной 300 мкм. Общее содержание синтетических полимеров (полипропилен и сэвилен) в композиции составляет 39 мас. %.
Пример 3
Термопластичную композицию получают по примеру 2, но количество полипропилена составляло 3,2 кг, карбоната кальция 0,45 кг, оксида кальция 0,1 кг, крахмала 5,5 кг, сэвилена 0,4 кг, моностеарата глицерина 0,3 кг, карбоксилата железа 0,05 кг.
Общее содержание синтетических полимеров (полипропилен и сэвилен) в композиции составляет 36 мас. %.
Таблица 1 - Свойства получаемых термопластичных композиций
Наименование показателя Общее содержание синтетических полимеров, мас.%
42 (прототип) 39 (пример 2) 36 (пример 3)
Прочность на разрыв в продольном направлении, МПа 18,6 21,0 19,2
Прочность на разрыв в поперечном направлении, МПа 14,2 16,1 14,7
Относительное удлинение в продольном направлении, % 20,1 22,2 19,1
Относительное удлинение в поперечном направлении, % 9,0 9,1 8,3
Внешний вид Глянцевый белый лист Матовый белый лист
Соответствие ГОСТ 57432-2017 соответствует соответствует
Индекс деструкции по карбонильным группам 1,38 3,4 3,8
Вязкость при скорости сдвига 200 с-1, МПа 350 330 310
Как видно из таблицы 1 - разработанный состав и способ, позволяет производить композиции, не уступающие требованиям, предъявляемым данному классу материалов. При этом применение в рецептуре карбоксилата железа способствует снижению значения показателя эффективной вязкости расплава, что способствует повышению технологичности процесса.
Пример 4
Термопластичную композицию получают по примеру 2, однако содержание оксида кальция составляло 0,09 кг (0,9 мас. %).
При этом прочностные показатели получаемых образцов не соответствуют значениям ГОСТ 57432-2017: прочность в поперечном направлении 8 МПа, относительное удлинение в поперечном направлении 3,3 %. На поверхности листа отмечаются дефекты "рыбий глаз".
Пример 5
Термопластичную композицию получают по примеру 2, однако содержание оксида кальция составляло 0,21 кг (2,1 мас. %).
Прочностные характеристики соответствуют значениям ГОСТ 57432-2017: прочность в поперечном направлении 13 МПа, относительное удлинение в поперечном направлении 9 %, однако отмечается незначительное увеличение вязкости получаемого расплава при перерасходе агента осушения.
Пример 6
Термопластичную композицию получают по примеру 2, однако содержание карбоксилата железа составляло 0,005 кг (0,5 мас. %). Данные по примеру представлены в таблице 2.
Пример 7
Термопластичную композицию получают по примеру 2, однако содержание карбоксилата железа составляло 0,004 кг (0,4 мас. %). Данные по примеру представлены в таблице 2.
Пример 8
Термопластичную композицию получают по примеру 2, однако содержание карбоксилата железа составляло 0,011 кг (1,1 мас. %). Данные по примеру представлены в таблице 2.
Таблица 2 - Влияние содержания карбоксилата железа на технологические и эксплуатационные свойства разрабатываемой композиции
Номер примера 2 (1 мас.%) 6 (0,5 мас.%) 7 (0,4 мас.%) 8 (1,1 мас.%)
Индекс деструкции по карбонильным группам 3,4 3,2 1,7 4,1
Вязкость при скорости сдвига 200 с-1, МПа 330 380 370 300
Как видно из таблицы 2, при содержании карбоксилата железа менее 0,5 % в разрабатываемой композиции наблюдается низкая восприимчивость воздействия факторов окружающей среды на матрицу полипропилена, а при содержании более 1 % прогнозируются слишком интенсивные процессы деструкции, при этом с увеличением содержания карбоксила железа в составе разрабатываемой композиции от 0,4 до 1,1 мас.% показатель эффективной вязкости снижается более чем на 21 %.
Пример 9
Термопластичную композицию получали по примеру 3, однако совмещение потоков 1 и 2 проводили в первой зоне двухшнекового экструдера. Получение композиции при использовании этого подхода ограничивалось высокой степенью механотермической деструкции за счет длительного нахождения термолабильного наполнителя - крахмала при высоких скоростях сдвига и температуры. Получаемый материал был пористым, с характерным запахом продуктов деструкции и коричневого цвета.
Пример 10
Термопластичную композицию получали по примеру 3, однако совмещение потоков 1 и 2 проводили в 6 зоне двухшнекового экструдера.
Получение композиции при использовании этого подхода ограничивалось низкой степенью гомогенности получаемого материала, вследствие недостаточного времени смешения потоков. В результате образовывались центры напряжений, и полученный продукт не соответствовал по физико-механическим показателям значениям ГОСТ 57432-2017.
Пример 11
Композицию готовили по примеру 3, однако содержание карбоната кальция составляло 4,4 мас. %, при содержании крахмала 55,1 мас. %.
Физико-механическим показателям (см. таблицу 3) соответствовали значениям ГОСТ 57432-2017. Цвет получаемой композиции кремовый.
Пример 12
Композицию готовили по примеру 3, однако содержание карбоната кальция составляло 8 мас. %, при содержании крахмала 47 мас. %.
Прочностные показатели представлены в таблице 3. Цвет получаемой композиции белый.
Пример 13
Композицию готовили по примеру 3, однако содержание карбоната кальция составляло 8,5 мас. %, при содержании крахмала 46,5 мас. %.
Прочностные показатели представлены в таблице 3. Цвет получаемой композиции белый.
Таблица 3 - Физико-механические показатели биоразлагаемого листа изготовленного при различном содержании карбоната кальция.
Номер примера 3
(содержание карбоната кальция 4,5 мас.%)
11(содержание карбоната кальция 4,4 мас.%) 12 (содержание карбоната кальция
8 мас.%)
13 (содержание карбоната кальция 8,5 мас.%)
Прочность на разрыв в продольном направлении, МПа 19,2 18,1 19,0 17,5
Прочность на разрыв в поперечном направлении, МПа 14,7 14,4 14,9 14,2
Относительное удлинение в продольном направлении, % 15,1 14,1 15,3 13,7
Относительное удлинение в поперечном направлении, % 7,3 7,1 7,3 6,8
Таким образом, использование карбоната кальция, в интервале 4,5-8 %, при получении термопластичной композиции способствует увеличению физико-механических показателей за счет лучшего распределения наполнителя в матрице термопласта и придает материалу естественную белизну. С увеличением содержания мела более 8% прочностные показатели несколько снижаются, а цвет получаемого изделия темнеет, что связано с преобладанием процессов термодеструкции, вследствие высокого трения. Прочностные показатели разрабатываемого материала при содержании карбоната кальция менее 4,5 % находятся на уровне допускаемых значений при повышении себестоимости разрабатываемой композиции.
Использование состава и способа получения биодеградируемой термопластичной композиции позволяет:
- получить готовый продукт, соответствующий требованиям ГОСТ 57432-2017;
- упростить технологию изготовления материала за счет упразднения стадии сушки крахмала при перемешивании;
- снизить время подготовительных стадий;
- организовать стабильность дозирования применяемых материалов;
- получить биоразлагаемый материал с повышенным индексом деструкции;
- повысить экологическую безопасность за счет исключения диоксида титана.

Claims (3)

1. Состав биодеградируемой термопластичной композиции для изготовления пластмассовых изделий краткосрочного использования, содержащий полипропилен, этиленвинилацетат, кукурузный крахмал и моностеарат глицерина, отличающийся тем, что рецептура композиции содержит карбонат кальция, осушитель на основе оксида кальция и карбоксилат железа при следующем соотношении компонентов, мас.%:
полипропилен 32-34 крахмал 55-47 карбонат кальция 4,5-8 этиленвинилацетат 4-5 моностеарат глицерина 3 оксид кальция 1-2 карбоксилат железа 0.5-1.
2. Способ получения биодеградируемой термопластичной композиции, включающий смешение полипропилена 32-34 мас.%, карбоната кальция 4,5-8 мас.% и оксида кальция 1-2 мас.% в центробежном смесителе в течение 1 минуты и подачу их посредством дозатора в первую зону двухшнекового экструдера (поток 1), смешение этиленвинилацетата 4-5 мас.%, крахмала 55-47 мас.%, моностеарата глицерина 3 мас.% и карбоксилата железа 0.5-1 мас.% и направление их в аппарат плавильно-нагревательный, где при температуре 100÷110°С получается тестообразная масса (поток 2), которая совмещается с гомогенным расплавом (поток 1) в пятой зоне двухшнекового экструдера, и при температуре 180°С потоки 1 и 2, проходя последовательные стадии транспортирования, нагнетания, смешения, дегазации, образуют термопластичную композицию, которая с помощью шестеренчатого насоса-бустера дополнительно перемешивается и нагнетается в головку, где образуется листовая заготовка, которая поступает на охлаждаемый каландр и в виде полотна формируется в рулон.
RU2019127883A 2019-09-04 2019-09-04 Состав и способ получения биодеградируемой термопластичной композиции RU2725606C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019127883A RU2725606C2 (ru) 2019-09-04 2019-09-04 Состав и способ получения биодеградируемой термопластичной композиции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019127883A RU2725606C2 (ru) 2019-09-04 2019-09-04 Состав и способ получения биодеградируемой термопластичной композиции

Publications (3)

Publication Number Publication Date
RU2019127883A RU2019127883A (ru) 2019-11-18
RU2019127883A3 RU2019127883A3 (ru) 2020-01-22
RU2725606C2 true RU2725606C2 (ru) 2020-07-03

Family

ID=68579377

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019127883A RU2725606C2 (ru) 2019-09-04 2019-09-04 Состав и способ получения биодеградируемой термопластичной композиции

Country Status (1)

Country Link
RU (1) RU2725606C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761830C2 (ru) * 2020-06-30 2021-12-13 Федеральное государственное бюджетное научное учреждение «Федеральный научный центр пищевых систем им. В.М. Горбатова» РАН Биологически разрушаемая термопластичная композиция

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854304A (en) * 1994-12-14 1998-12-29 Epi Environmental Products Inc. Degradable/compostable concentrates, process for making degradable/compostable packaging materials and the products thereof
RU2376325C2 (ru) * 2008-02-21 2009-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов (ФГУП "ВИАМ") Способ получения термопластичной эластомерной композиции
RU2681909C1 (ru) * 2018-07-03 2019-03-13 Общество с ограниченной ответственностью "Крамбиопласт" Биологически разрушаемая термопластичная композиция

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854304A (en) * 1994-12-14 1998-12-29 Epi Environmental Products Inc. Degradable/compostable concentrates, process for making degradable/compostable packaging materials and the products thereof
RU2376325C2 (ru) * 2008-02-21 2009-12-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов (ФГУП "ВИАМ") Способ получения термопластичной эластомерной композиции
RU2681909C1 (ru) * 2018-07-03 2019-03-13 Общество с ограниченной ответственностью "Крамбиопласт" Биологически разрушаемая термопластичная композиция

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2761830C2 (ru) * 2020-06-30 2021-12-13 Федеральное государственное бюджетное научное учреждение «Федеральный научный центр пищевых систем им. В.М. Горбатова» РАН Биологически разрушаемая термопластичная композиция

Also Published As

Publication number Publication date
RU2019127883A3 (ru) 2020-01-22
RU2019127883A (ru) 2019-11-18

Similar Documents

Publication Publication Date Title
RU1836231C (ru) Способ получени капсул из желатина
CN1038422C (zh) 以淀粉为基料不溶于水的制品及其制备方法
US6544452B1 (en) Polymer processing method and tablet-forming apparatus
DE2839908A1 (de) Kunststoffmaterial und verfahren zu seiner herstellung
WO2007134492A1 (fr) Résine de plastique entièrement biodégradable, film à base de cette résine et procédé d'élaboration correspondant
CN107304285B (zh) 一种聚酯改性材料及其膜制品的制备方法
RU2725606C2 (ru) Состав и способ получения биодеградируемой термопластичной композиции
CN105199335A (zh) 一种可降解塑料薄膜的制备方法
CN114806106A (zh) Pbat基生物降解地膜专用料
RU2408621C2 (ru) Полимерная композиция для получения биодеградируемых формованных изделий из расплава
RU2363711C1 (ru) Биологически разрушаемая термопластичная композиция
WO2006066479A1 (en) A biodegradable plastic sheet and a method for preparing the same
RU2645677C1 (ru) Биологически разрушаемая термопластичная композиция
RU2681909C1 (ru) Биологически разрушаемая термопластичная композиция
US4002485A (en) Process for the production of thermoplastic synthetic materials of chemically modified protein and plastic shaping materials of chemically modified protein and a chemical plasticizer
KR101208107B1 (ko) 바이오매스 펠렛을 이용한 자동차 내장재용 플라스틱의 제조방법
JP2002502453A (ja) 軟質pvcの製法
JP4127534B2 (ja) マスターバッチおよびその製造方法
RU2318006C1 (ru) Биологически разрушаемая термопластичная композиция с использованием ржаной муки
EP4137285A2 (en) Method for preparing a biodegradable polymeric composition comprising thermoplastic starch and a synthetic biodegradable polymer
CN107674295A (zh) 一种用于透气膜的材料的制备方法
RU2446191C1 (ru) Полимерная композиция для получения биодеградируемых формовочных изделий из расплава
KR102204708B1 (ko) 복합분해성 폴리올레핀계 수지 조성물 및 이의 제조방법
US20210154895A1 (en) Scratch-proof tpu cutting board having increased wear resistance and no toxicity and method of manufacturing same
JP3462808B2 (ja) 石炭灰混入熱可塑性樹脂材料及びその製造方法