RU2649922C1 - Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины - Google Patents

Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины Download PDF

Info

Publication number
RU2649922C1
RU2649922C1 RU2017110649A RU2017110649A RU2649922C1 RU 2649922 C1 RU2649922 C1 RU 2649922C1 RU 2017110649 A RU2017110649 A RU 2017110649A RU 2017110649 A RU2017110649 A RU 2017110649A RU 2649922 C1 RU2649922 C1 RU 2649922C1
Authority
RU
Russia
Prior art keywords
layer
plates
steel
plate
aluminum
Prior art date
Application number
RU2017110649A
Other languages
English (en)
Inventor
Леонид Моисеевич Гуревич
Виктор Георгиевич Шморгун
Сергей Петрович Писарев
Дмитрий Владимирович Проничев
Вячеслав Федорович Казак
Виталий Павлович Кулевич
Алексей Геннадьевич Серов
Роман Евгеньевич Новиков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ)
Priority to RU2017110649A priority Critical patent/RU2649922C1/ru
Application granted granted Critical
Publication of RU2649922C1 publication Critical patent/RU2649922C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/06Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of high energy impulses, e.g. magnetic energy
    • B23K20/08Explosive welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение может быть использовано при изготовлении жаростойких деталей энергетических и химических установок. Алюминиевую пластину размещают между пластинами из низкоуглеродистой стали. Полученный трехслойный пакет располагают между пластинами из легированной стали. Полученный пятислойный пакет сваривают взрывом при заданной скорости детонации заряда взрывчатого вещества. Высоту заряда и сварочные зазоры между пластинами в пятислойном пакете выбирают из условия получения заданных скоростей соударения пластин. Проводят термическую обработку сваренной пятислойной заготовки и охлаждение с печью до заданной температуры. Последующее охлаждение на воздухе заготовки приводит к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам с образованием двух биметаллических пластин. Каждая из полученных пластин состоит из слоя легированной и слоя низкоуглеродистой стали и имеет сплошное жаростойкое покрытие системы алюминий-железо на поверхности слоя из низкоуглеродистой стали. Способ обеспечивает одновременное получение двух биметаллических пластин, состоящих из слоев легированной и низкоуглеродистой стали со сплошными жаростойкими покрытиями на поверхностях слоев из низкоуглеродистой стали при проведении одной операции сварки взрывом. 1 табл., 3 пр.

Description

Изобретение относится к технологии получения покрытий на металлах с помощью энергии взрывчатых веществ и может быть использовано при изготовлении деталей энергетических и химических установок, обладающих повышенной жаростойкостью.
Известен способ, обеспечивающий одновременное получение за время одного технологического цикла износостойких покрытий на титановой и стальной пластинах. При реализации этого способа осуществляют сварку взрывом пластин титана и стали, а затем проводят высокотемпературную диффузионную термическую обработку сваренной заготовки для формирования на границах раздела металлов интерметаллидного слоя заданной толщины. Сварку взрывом пластины из титана со стальной пластиной осуществляют на режимах, обеспечивающих амплитуду волн в зоне соединения металлов равную 0,18-0,37 мм, при этом процесс ведут при скорости соударения свариваемых пластин равной 440-650 м/с и регламентированной скорости детонации взрывчатого вещества, затем сваренную заготовку нагревают до температуры 900-950°С и выдерживают при этой температуре в вакуумной печи 10-14 ч до образования в сформированной при сварке взрывом волнообразной зоне соединения титана и стали высокотвердой интерметаллидной диффузионной прослойки толщиной 0,16-0,3 мм (160-300 мкм), после этого заготовку охлаждают вместе с печью, а затем нагревают до температуры 930-950°С, выдерживают при этой температуре 3-8 мин, а затем охлаждают в воде для отделения титана от стали по диффузионной прослойке с формированием при этом на титане и стали высокотвердых износостойких покрытий с регулярной волнообразной поверхностью. Полученные по этому способу покрытия обладают высокой износостойкостью (Патент РФ №2350442, МПК В23К 20/08, опубл. 27.03.2009, бюл. №9).
Достоинством этого способа является возможность одновременного получения покрытий на титановой и стальной пластинах, а к его недостаткам следует отнести малую жаростойкость получаемых по этому способу покрытий: допускаемая рабочая температура изделий с такими покрытиями в окислительных газовых средах не превышает 600°C, что ограничивает возможности применения данного способа при изготовлении жаростойких деталей энергетических и химических установок.
Наиболее близким по техническому уровню и достигаемому результату является способ получения покрытия, при котором сваривают взрывом пакет из никелевой пластины толщиной 1-1,2 мм и стальной пластины, осуществляют горячую прокатку сваренного двухслойного пакета при температуре 900-950°C с обжатием до толщины никелевого слоя, составляющей 0,3-0,5 его исходной толщины. Сваривают взрывом эту биметаллическую заготовку и алюминиевую пластину при скорости детонации заряда взрывчатого вещества 2000-2700 м/с. Высоту заряда взрывчатого вещества, а также сварочный зазор между метаемой алюминиевой пластиной и никелевым слоем неподвижной биметаллической заготовки выбирают из условия получения скорости их соударения в пределах 420-500 м/с. Термообработку сваренной трехслойной заготовки для образования сплошной интерметаллидной диффузионной прослойки между алюминием и никелем проводят при температуре 600-630°C в течение 1,5-7 ч с охлаждением на воздухе, приводящим к самопроизвольному разделению алюминия и никеля по интерметаллидной диффузионной прослойке. На поверхности стальной пластины получают жаростойкое покрытие из интерметаллидов системы алюминий-никель толщиной 0,045-0,065 мм (45-65 мкм) с малой амплитудой шероховатостей поверхности, имеющее пониженную склонность к образованию трещин при теплосменах, с рабочей температурой в окислительных газовых средах до 1000°C (Патент РФ №2486999, МПК В23К 20/08, С23С 26/00, опубл. 10.07.13, бюл. №19 - прототип).
Недостатком этого способа является возможность получения за один технологический цикл жаростойкого покрытия из интерметаллидов системы алюминий - никель лишь на одной стальной пластине, использование в его технологической схеме дорогостоящего никеля, дорогостоящей операции прокатки сваренной двухслойной заготовки, необходимость осуществления сварки взрывом металлических слоев в два этапа, что значительно увеличивает затраты на получение покрытия и ограничивает применение данного способа при изготовлении жаростойких деталей энергетических и химических установок.
В связи с этим важнейшей задачей является создание нового способа получения сразу на двух пластинах из легированной стали интерметаллидных покрытий с высокой жаростойкостью, с малой амплитудой шероховатостей на поверхности каждого покрытия, с пониженной склонностью к образованию трещин при теплосменах, без использования при этом в технологической схеме дорогостоящего никеля и операции прокатки, с сокращением количества операций сварки взрывом до одной, по новой технологической схеме формирования фазового состава интерметаллидных покрытий, их структуры и служебных свойств.
Техническим результатом заявленного способа является создание новой технологии, обеспечивающей с помощью сварки взрывом пятислойного пакета из металлических пластин и последующих термических воздействий на сваренную заготовку одновременное получение на двух стальных пластинах из легированной стали интерметаллидных покрытий системы алюминий-железо без использования, при этом в технологической схеме, дорогостоящего никеля и операции прокатки, с сокращением количества операций сварки взрывом до одной, с обеспечением при этом, высокой жаростойкости, малой амплитуды шероховатостей поверхности покрытия на каждой стальной пластине и пониженной склонности покрытий к образованию трещин при теплосменах.
Указанный технический результат достигается тем, что в предлагаемом способе получения жаростойкого интерметаллидного покрытия на поверхности стальной пластины, включающем составление пакета из стальных пластин и размещенной между ними с зазором пластины, содержащей материал покрытия, установку над пакетом заряда взрывчатого вещества и осуществление сварки взрывом, после чего проводят термическую обработку сваренной заготовки для формирования на границе раздела металлов сплошной интерметаллидной диффузионной прослойки заданной толщины с последующим разделением полученной заготовки по диффузионной прослойке, в качестве пластины, содержащей материал покрытия, используют алюминиевую пластину толщиной 1-1,5 мм, при составлении пакета размещают ее между пластинами из низкоуглеродистой стали толщиной 1,2-1,5 мм, а затем полученный трехслойный пакет располагают между пластинами из легированной стали с толщиной верхней метаемой стальной пластины равной 2-10 мм, нижней стальной пластины - не менее 2 мм, полученный пятислойный пакет сваривают взрывом при скорости детонации заряда взрывчатого вещества 2320-2600 м/с, причем высоту заряда взрывчатого вещества и сварочные зазоры между пластинами в пятислойном пакете выбирают из условия получения скоростей соударения стальных пластин между собой в пределах 400-520 м/с, а пластин из низкоуглеродистой стали с алюминиевой пластиной - в пределах 440-510 м/с, при этом термическую обработку сваренной пятислойной заготовки проводят при температуре 660-665°С в течение 0,7-1 ч, охлаждают с печью до температуры 640-650°С и выдерживают при этой температуре 2-3 ч с последующим охлаждением на воздухе, приводящим к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам с образованием двух биметаллических пластин, каждая из которых состоит из слоя легированной и слоя низкоуглеродистой стали и имеет сплошное жаростойкое покрытие системы алюминий-железо на поверхности слоя из низкоуглеродистой стали.
Новый способ получения покрытия имеет существенные отличия по сравнению с прототипом как по количеству стальных пластин с покрытиями, получаемых за один технологический цикл, так и по фазовому составу и по совокупности технологических приемов и режимов при его получении.
Так предложено составлять трехслойный пакет с размещением между пластинами из низкоуглеродистой стали толщиной 1,2-1,5 мм алюминиевой пластины толщиной 1-1,5 мм и располагать его между пластинами из легированной стали с толщиной верхней метаемой пластины из легированной стали равной 2-10 мм, нижней пластины - не менее 2 мм, полученный при этом пятислойный пакет сваривать взрывом при скорости детонации заряда взрывчатого вещества 2320-2600 м/с, высоту заряда взрывчатого вещества, а также сварочные зазоры между пластинами в пятислойном пакете выбирать из условия получения скоростей соударения стальных пластин между собой в пределах 400-520 м/с, а пластин из низкоуглеродистой стали с алюминиевой в пределах 440-510 м/с, что обеспечивает в пятислойном пакете надежную сварку смежных стальных слоев между собой, а также алюминиевой пластины с пластинами из низкоуглеродистой стали, с минимальной амплитудой волн в зонах соединения слоев, исключает нарушение сплошности металлических пластин при сварке взрывом, создает, благоприятные условия для получения при дальнейших технологических операциях жаростойких покрытий с высокими служебными свойствами за время одного технологического цикла одновременно на двух стальных пластинах из легированной стали. Толщина алюминиевой пластины менее 1 мм является недостаточной для обеспечения стабильных сварочных зазоров между ней и стальными пластинами, что может привести к появлению непроваров и других дефектов в зонах соединения слоев, а это, в свою очередь, может привести к снижению качества получаемой продукции. Толщина алюминиевой пластины более 1,5 мм является избыточной, поскольку при этом происходит чрезмерный расход алюминия в расчете на одно изделие. Алюминиевый слой в сваренной пятислойной заготовке необходим для формирования двух жаростойких диффузионных прослоек из интерметаллидов системы алюминий - железо между алюминием и стальными слоями из низкоуглеродистой стали при последующей термической обработке, а также для создания необходимого уровня внутренних термических напряжений, возникающих при охлаждении многослойной заготовки, способствующих отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам.
Предложено при составлении пятислойного пакета использовать пластины из низкоуглеродистой стали, выполняющие функции вспомогательных промежуточных прослоек между алюминиевым слоем и пластинами из легированной стали, что обеспечивает возможность получения в зоне соединения стальных пластин с алюминиевой пластиной диффузионных прослоек из интерметаллидов системы алюминий - железо с необходимым составом и свойствами. Толщина пластин из низкоуглеродистой стали менее 1,2 мм недостаточна для обеспечения стабильных сварочных зазоров между пластинами пакета, что может привести к появлению непроваров и других дефектов в зонах соединения слоев, снижающих качество получаемой продукции. Толщина этих пластин более 1,5 мм является избыточной, поскольку это может привести к возникновению неблагоприятных скоростных режимов при сварке взрывом, что, в свою очередь, может привести к появлению непроваров и других дефектов в зонах соединения слоев пятислойного пакета.
Предложено верхнюю метаемую пластину, а также нижнюю пластину пятислойного пакета выполнять из легированной стали, что обеспечивает высокую прочность получаемых изделий в процессе эксплуатации. Предложено толщину верхней метаемой пластины из легированной стали выбирать равной 2-10 мм, что способствует получению качественных сварных соединений на всех межслойных границах при сварке взрывом пятислойного пакета из металлических пластин. Толщина верхней метаемой пластины менее 2 мм является недостаточной для получения сварных соединений без волнообразования в зонах соединения слоев, снижающего качество получаемых покрытий, а ее толщина более 10 мм может приводить к появлению непроваров в зонах соединения слоев, приводящих к браку получаемой продукции. При толщине нижней стальной пластины менее 2 мм возможны неконтролируемые деформации металлических слоев при сварке взрывом, приводящие к снижению качества получаемой продукции. Использование нижней стальной пластины с толщиной равной или большей 2 мм не приводит к ухудшению качества сварных соединений и качества получаемой продукции. При скорости детонации взрывчатого вещества и скоростях соударения металлических пластин в пятислойном пакете выше верхних предлагаемых пределов возможны неконтролируемые деформации металлических пластин с нарушениями их сплошности, при этом может происходить интенсивное волнообразование в зонах соединения слоев, что может привести к невозможности дальнейшего практического использования сваренных заготовок. При скорости детонации взрывчатого вещества и скоростях соударения металлических пластин в ниже нижних предлагаемых пределов возможно появление непроваров в зонах соединения металлов, что приводит появлению брака получаемой продукции.
Термическую обработку сваренной пятислойной заготовки для образования сплошных интерметаллидных диффузионных прослоек между алюминиевым слоем и слоями из низкоуглеродистой стали предложено проводить при температуре 660-665°C в течение 0,7-1 ч, охлаждать с печью до температуры 640-650°C, выдерживать в печи при этой температуре 2-3 ч с последующим охлаждением на воздухе, приводящим к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам с образованием при этом двух биметаллических пластин, состоящих из слоев легированной и низкоуглеродистой стали со сплошными жаростойкими покрытиями на поверхностях слоев из низкоуглеродистой стали. Таким образом, предложено термическую обработку сваренной пятислойной заготовки для образования сплошных интерметаллидных диффузионных прослоек между алюминиевым и стальными слоями проводить в два этапа. На первом этапе ее проводят при температуре 660-665°C в течение 0,7-1 ч с охлаждением с печью до температуры 640-650°C. На втором этапе заготовку выдерживают в печи при температуре 640-650°C в течение 2-3 ч с последующим охлаждением на воздухе, приводящим к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам с образованием при этом двух биметаллических пластин, состоящих из слоев легированной и низкоуглеродистой стали со сплошными жаростойкими покрытиями на поверхностях слоев из низкоуглеродистой стали.
При термической обработке первого этапа алюминиевый слой переходит в жидкое состояние, при этом весьма существенно увеличивается скорость диффузионных процессов между алюминием и стальными слоями, что способствует получению за короткое время термической обработки на межслойных границах интерметаллидных диффузионных прослоек требуемой толщины и состава, материал которых обладает высокой жаростойкостью. При температуре и времени термической обработки первого этапа ниже нижних предлагаемых пределов толщина получаемых интерметаллидных диффузионных прослоек оказывается недостаточной, что снижает способность каждого получаемого покрытия сопротивляться длительному окислительному воздействию газов при высоких температурах. Температура и время термической обработки выше верхних предлагаемых пределов являются избыточными, поскольку толщина интерметаллидных прослоек становится чрезмерной, при этом повышается вероятность хрупкого разрушения покрытий при дальнейшей эксплуатации полученных изделий в условиях теплосмен. Кроме того, при более высоких температурах жидкотекучесть алюминия становится слишком большой, что может привести к вытеканию алюминия из промежутка между стальными пластинами. Охлаждение с печью до температуры 640-650°C после термообработки первого этапа обеспечивает целостность диффузионных интерметаллидных прослоек в полученной многослойной заготовке. При термической обработке второго этапа происходит дополнительное увеличение толщины интерметаллидных диффузионных прослоек, но при этом с двух сторон алюминиевого слоя возникают тонкие весьма хрупкие прослойки из интерметаллида FeAl3, способствующие в процессе охлаждения на воздухе полученной многослойной заготовки самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам, при этом самопроизвольное отделение происходит по тонким слоям из интерметаллида FeAl3, благодаря чему наружные поверхности полученных покрытий на стальных пластинах имеют незначительную амплитуду шероховатости поверхности. При температуре и времени термической обработки второго этапа ниже нижних предлагаемых пределов толщина получаемых интерметаллидных диффузионных прослоек из интерметаллида FeAl3 оказывается недостаточной и при этом не происходит самопроизвольного отделения алюминия от стальных слоев по интерметаллидным диффузионным прослойкам в процессе охлаждения многослойной заготовки на воздухе. При температуре и времени термической обработки этого этапа выше верхних предлагаемых пределов толщина получаемых интерметаллидных диффузионных прослоек из интерметаллида FeAl3 оказывается избыточной, что приводит к получению покрытий на стальных пластинах с чрезмерно большой амплитудой шероховатости поверхности.
Предлагаемый способ получения покрытия осуществляется в следующей последовательности. Очищают от окислов и загрязнений свариваемые металлические пластины и составляют трехслойный пакет под сварку взрывом с размещением со сварочными зазорами между пластинами из низкоуглеродистой стали толщиной 1,2-1,5 мм алюминиевой пластины толщиной 1-1,5 мм, располагают его со сварочными зазорами между пластинами из легированной стали с толщиной верхней метаемой стальной пластины равной 2-10 мм, нижней стальной пластины - не менее 2 мм, полученный при этом пятислойный пакет укладывают на основание, размещенное на грунте. На поверхность пакета укладывают защитную прослойку из высокоэластичного материала, например, резины, защищающую поверхность верхней метаемой стальной пластины от повреждений, а на ее поверхности располагают заряд взрывчатого вещества со скоростью детонации 2320-2600 м/с. Высоту заряда взрывчатого вещества, а также сварочные зазоры между пластинами в пятислойном пакете выбирают из условия получения скоростей соударения стальных пластин между собой в пределах 400-520 м/с, а пластин из низкоуглеродистой стали с алюминиевой в пределах 440-510 м/с. Инициирование процесса детонации в заряде взрывчатого вещества осуществляют с помощью электродетонатора.
После сварки взрывом, например, на фрезерном станке обрезают у сваренной пятислойной заготовки боковые кромки с краевыми эффектами, закрепляют ее в специальном удерживающем устройстве, которое предотвращает взаимное перемещение металлических слоев и вытекание алюминия из промежутка между стальными слоями при последующей термической обработке, размещают полученную сборку, например, в электропечи, после чего проводят термическую обработку сваренной пятислойной заготовки для образования сплошных интерметаллидных диффузионных прослоек между алюминиевым и стальными слоями, при температуре 660-665°C в течение 0,7-1 ч, охлаждают с печью до температуры 640-650°C, выдерживают при этой температуре 2-3 ч, извлекают термически обработанную заготовку из удерживающего устройства, после чего ее охлаждают на воздухе, что приводит к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам с образованием при этом на поверхностях слоев из низкоуглеродистой стали биметаллических пластин сплошных жаростойких покрытий. После этого эти две пластины с нанесенными на них жаростойкими покрытиями, состоящими из интерметаллидов системы алюминий-железо, могут быть использованы по назначению, а отделенный алюминиевый слой с тонкими интерметаллидными слоями на его наружных поверхностях идет на вторичную переработку.
В отличие от прототипа, за один технологический цикл одновременно получают две пластины с покрытиями, без использования в технологической схеме дорогостоящего никеля и операции прокатки, с сокращением количества операций сварки взрывом до одной. Служебные свойства покрытий, полученных по предлагаемому способу, не уступают свойствам покрытий, полученных по прототипу: рабочая температура в окислительных газовых средах достигает 950-1000°C, малая амплитуда шероховатостей поверхности и пониженная склонность к образованию трещин при теплосменах.
Сущность способа поясняется примерами. Все примеры, в том числе и пример по прототипу, сведены в таблице с указанием основных технологических режимов получения покрытия, состава и толщин свариваемых материалов, а также свойств полученного продукта.
Пример 1.
Очищают от окислов и загрязнений свариваемые металлические пластины из низкоуглеродистой стали Ст3сп, алюминия марки АД1 и жаропрочной легированной стали 15Х12ВНМФ и составляют трехслойный пакет под сварку взрывом с размещением со сварочными зазорами между стальными пластинами из низкоуглеродистой стали толщиной δн.у=1,2 мм алюминиевой пластины толщиной δAl=1 мм. Располагают его со сварочными зазорами между пластинами из легированной стали 15Х12ВНМФ с толщиной верхней метаемой стальной пластины равной δв=2 мм, нижней стальной пластины - δн=2 мм, полученный при этом пятислойный пакет укладывают на плоское основание из древесно-стружечной плиты длиной 400 мм, шириной 300 мм, толщиной 18 мм, размещенное на грунте. При сборке пакетов предварительно, с помощью компьютерной технологии, определяют величину необходимых сварочных зазоров: зазор между метаемой стальной пластиной из легированной стали и смежной с ней пластиной из низкоуглеродистой стали h 1 , между этой пластиной и алюминиевой - h 2 , между алюминиевой пластиной и расположенной ниже пластиной из низкоуглеродистой стали - h 3 , зазор между этой пластиной и смежной с ней нижней пластиной из легированной стали - h 4 .
Для сварки взрывом пятислойного пакета выбираем взрывчатое вещество из рекомендуемого диапазона со скоростью детонации DBB=2320 м/с. Такую скорость обеспечивает взрывчатое вещество, представляющее собой смесь из 25% порошкообразного аммонита 6ЖВ и 75% аммиачной селитры. Взрывчатое вещество помещают в контейнер с обеспечением высоты заряда взрывчатого вещества НВВ=80 мм, длиной 420 мм, шириной 320 мм. На поверхность пакета укладывают защитную прослойку из высокоэластичного материала, например, резины толщиной 2 мм, защищающую поверхность верхней метаемой стальной пластины из легированной стали от повреждений, а на ее поверхности располагают заряд взрывчатого вещества. Для получения скорости соударения металлических слоев в пределах предлагаемого диапазона, при выбранных параметрах заряда взрывчатого вещества, величина сварочных зазоров равна: h 1 =1,5 мм, h 2 =3,8 мм, h 3 =1 мм, h 4 =2 мм, что обеспечивает скорость соударения верхней метаемой стальной пластины из легированной стали с смежной с ней пластиной из низкоуглеродистой стали V 1 =520 м/с, скорость соударения этой пластины с алюминиевой V 2 =510 м/с, алюминиевой пластины с расположенной ниже пластиной из низкоуглеродистой стали V 3 =510 м/с, скорость соударения этой пластины со смежной с ней нижней пластиной из легированной стали V 4 =440 м/с. Сварку взрывом осуществляют с инициированием процесса детонации в заряде взрывчатого вещества с помощью электродетонатора и вспомогательного заряда взрывчатого вещества. После сварки, например, на фрезерном станке обрезают у сваренной пятислойной заготовки боковые кромки с краевыми эффектами. После обрезки длина заготовки равна 380 мм, ширина - 280 мм. Затем закрепляют ее в специальном удерживающем устройстве, размещают полученную сборку, например, в электропечи, после чего проводят термическую обработку сваренной пятислойной заготовки для образования сплошных интерметаллидных диффузионных прослоек между алюминиевым и стальными слоями, и при температуре T1=660°C в течение τ1=1 ч, затем охлаждают с печью до температуры Т2=640°C, выдерживают при этой температуре τ2=3 ч, извлекают термически обработанную заготовку из удерживающего устройства, после чего ее охлаждают на воздухе, что приводит к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам.
В результате, в отличие от прототипа, за один технологический цикл одновременно получают две биметаллические пластины, состоящие из слоев легированной стали 15Х12ВНМФ и низкоуглеродистой стали Ст3сп со сплошными жаростойкими покрытиями из интерметаллидов системы алюминий-железо с толщиной каждого из них δинт=0,08 мм (80 мкм) на поверхностях слоев из низкоуглеродистой стали Ст3сп, при этом толщина каждого слоя из легированной стали в биметаллических пластинах - 2 мм, толщина каждого слоя из низкоуглеродистой стали - около 1,2 мм. Получение покрытий по предлагаемому способу осуществляют без использования в технологической схеме, дорогостоящего никеля и операции прокатки, при этом сокращено количество операций сварки взрывом до одной. Служебные свойства покрытий, полученных по предлагаемому способу, не уступают свойствам покрытий, полученных по прототипу: рабочая температура в окислительных газовых средах полученных покрытий достигает 950-1000°C, амплитуда шероховатостей поверхности не превышает 0,01 мм (10 мкм), у полученных покрытий пониженная склонность к образованию трещин при теплосменах.
Пример 2.
То же, что в примере 1, но внесены следующие изменения. Толщина верхней метаемой пластины из легированной стали δв=4 мм, нижней стальной пластины - δн=12 мм, толщина каждой стальной пластины из низкоуглеродистой стали δн.у=1,3 мм, толщина алюминиевой пластины δAl=1,2 мм.
Для сварки взрывом пятислойного пакета выбираем взрывчатое вещество из рекомендуемого диапазона со скоростью детонации DBB=2420 м/с. Такую скорость обеспечивает взрывчатое вещество, представляющее собой смесь из 25% порошкообразного аммонита 6ЖВ и 75% аммиачной селитры. Высота заряда взрывчатого вещества HBB=100 мм.
Для получения скорости соударения металлических слоев в пределах предлагаемого диапазона, при выбранных параметрах заряда взрывчатого вещества, величина сварочных зазоров равна: h 1 =2,5 мм, h 2 =3,4 мм, h 3 =1 мм, h 4 =1 мм, что обеспечивает скорость соударения верхней метаемой стальной пластины из легированной стали со смежной с ней пластиной из низкоуглеродистой стали V 1 =480 м/с, скорость соударения этой пластины с алюминиевой V 2 =480 м/с, алюминиевой пластины с расположенной ниже пластиной из низкоуглеродистой стали V 3 =470 м/с, скорость соударения этой пластины со смежной с ней нижней пластиной из легированной стали V 4 =410 м/с.
После сварки взрывом, обрезки у сваренной пятислойной заготовки боковых кромок с краевыми эффектами и нанесения на ее боковые поверхности специальной обмазки заготовку подвергают термической обработке при температуре T1=662°C в течение τ1=0,85 ч, затем охлаждают с печью до температуры Т2=645°C, выдерживают в печи при этой температуре в течение τ2=2,5 ч с последующим охлаждением на воздухе.
Результаты те же, что в примере 1, но толщина слоя из легированной стали у одной из биметаллических пластин - 4 мм, у второй - 12 мм, толщина каждого слоя из низкоуглеродистой стали - около 1,3 мм, толщина каждого жаростойкого покрытия из интерметаллидов системы алюминий-железо δинт=0,07 мм (70 мкм).
Пример 3.
То же, что в примере 1, но внесены следующие изменения. Толщина верхней метаемой пластины из легированной стали δв=10 мм, нижней стальной пластины - δн=25 мм, толщина каждой стальной пластины из низкоуглеродистой стали δн.у=1,5 мм, толщина алюминиевой пластины δAl=1,5 мм.
Для сварки взрывом пятислойного пакета выбираем взрывчатое вещество из рекомендуемого диапазона со скоростью детонации DBB=2600 м/с. Такую скорость обеспечивает взрывчатое вещество, представляющее собой смесь из 33% порошкообразного аммонита 6ЖВ и 67% аммиачной селитры. Высота заряда взрывчатого вещества HBB=150 мм. Для получения скорости соударения металлических слоев в пределах предлагаемого диапазона, при выбранных параметрах заряда взрывчатого вещества, величина сварочных зазоров равна: h 1 =5,4 мм, h 2 =2,8 мм, h 3 =1 мм, h 4 =1 мм, что обеспечивает скорость соударения верхней метаемой стальной пластины
Figure 00000001
Figure 00000002
из легированной стали со смежной с ней пластиной из низкоуглеродистой стали V 1 =450 м/с, скорость соударения этой пластины с алюминиевой V 2 =440 м/с, алюминиевой пластины с расположенной ниже пластиной из низкоуглеродистой стали V 3 =440 м/с, скорость соударения этой пластины со смежной с ней нижней пластиной из легированной стали V 4 =400 м/с.
После сварки взрывом и обрезки у сваренной пятислойной заготовки боковых кромок с краевыми эффектами заготовку подвергают термической обработке при температуре T1=665°C в течение τ1=0,7 ч, затем охлаждают с печью до температуры Т2=650°C, выдерживают в печи при этой температуре в течение τ2=2 ч с последующим охлаждением на воздухе.
Результаты те же, что в примере 1, но толщина слоя из легированной стали у одной из биметаллических пластин - 10 мм, у второй - 25 мм, толщина каждого слоя из низкоуглеродистой стали - около 1,5 мм, толщина каждого жаростойкого покрытия из интерметаллидов системы алюминий-железо δинт=0,06 мм (60 мкм).
При получении покрытия по прототипу (см. таблицу, пример 4) за один технологический цикл получают на поверхности лишь одной стальной пластины толщиной от 3 до 7 мм сплошное жаростойкое покрытие, состоящее из наружного слоя из интерметаллидов системы алюминий-никель толщиной от 0,045 мм (45 мкм) до 0,065 мм (65 мкм) и промежуточной никелевой прослойки толщиной 0,3-0,6 мм. Как и у предлагаемого способа рабочая температура жаростойкого покрытия в окислительных газовых средах достигает 950-1000°C, амплитуда шероховатостей поверхности покрытия не превышает 10 мкм, пониженная склонность к образованию трещин при теплосменах, но, в отличие от предлагаемого способа, при получении покрытия по прототипу используют дорогостоящий никель, трудоемкую операцию прокатки, дважды осуществляют операции сварки взрывом, что приводит к существенным затратам на получение покрытия, а это ограничивает применение данного способа при изготовлении жаростойких деталей энергетических и химических установок.

Claims (1)

  1. Способ получения жаростойкого интерметаллидного покрытия на поверхности стальной пластины, включающий составление пакета из стальных пластин и размещенной между ними с зазором пластины, содержащей материал покрытия, установку над пакетом заряда взрывчатого вещества и осуществление сварки взрывом, после чего проводят термическую обработку сваренной заготовки для формирования на границе раздела металлов сплошной интерметаллидной диффузионной прослойки заданной толщины с последующим разделением полученной заготовки по диффузионной прослойке, отличающийся тем, что в качестве пластины, содержащей материал покрытия, используют алюминиевую пластину толщиной 1-1,5 мм, при составлении пакета размещают ее между пластинами из низкоуглеродистой стали толщиной 1,2-1,5 мм, а затем полученный трехслойный пакет располагают между пластинами из легированной стали с толщиной верхней метаемой стальной пластины равной 2-10 мм, нижней стальной пластины - не менее 2 мм, полученный пятислойный пакет сваривают взрывом при скорости детонации заряда взрывчатого вещества 2320-2600 м/с, причем высоту заряда взрывчатого вещества и сварочные зазоры между пластинами в пятислойном пакете выбирают из условия получения скоростей соударения стальных пластин между собой в пределах 400-520 м/с, а пластин из низкоуглеродистой стали с алюминиевой пластиной - в пределах 440-510 м/с, при этом термическую обработку сваренной пятислойной заготовки проводят при температуре 660-665°С в течение 0,7-1 ч, охлаждают с печью до температуры 640-650°С и выдерживают при этой температуре 2-3 ч с последующим охлаждением на воздухе, приводящим к самопроизвольному отделению алюминия от стальных слоев по интерметаллидным диффузионным прослойкам с образованием двух биметаллических пластин, каждая из которых состоит из слоя легированной и слоя низкоуглеродистой стали и имеет сплошное жаростойкое покрытие системы алюминий-железо на поверхности слоя из низкоуглеродистой стали.
RU2017110649A 2017-03-29 2017-03-29 Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины RU2649922C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017110649A RU2649922C1 (ru) 2017-03-29 2017-03-29 Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017110649A RU2649922C1 (ru) 2017-03-29 2017-03-29 Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины

Publications (1)

Publication Number Publication Date
RU2649922C1 true RU2649922C1 (ru) 2018-04-05

Family

ID=61867254

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017110649A RU2649922C1 (ru) 2017-03-29 2017-03-29 Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины

Country Status (1)

Country Link
RU (1) RU2649922C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314375A1 (en) * 2019-09-13 2022-10-06 Ohio State Innovation Foundation Methods for and devices prepared from shape material alloy welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117462A (ja) * 1998-10-20 2000-04-25 Sanwa Shokai:Kk 多層複合材料及びその製造方法
RU2202456C1 (ru) * 2001-08-27 2003-04-20 Волгоградский государственный технический университет Способ получения износостойкого покрытия на поверхности стальных деталей
RU2350442C2 (ru) * 2007-04-17 2009-03-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ получения износостойких покрытий
RU2486999C1 (ru) * 2012-05-03 2013-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения покрытия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117462A (ja) * 1998-10-20 2000-04-25 Sanwa Shokai:Kk 多層複合材料及びその製造方法
RU2202456C1 (ru) * 2001-08-27 2003-04-20 Волгоградский государственный технический университет Способ получения износостойкого покрытия на поверхности стальных деталей
RU2350442C2 (ru) * 2007-04-17 2009-03-27 Государственное образовательное учреждение высшего профессионального образования Волгоградский государственный технический университет (ВолгГТУ) Способ получения износостойких покрытий
RU2486999C1 (ru) * 2012-05-03 2013-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения покрытия

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314375A1 (en) * 2019-09-13 2022-10-06 Ohio State Innovation Foundation Methods for and devices prepared from shape material alloy welding

Similar Documents

Publication Publication Date Title
RU2486999C1 (ru) Способ получения покрытия
RU2649929C1 (ru) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины из низкоуглеродистой стали
CN110079706A (zh) 一种热交换器用钎焊复合铝板带材及其制造方法
RU2679814C1 (ru) Способ получения износостойких покрытий на поверхностях пластин из меди и магниевого сплава
RU2350442C2 (ru) Способ получения износостойких покрытий
JPS63118058A (ja) セラミツク溶射部材およびその製造方法
RU2649922C1 (ru) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины
RU2463140C1 (ru) Способ получения композиционного материала титан-алюминий
RU2649920C1 (ru) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины из низкоуглеродистой стали
RU2649921C1 (ru) Способ получения жаростойкого интерметаллидного покрытия на поверхности пластины
RU2486043C1 (ru) Способ получения изделий с внутренними полостями сваркой взрывом
RU2642240C1 (ru) Способ получения покрытий
RU2463141C1 (ru) Способ получения композиционного материала титан-сталь
RU2370350C1 (ru) Способ получения композиционного материала титан-алюминий
RU2293004C1 (ru) Способ получения композиционного материала титан - сталь
RU2701699C1 (ru) Способ получения износостойких покрытий на поверхностях пластин из алюминиевого сплава и меди
RU2711284C1 (ru) Способ получения износостойких покрытий на поверхностях пластин из меди и алюминиевого сплава
RU2533508C1 (ru) Способ получения композиционного материала медь-титан
US20040149806A1 (en) Explosively bonded composite structures and method of production thereof
RU2488469C1 (ru) Способ получения композиционных изделий с внутренними полостями сваркой взрывом
RU2700441C1 (ru) Способ получения медно-никелевого покрытия на поверхностях титановой пластины
RU2685321C1 (ru) Способ получения композиционного материала из меди, титана и стали
RU2807264C1 (ru) Способ получения жаростойкого покрытия
RU2685314C1 (ru) Способ получения композиционного материала из меди, титана и стали
RU2391191C1 (ru) Способ получения износостойких покрытий

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190330