RU2725510C1 - Способ получения жаростойких покрытий на стали - Google Patents

Способ получения жаростойких покрытий на стали Download PDF

Info

Publication number
RU2725510C1
RU2725510C1 RU2019144685A RU2019144685A RU2725510C1 RU 2725510 C1 RU2725510 C1 RU 2725510C1 RU 2019144685 A RU2019144685 A RU 2019144685A RU 2019144685 A RU2019144685 A RU 2019144685A RU 2725510 C1 RU2725510 C1 RU 2725510C1
Authority
RU
Russia
Prior art keywords
nichrome
plates
layers
heat
temperature
Prior art date
Application number
RU2019144685A
Other languages
English (en)
Inventor
Леонид Моисеевич Гуревич
Виктор Георгиевич Шморгун
Сергей Петрович Писарев
Артем Игоревич Богданов
Виталий Павлович Кулевич
Дмитрий Витальевич Щербин
Александр Олегович Таубе
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority to RU2019144685A priority Critical patent/RU2725510C1/ru
Application granted granted Critical
Publication of RU2725510C1 publication Critical patent/RU2725510C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/06Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
    • B23K20/08Explosive welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение относится к способу получения жаростойких покрытий на стали и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью. Составляют пакет из стальной пластины и размещенных по обе её стороны нихромовых пластин толщиной 0,8-1 мм. Осуществляют сварку взрывом этих пластин при скорости детонации зарядов взрывчатого вещества 2240-2950 м/с. Высоту зарядов взрывчатого вещества и сварочные зазоры между свариваемыми металлами выбирают из условия получения скорости соударения нихромовых пластин со стальной пластиной в пределах 550-660 м/с. Выполняют алитирование обоих нихромовых слоёв в расплаве алюминия при 720-760°С в течение 0,015-0,025 ч. Термообработку полученной заготовки осуществляют в расплаве алюминия при 1000-1100°С и выдержке при этой температуре в течение 3-8 ч. Технический результат - повышение рабочей температуры жаростойких покрытий в окислительных газовых средах и упрощение способа получения покрытия. 1 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Description

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ (ВВ) и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью.
Известен способ получения жаростойкого интерметаллидного покрытия на поверхности пластины из низкоуглеродистой стали, при котором алюминиевую пластину размещают между пластинами из низкоуглеродистой стали. На поверхности одной из стальных пластин полученного пакета размещают заряд ВВ и осуществляют его сварку взрывом при регламентированных скоростных режимах соударения пластин и скорости детонации заряда ВВ. Термическую обработку сваренной трехслойной заготовки проводят при температуре 660-665°С в течение 0,7-1 ч, затем охлаждают с печью до температуры 640-650°С, выдерживают при этой температуре 2-3 ч с последующим охлаждением на воздухе, приводящим к самопроизвольному отделению алюминия от слоев низкоуглеродистой стали по интерметаллидным диффузионным прослойкам, с образованием при этом на поверхности каждой из двух стальных пластин сплошного жаростойкого покрытия системы алюминий-железо (Патент РФ №2649920, МПК В23К 20/08, С23С 26/00, опубл. 05.04.2018, бюл. №10).
К недостаткам данного способа следует отнести возможность нанесения таких покрытий лишь с одной стороны плоских стальных изделий, а также недостаточно высокую жаростойкость получаемого по этому способу покрытия, поскольку его допускаемая рабочая температура в окислительных газовых средах не превышает 950-1000°С, что весьма ограничивает возможности применения данного способа при изготовлении жаростойких деталей энергетических и химических установок.
Наиболее близким по техническому уровню и достигаемому результату является способ получения покрытия, при котором сваривают взрывом пакет из никелевой пластины с заданной толщиной и стальной пластины, осуществляют горячую прокатку сваренного двухслойного пакета при температуре 900-950°С с обжатием до толщины никелевого слоя, составляющей 0,3-0,5 его исходной толщины. Сваривают взрывом эту биметаллическую заготовку и алюминиевую пластину при скорости детонации заряда ВВ 2000-2700 м/с. Высоту заряда ВВ, а также сварочный зазор между метаемой алюминиевой пластиной и никелевым слоем неподвижной биметаллической заготовки выбирают из условия получения скорости их соударения в пределах 420-500 м/с. Термообработку сваренной трехслойной заготовки для образования сплошной интерметаллидной диффузионной прослойки между алюминием и никелем проводят при температуре 600-630°С в течение 1,5-7 ч с охлаждением на воздухе, приводящим к самопроизвольному разделению алюминия и никеля по интерметаллидной диффузионной прослойке. На поверхности стальной пластины получают жаростойкое покрытие из интерметаллидов системы алюминий-никель с малой амплитудой шероховатостей поверхности, имеющее пониженную склонность к образованию трещин при теплосменах, с рабочей температурой в окислительных газовых средах до 1000°С (Патент РФ №2486999, МПК В23К 20/08, С23С 26/00, опубл. 10.07.2013, бюл. №19 - прототип).
Недостатки данного способа такие же, как у описанного выше: возможность нанесения жаростойких покрытий лишь с одной стороны плоских стальных изделий, а также недостаточно высокая жаростойкость получаемого по этому способу покрытия. Его допускаемая рабочая температура в окислительных газовых средах не превышает 950-1000°С, что ограничивает возможности применения данного способа при изготовлении жаростойких деталей энергетических и химических установок.
В связи с этим важнейшей задачей является создание нового способа получения жаростойких покрытий на стальных изделиях, как плоской, так и сложной формы, по новой технологической схеме формирования фазового состава покрытий, их структуры и служебных свойств.
Техническим результатом заявленного способа является значительное повышение рабочей температуры жаростойких покрытий в окислительных газовых средах и упрощение способа получения покрытия.
Указанный технический результат достигается в предлагаемом способе получения жаростойких покрытий на стали, включающем составление пакета из неподвижной стальной пластины и метаемой пластины, содержащей материал покрытия, осуществление сварки взрывом этих пластин, нанесение алюминиевого покрытия, термообработку полученной заготовки для формирования на поверхности пластины, содержащей материал покрытия, диффузионного слоя и охлаждение на воздухе стальной пластины с нанесёнными слоями покрытия, причем упомянутый пакет составляют с симметричным размещением между двумя метаемыми нихромовыми пластинами, содержащими материал покрытия, толщиной 0,8-1 мм неподвижной стальной пластины толщиной не менее 3 мм, при этом используют одинаковые заряды взрывчатого вещества, которые располагают с двух сторон пакета на поверхностях нихромовых пластин, сварку взрывом осуществляют при одновременном инициировании в упомянутых зарядах взрывчатого вещества процесса детонации со скоростью детонации в каждом из них, равной 2240-2950 м/с, а высоту зарядов взрывчатого вещества и сварочные зазоры между свариваемыми металлами выбирают из условия получения скорости соударения нихромовых пластин с стальной пластиной в пределах 550-660 м/с, алюминиевые покрытия наносят алитированием обоих нихромовых слоёв сваренной трёхслойной заготовки в расплаве алюминия при температуре 720-760 оС в течение 0,015-0,025 ч, полученную при этом заготовку нагревают до температуры 1000-1100 оС, выдерживают при этой температуре в течение 3-8 ч с формированием с двух её сторон жаростойких слоёв, состоящих из продуктов диффузионного взаимодействия алюминия с нихромовыми слоями.
Способ получения жаростойких покрытий на стали характеризуется тем, что в качестве материала для изготовления нихромовых пластин используют сплав Х20Н80.
Новый способ имеет существенные отличия по сравнению с прототипом как по используемым материалам и совокупности технологических приёмов и режимов, осуществляемых при реализации способа, по фазовому составу, количеству поверхностей с нанесёнными покрытиями, так и по служебным свойствам получаемых покрытий. Так предложено составлять под сварку взрывом трёхслойный пакет с симметричным размещением между двумя метаемыми нихромовыми пластинами, содержащими материал покрытия, толщиной 0,8-1 мм неподвижной стальной пластины толщиной не менее 3 мм. Сплав Х20Н80 является жаростойким, способным длительно работать в окислительных газовых средах при температуре до 1200 оС, но живучесть его при этом не превышает 160 часов. Поскольку такого времени живучести у ряда изделий, используемых в промышленности недостаточно, то в данном способе для повышения долговечности получаемого покрытия нихромовый слой сваренной взрывом трёхслойной заготовки предложено алитировать. Перед алитированием, при необходимости, эту заготовку можно подвергнуть формоизменению путём горячей обработки давлением, что не приводит к ухудшению качества получаемого покрытия.
При толщине каждой нихромовой пластины менее 0,8 мм в процессе сварки взрывом у них могут происходить неконтролируемые деформации, вероятно появление нарушений сплошности, а их толщина более 1 мм является избыточной, поскольку на качество покрытия это не влияет, но приводит лишь к удорожанию получаемой продукции.
Толщину неподвижной стальной пластины предложено изготавливать толщиной не менее 3 мм. При толщине стальной пластины менее 3 мм возможны неконтролируемые деформации металлических слоев при сварке взрывом, приводящие к снижению качества получаемой продукции. При её толщине большей 3 мм ухудшения качества сварных соединений и качества получаемой продукции при соблюдении всех предлагаемых технологических режимов не происходит.
Симметричное размещение между двумя метаемыми нихромовыми пластинами неподвижной стальной пластины в сочетании с использованием одинаковых зарядов ВВ, которые располагают с двух сторон пакета на поверхностях нихромовых пластин, а также осуществление сварки взрывом при одновременном инициировании в зарядах ВВ процесса детонации способствует получению одинаковых скоростных режимов с двух сторон стальной пластины, и, тем самым, обеспечению качественной сварки обоих нихромовых пластин со стальной пластиной, исключает неконтролируемые деформации получаемой заготовки.
Предложено использовать при сварке взрывом заряды ВВ со скоростью детонации в каждом из них, равной 2240-2950 м/с, а высоту зарядов взрывчатого вещества и сварочные зазоры между свариваемыми металлами выбирать из условия получения скорости соударения нихромовых пластин с стальной пластиной в пределах 550-660 м/с, что обеспечивает надежную сварку пластин между собой, исключает нарушение сплошности металлических пластин, появление непроваров и других дефектов при сварке взрывом.
При скорости детонации обоих зарядов ВВ и скорости соударения металлических пластин в трёхслойном пакете выше верхних предлагаемых пределов возможны неконтролируемые деформации металлических слоёв с нарушениями их сплошности, что может привести к невозможности дальнейшего практического использования сваренной при этом заготовки. При скорости детонации зарядов ВВ и скоростях соударения металлических пластин в трёхслойном пакете ниже нижних предлагаемых пределов возможно появление непроваров в зонах соединения металлов, что приводит к появлению брака получаемой продукции.
Предложено алюминиевые покрытия наносить алитированием обоих нихромовых слоёв сваренной трёхслойной заготовки в расплаве алюминия при температуре 720-760 оС в течение 0,015-0,025 ч. При необходимости эту заготовку можно предварительно подвергнуть формоизменению. Операция алитирования обеспечивает необходимые условия для получения сплошных диффузионных слоёв на поверхностях нихромовых слоёв необходимой толщины и с необходимыми свойствами.
В процессе алитирования на предлагаемых режимах алюминий находится в жидком состоянии, при этом весьма существенно увеличивается скорость диффузионных процессов между ним и компонентами нихромовых слоёв, что способствует получению за короткое время этой операции на их поверхностях сплошных многокомпонентных диффузионных слоёв, из которых при дальнейшей термической обработке формируются жаростойкие покрытия с требуемыми свойствами.
При температуре и времени алитирования ниже нижних предлагаемых пределов не обеспечивается необходимая прочность сцепления диффузионных слоёв с нихромовыми слоями, что может приводить к появлению брака у получаемой продукции. Температура и время алитирования выше верхних предлагаемых пределов являются избыточными, поскольку это приводит к снижению служебных свойств у получаемых покрытий.
Алюминий является наиболее подходящим для процесса алитирования нихромовых слоёв, поскольку при взаимодействии с компонентами нихрома в процессе алитирования образует в необходимом количестве интерметаллидные фазы, способствующие повышению жаростойкости получаемых покрытий.
Алитированную заготовку предложено подвергать термической обработке: нагревать до температуры 1000-1100 оС, выдерживать при этой температуре в течение 3-8 ч для формирования на поверхностях нихромовых слоёв жаростойких слоёв, состоящих из продуктов диффузионного взаимодействия алюминия с нихромовыми слоями. В процессе такой термической обработки происходит трансформация диффузионных слоёв, полученных при алитировании, в слои, обладающими необходимыми служебными свойствами и толщиной.
При температуре и времени термической обработки ниже нижних предлагаемых пределов жаростойкость получаемых покрытий оказывается недостаточной. Температура и время термической обработки выше верхних предлагаемых пределов являются избыточными, поскольку не приводят к повышению служебных свойств получаемых покрытий.
После термической обработки стальную пластину с нанесёнными с двух её сторон сплошными жаростойкими покрытиями охлаждают на воздухе, поскольку такое охлаждение является наиболее дешевым способом снижения температуры, не приводящим к повреждению полученного по предлагаемому способу покрытия.
На фиг. 1 в качестве примера показан внешний вид стального изделия с внутренней полостью, с нанесёнными на него жаростойкими покрытиями, полученного с применением перед операцией алитирования горячей обработки давлением первоначально плоской заготовки.
На фиг. 2 показана часть поперечного сечения полученного изделия с указанием расположения в нём слоёв, где позиции 1, 2 - наружные слои покрытий, состоящие из продуктов диффузионного взаимодействия алюминия с нихромовыми слоями, 3, 4- промежуточные нихромовые слои, 5- стальной слой.
Предлагаемый способ получения жаростойких покрытий на стали осуществляется в следующей последовательности. Очищают от окислов и загрязнений свариваемые металлические пластины и составляют трёхслойный пакет с симметричным размещением между двумя метаемыми нихромовыми пластинами с толщиной каждой из них 0,8-1 мм, неподвижной стальной пластины с толщиной не менее 3 мм, при этом для изготовления нихромовых пластин предложено использовать сплав Х20Н80. Пластины в пакете располагают параллельно друг другу на расстоянии одинаковых технологических сварочных зазоров. Располагают с двух сторон пакета на метаемых нихромовых пластинах защитные прослойки из высокоэластичного материала, например, из резины, с одинаковыми зарядами ВВ, располагают полученную сборку вертикально на песчаном грунте и осуществляют сварку взрывом полученной при этом сборки путём одновременного взрыва зарядов ВВ с помощью электродетонатора и двух отрезков детонирующих шнуров равной длины. Скорость детонации каждого заряда ВВ должна быть равной 2240-2950 м/с, при этом их высоту, а также сварочные зазоры между соединяемыми металлами выбирают из условия получения скорости соударения метаемых нихромовых пластин с стальной пластиной в пределах 550-660 м/с.
После сварки взрывом, например, на фрезерном станке, обрезают у сваренной трёхслойной заготовки боковые кромки с краевыми эффектами, при необходимости подвергают формоизменению, после чего у такой заготовки, закреплённой в специальном приспособлении, алитируют нихромовые слои, например, в электропечи, в расплаве алюминия, при температуре 720-760 оС, в течение 0,015-0,025 ч.
Затем полученную заготовку нагревают в электропечи до температуры 1000-1100°С, выдерживают при этой температуре в течение 3-8 ч, после чего стальное изделие с нанесёнными на его поверхности сплошными жаростойкими покрытиями охлаждают на воздухе. В результате с двух сторон стальной, при необходимости формоизменённой вместе с нихромовыми слоями пластины, получают жаростойкие покрытия, каждое из которых состоит из наружного слоя, состоящего из продуктов диффузионного взаимодействия алюминия с нихромовым слоем толщиной 0,3-0,4 мм и промежуточного нихромового слоя толщиной около 0,6-0,85 мм.
При этом обеспечивается получение жаростойкого покрытия на стальных изделиях, как плоской, так и сложной формы, с рабочей температурой жаростойкого покрытия в окислительных газовых средах на 200-250 °С превосходящей рабочую температуру изделий по прототипу.
Кроме этого, происходит упрощение способа получения покрытия за счет его осуществления без использования в технологической схеме операции прокатки, с сокращением количества операций сварки взрывом до одной.
Сущность способа поясняется примерами. Все примеры, в том числе и пример по прототипу, приведены в таблице с указанием основных технологических режимов получения покрытий, состава и толщин свариваемых материалов, а также свойств полученного продукта.
Пример 1 (см. таблицу, пример 1).
Очищают от окислов и загрязнений две нихромовые пластины из сплава Х20Н80, а также пластину из стали 12Х2МФСР, из которых составляют трёхслойный пакет с симметричным размещением между двумя метаемыми нихромовыми пластинами неподвижной стальной. Пластины в пакете располагают параллельно друг другу на расстоянии одинаковых технологических сварочных зазоров. Размеры нихромовых пластин: длина 300 мм, ширина 200 мм, толщина д1=0,8 мм. У стальной пластины длина и ширина такие же, как у нихромовой, но толщина д2=3 мм. При сборке пакета предварительно, с помощью компьютерной технологии, определяют величину необходимых сварочных зазоров h. Для сварки взрывом пакета выбрано ВВ из рекомендуемого диапазона со скоростью детонации Dвв=2240 м/с. Такую скорость обеспечивает ВВ, представляющее собой смесь из 50% порошкообразного аммонита 6ЖВ и 50% аммиачной селитры. ВВ помещают в два контейнера длиной каждого из них 320 мм, шириной 220 мм, с обеспечением высоты каждого заряда ВВ Нвв=20 мм. Располагают с двух сторон пакета на метаемых нихромовых пластинах защитные прослойки из высокоэластичного материала, например, из резины толщиной 2 мм, защищающие поверхности метаемых нихромовых пластин от повреждений продуктами детонации ВВ, а на их поверхностях устанавливают заряды ВВ. Для получения скорости соударения металлических слоёв в пределах предлагаемого диапазона, при выбранных параметрах зарядов ВВ, величина сварочного зазора равна: h=1,4 мм, что обеспечивает скорость соударения слоёв при сварке взрывом V=550 м/с. Располагают полученную сборку вертикально на песчаном грунте и осуществляют сварку взрывом полученной при этом сборки путём одновременного взрыва зарядов ВВ с помощью электродетонатора и двух отрезков детонирующих шнуров равной длины. После сварки взрывом, например, на фрезерном станке, обрезают у сваренной трёхслойной заготовки боковые кромки с краевыми эффектами. После обрезки длина заготовки 280 мм, ширина - 180 мм.
Формоизменение сваренной заготовки производили путём горячей штамповки, при этом в ней была сформирована внутренняя полость.
После формоизменения у полученной заготовки очищают от окислов и загрязнений наружные поверхности, закрепляют её в специальном приспособлении и алитируют нихромовые слои, например, в электропечи, в расплаве алюминия, при температуре tал=720 °С в течение 0,025 ч, затем полученную заготовку нагревают в электропечи до температуры tто=1100 °С, выдерживают при этой температуре в течение фто=3 ч, после чего стальное изделие с нанесёнными с двух её сторон сплошными жаростойкими покрытиями охлаждают на воздухе. В результате с двух сторон стального изделия с внутренней полостью (см. фиг. 1, 2) получают жаростойкие покрытия, в виде наружных слоёв, состоящих из продуктов диффузионного взаимодействия алюминия с нихромовыми слоями с толщиной каждого динт=0,4 мм и промежуточных слоёв из сплава Х20Н80 с толщиной каждого дн=0,6 мм.
Допускаемая рабочая температура полученных покрытий на стали в окислительных газовых средах достигает 1200°С, что на 200-250 оС выше, чем у изделий, получаемых по прототипу, а живучесть при этой температуре не менее, чем в 50 раз выше, чем у сплава Х20Н80. Суммарная толщина стального изделия с покрытиями ди=5 мм. Промежуточный нихромовый слой из сплава Х20Н80 исключает возможность появления микротрещин в стальном слое со стороны наружного слоя покрытия, а также обеспечивает дополнительную защиту стали от окисления в нагретых газовых средах.
Пример 2 (см. таблицу, пример 2).
То же, что в примере 1, но внесены следующие изменения.
Толщина каждой нихромовой пластины д1=0,9 мм, у стальной пластины толщина д2=4 мм. Для сварки взрывом трёхслойного пакета выбрано ВВ из рекомендуемого диапазона со скоростью детонации Dвв=2580 м/с. Такую скорость обеспечивает ВВ, представляющее собой смесь из 75% порошкообразного аммонита 6ЖВ и 25% аммиачной селитры. ВВ помещают в два контейнера с обеспечением высоты каждого заряда ВВ Нвв=20 мм. Для получения скорости соударения металлических слоёв в пределах предлагаемого диапазона, при выбранных параметрах заряда ВВ, величина сварочных зазоров равна h=1,3 мм, что обеспечивает скорость соударения слоёв при сварке взрывом V=600 м/с.
Нихромовые слои алитируют при температуре tал=740 °С в течение 0,02 ч, затем полученную заготовку нагревают в электропечи до температуры tто=1050 °С, выдерживают при этой температуре в течение фто=5 ч.
Результаты получения жаростойких покрытий на стали те же, что в примере 1, но толщина их наружных слоёв динт=0,35 мм, у обоих промежуточных слоёв из сплава Х20Н80 толщина каждого из них дн=0,7 мм. Суммарная толщина стального изделия с покрытиями ди около 6,1 мм.
Пример 3 (см. таблицу, пример 3).
То же, что в примере 1, но внесены следующие изменения.
Толщина каждой нихромовой пластины д1=1 мм, у стальной пластины толщина д2=6 мм. Для сварки взрывом трёхслойного пакета выбрано ВВ из рекомендуемого диапазона со скоростью детонации Dвв=2950 м/с. Такую скорость обеспечивает ВВ, представляющее собой смесь из 75% порошкообразного аммонита 6ЖВ и 25% аммиачной селитры. ВВ помещают в два контейнера с обеспечением высоты каждого заряда ВВ Нвв=20 мм. Для получения скорости соударения металлических слоёв в пределах предлагаемого диапазона, при выбранных параметрах заряда ВВ, величина сварочных зазоров равна h=1,2 мм, что обеспечивает скорость соударения слоёв при сварке взрывом V=660 м/с. Перед алитированием формоизменение сваренной трёхслойной заготовки не производилось.
Нихромовые слои алитируют при температуре tал=760 оС в течение 0,015 ч, затем полученную заготовку нагревают в электропечи до температуры tто=1000 °С, выдерживают при этой температуре в течение фто=8 ч.
В результате с двух сторон стального изделия в виде пластины получают жаростойкие покрытия, в виде наружных слоёв, состоящих из продуктов диффузионного взаимодействия алюминия с нихромовыми слоями с толщиной каждого динт=0,3 мм и промежуточных слоёв из сплава Х20Н80 с толщиной каждого дн=0,85 мм. Суммарная толщина стального изделия с покрытиями ди около 8,3 мм.
При получении покрытия по прототипу (патент РФ №2486999) его рабочая температура не превышает 950-1000 оС что на 200-250 °С ниже, чем у изделий, получаемых по предлагаемому способу. При осуществлении этого способа требуется дополнительная операция сварки взрывом, а также дорогостоящая операция прокатки.
Таблица
Номер
примера
Параметры трёхслойного пакета из металлических пластин Режимы сварки взрывом пакета
из металлических пластин
1 Метаемые нихромовые пластины из сплава Х20Н80, толщина каждой из них δ1=0,8 мм, плакируемая (неподвижная) пластина из стали 12Х2МФСР, её толщина δ2=3 мм. Длина всех пластин в пакете равна 300 мм, ширина - 200 мм. Состав ВВ: смесь из аммонита 6ЖВ с аммиачной селитрой в соотношении 1:1. Высота каждого заряда ВВ Нвв=20 мм, скорость их детонации Dвв=2240 м/с, сварочные зазоры между пластинами пакета h=1,4 мм, скорость соударения метаемых нихромовых пластин со стальной пластиной Vc=550 м/с.
2 То же, что в примере 1, но толщина каждой нихромовой пластины δ1=0,9 мм, у плакируемой стальной пластины толщина δ2=4 мм. Состав ВВ: смесь из аммонита 6ЖВ с аммиачной селитрой в соотношении 3:1. Высота каждого заряда ВВ Нвв=20 мм, скорость их детонации Dвв=2580 м/с, сварочные зазоры между пластинами пакета h=1,3 мм, скорость соударения Vc=600 м/с.
3 То же, что в примере 1, но толщина каждой нихромовой пластины δ1=1 мм, у плакируемой стальной пластины толщина δ2=6 мм. Состав ВВ: смесь из аммонита 6ЖВ с аммиачной селитрой в соотношении 3:1. Высота каждого заряда ВВ Нвв=30 мм, скорость их детонации Dвв=2950 м/с, сварочные зазоры между пластинами пакета h=1,2 мм, скорость соударения Vc=660 м/с.
Прототип патент РФ №2486999 Составляют два пакета: в первом метаемая пластина из никеля марки НП1, неподвижная – из стали 12Х1МФ. После прокатки сваренного пакета второй пакет составляют из алюминия АД1 и сваренной на первом этапе биметаллической заготовки. Состав ВВ при сварке обоих пакетов: аммонита 6ЖВ и его смеси с аммиачной селитрой в соотношении 1:1 и 3:1. Скорость детонации у применяемых зарядов ВВ Dвв=2000-2700 м/с, скорости соударения пластин от 420 до 500 м/с.
Продолжение таблицы
Номер примера Метод формоизменения сваренной заготовки Режимы алитирования нихромовых слоёв Режимы термической обработки
1 Горячая штамповка с формированием в заготовке внутренней полости. Алитирование ведут в расплаве алюминия марки АД1, при температуре tал=720 °С в течение 0,025 ч. Температура tто=1100 °С с выдержкой при этой температуре в течение фто=3 ч, охлаждение на воздухе.
2 То же, что в примере 1 Алитируют при температуре tал=740 °С в течение 0,02 ч. tто=1050 °С с выдержкой фто=5 ч, охлаждение на воздухе.
3 Без формоизменения Алитируют при температуре tал=760 °С в течение 0,015 ч tто=1000 °С с выдержкой фто=8 ч, охлаждение на воздухе.
Прототип патент РФ №2486999 Формоизменение осуществляют методом прокатки Алитирование в расплаве в данном способе не предусмотрено. Температура термической обработки 600-630 °С в течение 1,5-7 ч, охлаждение на воздухе.
Продолжение таблицы
Номер примера Результаты получения жаростойких покрытий на стали
1 В результате с двух сторон стального изделия с внутренней полостью получают жаростойкие покрытия, каждое из которых в виде наружного слоя, состоящего из продуктов диффузионного взаимодействия алюминия с нихромовым слоем с толщиной динт=0,4 мм и промежуточного слоя из сплава Х20Н80 с толщиной дн=0,6 мм. Допускаемая рабочая температура полученных покрытий в окислительных газовых средах достигает 1200°С, что на 200-250 °С выше, чем у изделий, получаемых по прототипу, а живучесть при этой температуре не менее, чем в 50 раз выше, чем у сплава Х20Н80. Суммарная толщина стального изделия с покрытиями ди=5 мм.
2 То же, что в примере 1, но толщина каждого наружного слоя покрытия динт=0,35 мм, у каждого промежуточного слоя из сплава Х20Н80 толщина дн=0,7 мм. Суммарная толщина стального изделия с покрытиями ди около 6,1 мм.
3 То же, что в примере 1, но изделие в виде пластины. Толщина каждого наружного слоя динт=0,3 мм, у каждого промежуточного слоя из сплава Х20Н80 толщина дн=0,85 мм. Суммарная толщина стального изделия с покрытием ди около 8,3 мм.
Прототип патент РФ №2486999 Рабочая температура одностороннего покрытия толщиной 0,045-0,065 мм с промежуточным никелевым слоем толщиной 0,3-0,6 мм не превышает 950-1000 °С что на 200-250 °С ниже, чем у изделий, получаемых по предлагаемому способу, при этом при осуществлении данного способа требуется дополнительная операция сварки взрывом, а также дорогостоящая операция прокатки.
Таким образом, заявленный способ получения жаростойких покрытий на стали с помощью сварки взрывом трехслойного пакета, состоящего из двух наружных нихромовых и внутренней стальной пластины, с последующим алитированием нихромовых слоёв сваренной заготовки в расплаве алюминия, а также термической обработкой алитированной заготовки, как плоской, так и сложной формы, является более простым и позволяет получать жаростойкие покрытия со значительно более высокой рабочей температурой в окислительных газовых средах.

Claims (2)

1. Способ получения жаростойкого покрытия на стали, включающий составление пакета из неподвижной стальной пластины и метаемой пластины с покрытием, сварку взрывом этих пластин, нанесение алюминиевого покрытия на полученную заготовку, термообработку полученной заготовки для формирования на поверхности пластины с покрытием диффузионного слоя и охлаждение на воздухе стальной пластины с нанесёнными слоями покрытия, отличающийся тем, что упомянутый пакет составляют с симметричным размещением между двумя метаемыми нихромовыми пластинами с покрытием толщиной 0,8-1 мм неподвижной стальной пластины толщиной не менее 3 мм, при этом используют одинаковые заряды взрывчатого вещества, которые располагают с двух сторон пакета на поверхностях нихромовых пластин, сварку взрывом осуществляют при одновременном инициировании в упомянутых зарядах взрывчатого вещества процесса детонации со скоростью детонации в каждом из них, равной 2240-2950 м/с, а высоту зарядов взрывчатого вещества и сварочные зазоры между свариваемыми металлами выбирают из условия получения скорости соударения нихромовых пластин со стальной пластиной в пределах 550-660 м/с, при этом нанесение алюминиевого покрытия на полученную заготовку осуществляют алитированием обоих нихромовых слоёв сваренной трёхслойной заготовки в расплаве алюминия при температуре 720-760°С в течение 0,015-0,025 ч, затем полученную при этом заготовку нагревают до температуры 1000-1100°С и выдерживают при этой температуре в течение 3-8 ч для формирования с двух её сторон жаростойких слоёв, состоящих из продуктов диффузионного взаимодействия алюминия с нихромовыми слоями.
2. Способ по п. 1, отличающийся тем, что в качестве материала для изготовления нихромовых пластин используют сплав Х20Н80.
RU2019144685A 2019-12-28 2019-12-28 Способ получения жаростойких покрытий на стали RU2725510C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019144685A RU2725510C1 (ru) 2019-12-28 2019-12-28 Способ получения жаростойких покрытий на стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019144685A RU2725510C1 (ru) 2019-12-28 2019-12-28 Способ получения жаростойких покрытий на стали

Publications (1)

Publication Number Publication Date
RU2725510C1 true RU2725510C1 (ru) 2020-07-02

Family

ID=71510304

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019144685A RU2725510C1 (ru) 2019-12-28 2019-12-28 Способ получения жаростойких покрытий на стали

Country Status (1)

Country Link
RU (1) RU2725510C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807245C1 (ru) * 2023-03-02 2023-11-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения жаростойкого покрытия на поверхностях титановой пластины

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2116177C1 (ru) * 1997-06-16 1998-07-27 Волгоградский государственный технический университет Способ получения плоских сверхпроводящих изделий сваркой взрывом
JP2000117462A (ja) * 1998-10-20 2000-04-25 Sanwa Shokai:Kk 多層複合材料及びその製造方法
RU2202456C1 (ru) * 2001-08-27 2003-04-20 Волгоградский государственный технический университет Способ получения износостойкого покрытия на поверхности стальных деталей
WO2004060599A1 (en) * 2003-01-02 2004-07-22 Sigmabond Technologies Corporation Explosively bonded composite structures and method of production thereof
RU107994U1 (ru) * 2011-05-06 2011-09-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Композиционный теплозащитный экран
RU2486999C1 (ru) * 2012-05-03 2013-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения покрытия
RU2649920C1 (ru) * 2017-03-29 2018-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины из низкоуглеродистой стали

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2116177C1 (ru) * 1997-06-16 1998-07-27 Волгоградский государственный технический университет Способ получения плоских сверхпроводящих изделий сваркой взрывом
JP2000117462A (ja) * 1998-10-20 2000-04-25 Sanwa Shokai:Kk 多層複合材料及びその製造方法
RU2202456C1 (ru) * 2001-08-27 2003-04-20 Волгоградский государственный технический университет Способ получения износостойкого покрытия на поверхности стальных деталей
WO2004060599A1 (en) * 2003-01-02 2004-07-22 Sigmabond Technologies Corporation Explosively bonded composite structures and method of production thereof
RU107994U1 (ru) * 2011-05-06 2011-09-10 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Композиционный теплозащитный экран
RU2486999C1 (ru) * 2012-05-03 2013-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения покрытия
RU2649920C1 (ru) * 2017-03-29 2018-04-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины из низкоуглеродистой стали

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807245C1 (ru) * 2023-03-02 2023-11-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения жаростойкого покрытия на поверхностях титановой пластины
RU2807243C1 (ru) * 2023-03-02 2023-11-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения жаростойкого покрытия
RU2807264C1 (ru) * 2023-03-02 2023-11-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения жаростойкого покрытия

Similar Documents

Publication Publication Date Title
US7066375B2 (en) Aluminum coating for the corrosion protection of welds
RU2649929C1 (ru) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины из низкоуглеродистой стали
RU2486999C1 (ru) Способ получения покрытия
RU2725510C1 (ru) Способ получения жаростойких покрытий на стали
JP2024134495A (ja) 金属からなるシームレス複合管に勾配温度をラインで制御する装置及び金属からなるシームレス複合管を圧延して複合する方法
EP0758283B1 (en) Fabrication of tubular wall thrust chambers for rocket engines using laser powder injection
RU2725503C1 (ru) Способ получения жаростойких покрытий на стали
WO1995029785A9 (en) Fabrication of tubular wall thrust chambers for rocket engines using laser powder injection
RU2725501C1 (ru) Способ получения жаростойкого покрытия на стали
RU2725507C1 (ru) Способ получения жаростойкого покрытия на стали
RU2399471C1 (ru) Способ получения композиционных алюминиево-никелевых изделий с внутренними полостями сваркой взрывом
RU2486043C1 (ru) Способ получения изделий с внутренними полостями сваркой взрывом
RU2649920C1 (ru) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины из низкоуглеродистой стали
RU2649922C1 (ru) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины
US2800709A (en) Method of making composite stock
RU2807253C1 (ru) Способ получения жаростойкого покрытия на поверхности пластины из жаропрочной стали
RU2488469C1 (ru) Способ получения композиционных изделий с внутренними полостями сваркой взрывом
RU2807264C1 (ru) Способ получения жаростойкого покрытия
RU2807255C1 (ru) Способ получения жаростойкого покрытия на поверхностях пластины из жаропрочной стали
RU2807251C1 (ru) Способ получения жаростойкого покрытия на поверхностях медной пластины
RU2642240C1 (ru) Способ получения покрытий
RU2463139C1 (ru) Способ получения композиционного материала титан-сталь
RU2649921C1 (ru) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины
RU2174458C2 (ru) Способ получения крупногабаритных биметаллических листов сталь-титан сваркой взрывом
RU2463141C1 (ru) Способ получения композиционного материала титан-сталь