RU2725206C1 - Распределитель потока жидкости в системах поддержания пластового давления - Google Patents

Распределитель потока жидкости в системах поддержания пластового давления Download PDF

Info

Publication number
RU2725206C1
RU2725206C1 RU2019132846A RU2019132846A RU2725206C1 RU 2725206 C1 RU2725206 C1 RU 2725206C1 RU 2019132846 A RU2019132846 A RU 2019132846A RU 2019132846 A RU2019132846 A RU 2019132846A RU 2725206 C1 RU2725206 C1 RU 2725206C1
Authority
RU
Russia
Prior art keywords
group
wells
spring
seat
channel
Prior art date
Application number
RU2019132846A
Other languages
English (en)
Inventor
Ильсияр Ильгизарович Гарнаев
Владимир Николаевич Краснов
Ильмира Ильсияровна Башмакова
Original Assignee
Публичное акционерное общество «Татнефть» имени В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество «Татнефть» имени В.Д. Шашина filed Critical Публичное акционерное общество «Татнефть» имени В.Д. Шашина
Priority to RU2019132846A priority Critical patent/RU2725206C1/ru
Application granted granted Critical
Publication of RU2725206C1 publication Critical patent/RU2725206C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/02Valve arrangements for boreholes or wells in well heads
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water

Abstract

Изобретение относится к нефтегазодобывающей промышленности, а именно для закачки воды в нефтеносные пласты для поддержания в них оптимальной величины давления. Распределитель потока жидкости в системах поддержания пластового давления включает корпус с патрубком для подачи рабочей жидкости и каналами для отбора жидкости, один из которых снабжен подпружиненным уплотнительным узлом с седлом. Первый канал с уплотнительным узлом, сообщенный с первой группой скважин с высокой приемистостью и низким давлением закачки, расположен под прямым углом к патрубку, имеющему площадь поперечного сечения, превосходящую пропускную площадь открытого уплотнительного узла, отжимаемого от седла пружиной с усилием, превосходящим усилие прижатия уплотнительного узла к седлу в закрытом состоянии. Второй канал, соосный с патрубком и сообщенный со второй группой скважин с меньшей проницаемостью и более высоким давлением закачки по сравнению с первой группой, дополнительно оснащен гидравлическим сопротивлением и гидрокомпенсатором, установленным между второй группой скважин и гидравлическим сопротивлением. Техническим результатом является повышение надежности распределителя потока жидкости. 2 ил.

Description

Изобретение относится к нефтегазодобывающей промышленности, а именно для закачки воды в нефтеносные пласты для поддержания в них оптимальной величины давления.
Известны способ разработки нефтяных пластов и оборудование кустовой насосной станции с участком нефтяного месторождения (патент RU № 2265120, МПК Е21В 43/20, опубл. 27.11.2005 в Бюл. № 33), в котором реализуется оборудование и система их расположения на кустовой насосной станции и на участке разрабатываемого нефтяного месторождения, включающие куст насосной станции, размещенные в ней силовые насосные агрегаты, выкидные водопроводы, распределительные узлы и проложенные до нагнетательных скважин нагнетательные водопроводы, блоки управления и контроля, причем насосы на кустовых насосных станциях состоят из насосов, образующих две ступени откачки: первая ступень состоит из центробежных или поршневых насосов, приводимых в работу электродвигателями, вторая ступень представляет собой гидравлические насосы-измерители, каждый из которых установлен на начале водопровода, идущего к отдельным нагнетательным скважинам после распределительного узла, которые состоят их двух секций, выполняющих функцию трансформирования гидравлической энергии до определенных необходимых величин давления нагнетания, осуществляемого путем подбора соотношений диаметров первой секции, выполняющей функции измерителя расхода и гидравлического двигателя, и второй секции, выполняющей функцию дожимного насоса, позволяющего повысить давление откачиваемой воды до определенной величины и регулировать его производительность до определенной величины, что обеспечено подбором отдельных секций, штоком и приемно-нагнетательными трубами, а выкид дожимной секции - с нагнетательным водопроводом, далее колонной нагнетательных труб, находящихся в скважине, при этом управление работой гидравлических насосов и измерение необходимых параметров, характеризующих режимы работы системы «насосы откачки - водопровод - скважина», предусмотрены блоком управления, измерений и регулирования режимов работы по сигналам детекторов положения поршней при возвратно-поступательном их движении в отдельных и групповых блочных помещениях, где установлены электросчетчики с возможностью передачи в диспетчерские пульты для обработки по отдельным программам в компьютерных устройствах и определения эффективности работы всей системы нагнетания.
Недостатками данной системы являются сложность реализации и настройки, так как на каждую скважину устанавливается отдельный насос-измеритель, который сложен в изготовлении и настройке, при этом сложно синхронизировать по нагрузке центробежные и поршневые насосы.
Наиболее близким по технической сущности является переключатель скважин многоходовой (патент RU № 2598490, МПК F16K 11/085, E21B 34/02, опубл. 27.09.2016 в Бюл. № 27), содержащий корпус с установленным в нем обечайкой с отверстиями для подключения патрубков подачи рабочей жидкости, поворотный канал для отбора жидкости с подпружиненным подвижным уплотнительным узлом, снабженным роликами, причем корпус уплотнительного узла и обечайка с отверстиями выполнены из нержавеющей стали, а отверстия в обечайке выполнены диаметром меньше внутреннего диаметра подводящего трубопровода на 3-5 мм, кроме того, по контуру отверстий и между отверстиями обечайки выполнены сварные соединения с корпусом.
Недостатками данного переключателя скважин являются низкая надежность из-за необходимости уплотнения большой площади по периметру обечайки, которая вращается, и соединения отверстий обечайки с патрубками при помощи подвижного уплотнительного узла, узкая область применения так как распределение потока жидкости осуществляется только в принудительном порядке при повороте обечайки без защиты от гидроударов.
Технической задачей предполагаемого изобретения является создание простой и надежной конструкции распределителя потока жидкости в системах поддержания пластового давления, позволяющей распределять поток жидкости между скважинами с различной приемистостью в автоматическом режиме с минимальным количеством подвижных деталей и защитой о гидроударов при помощи гидрокомпенсатора.
Техническая задача решается распределителем потока жидкости в системах поддержания пластового давления (ППД), включающим корпус с патрубком для подачи рабочей жидкости и каналами для отбора жидкости, один из которых снабжен подпружиненным уплотнительным узлом с седлом.
Новым является то, что первый канал, сообщенный с первой группой скважин с высокой приемистостью и низким давлением закачки, с уплотнительным узлом расположен под прямым углом к патрубку, имеющему площадь поперечного сечения превосходящую пропускную площадь открытого уплотнительного узла, отжимаемого от седла пружиной с усилием, превосходящим усилие прижатия уплотнительного узла к седлу в закрытом состоянии, второй канал, соосный с патрубком и сообщенный со второй группой скважин с меньшей проницаемостью и более высоким давлением закачки по сравнению с первой группой, дополнительно оснащен гидравлическим сопротивлением и гидрокомпенсатором, установленным между второй группой скважин и гидравлическим сопротивлением.
На фиг. 1 изображена схема установки распределителя потока в системе ППД.
На фиг. 2 изображена схема распределителя потока с частичным продольным разрезом.
Перед закачкой жидкости нагнетательные скважины 1 (фиг. 1) и 2 разбивают на две группы скважин 1 или 2: первая – со скважинами 1 с высокой приемистостью и низким давлением закачки; вторая – со скважинами 2 с меньшей проницаемостью и более высоким давлением закачки по сравнению с первой группой скважин 1. Группы скважин 1 и 2 соединяют через разделитель потока 3 с кустовой насосной станцией (КНС) 4. Разделитель потока 3 жидкости содержит корпус 5 (фиг. 2) с патрубком 6 для подачи рабочей жидкости с КНС 4 (фиг. 1) и каналами 7 (фиг. 2) и 8 для отбора жидкости. Первый канал 7 снабжен уплотнительным узлом 9 с пружиной 10 и седлом 11. Первый канал 7, сообщенный с первой группой скважин 1 (фиг. 1), с уплотнительным узлом 9 (фиг. 2) расположен под прямым углом к патрубку 6, имеющему площадь поперечного сечения превосходящую пропускную площадь открытого уплотнительного узла 9. Уплотнительный узел 9 отжат от седла 11 пружиной 10 с усилием, превосходящим усилие прижатия уплотнительного узла 9 к седлу 11 в закрытом состоянии перепадом давлений между патрубком 6 и скважинами 1 (фиг. 1). Второй канал 8 (фиг. 2), соосный с патрубком 6 и сообщенный со второй группой скважин 2 (фиг. 1), дополнительно оснащен гидравлическим сопротивлением 12 (фиг. 2) и гидрокомпенсатором 13, установленным между второй группой скважин 2 (фиг. 1) и гидравлическим сопротивлением 12 (фиг. 2).
Гидравлическое сопротивление 12 может быть выполнено в виде патрубка с маленькими отверстиями по периметру, жиклера, подпружиненного клапана или т.п. (не показано, авторы на это не претендуют). Гидрокомпенсатор 13 может быть выполнен в виде корпуса 14 с эластичной герметичной камерой 15, цилиндра и подпружиненного от входа поршня (не показано) или т.п. (авторы на это не претендуют). Конструктивные элементы и технологические соединения, не влияющие на работоспособность распределителя потока, на фиг 1 и 2 не показаны или показаны условно.
Распределитель потока работает следующим образом.
Перед закачкой жидкости нагнетательные скважины 1 (фиг. 1) и 2 разбивают на две группы скважин 1 или 2: первая – со скважинами 1 с высокой приемистостью и низким давлением закачки; вторая – со скважинами 2 с меньшей проницаемостью и более высоким давлением закачки по сравнению с первой группой скважин 1. Группы скважин 1 и 2 соединяют через разделитель потока 3 с КНС 4. С КНС 4 жидкость последовательно нагнетается через разделитель потока 3 в группы скважин 1 и 2. При этом жидкость по патрубку 6 (фиг. 2) поступает в корпус 5 и первоначально перенаправляется через уплотнительный узел 9 по каналу 7 к группе скважин 1 (фиг. 1) с высокой приемистостью и низким давлением закачки, обеспечивающими высокую скорость потока жидкости в корпусе 5 (фиг. 2). Так как площадь поперечного сечения патрубка 6 превосходит пропускную площадь открытого уплотнительного узла 9, то в промежутке между уплотнительным узлом 9 и седлом 11 скорость потока еще больше возрастает и обеспечивает снижение статического давления на этом участке (согласно закона Бернулли), в результате, преодолевая усилие пружины 10, уплотнительный узел 9 прижмется к седлу 11 и перекроет поток к каналу 7. При этом в патрубке 6 и корпусе 5 резко возрастает давление, которое через гидравлическое сопротивление 11 передается в гидрокомпенсатор 13, исключая гидроударное воздействие через канал 8 на группу скважин 2 (фиг. 1). При этом поток жидкости направляется в группу скважин 2 и заполняет, например, камеру 15 корпуса 14 гидрокомпенсатора 13, снижая давление в патрубке 6 корпуса 5. Из-за того, что усилие пружины 10 превосходит усилие прижатия уплотнительного узла 9 к седлу 11 в закрытом состоянии перепадом давлений между патрубком 6 и скважинами 1, происходит открытие под действием пружины 10 уплотнительного узла 9, и направление потока жидкости с КНС 4 (фиг. 1) к группе скважин 1. При этом жидкость из гидрокомпенсатора 13 (фиг. 2) направляется, благодаря гидравлическому сопротивлению 12, через канал 8 в группу скважин 2 (фиг. 1) и незначительно в группу скважин 1 через канал 7 (фиг.2). После чего цикл закачки из КНС 4 (фиг.1) в группы скважин 1 и 2 повторяют. Объемы закачки регулируют изменением усилия пружины 10 (фиг.2) и пропускной способностью гидравлического сопротивления 12 эмпирическим путем. На способы регулировки усилия пружины 10 и пропускной способности гидравлического сопротивления 12 авторы не претендуют, так как они известны из открытых источников. Предлагаемая конструкция разделителя потока 3 (фиг. 1) проста и надежна так как в ней минимальное количество подвижных частей – уплотнительный узел 9 (фиг.2), причем абсолютной герметичности прижатия его к седлу 11 его не требуется, так как даже при небольшом пропуске жидкости работоспособность разделителя потока 3 (фиг. 1) и объемы распределяемой жидкости сильно не изменяются, только в пределах допустимой погрешности (5 – 7 %). При этом после настройки пропускной способности разделителя потока 3 никаких внешних воздействий для распределения потоков между группами скважин 1 и 2 не требуется.
Предлагаемый распределитель потока жидкости в системах поддержания пластового давления прост и надежен из-за минимального количества подвижных деталей и наличия защиты о гидроударов при помощи гидрокомпенсатора, позволяет распределять поток жидкости между скважинами с различной приемистостью в автоматическом режиме, исключая «человеческий фактор».

Claims (1)

  1. Распределитель потока жидкости в системах поддержания пластового давления, включающий корпус с патрубком для подачи рабочей жидкости и каналами для отбора жидкости, один из которых снабжен подпружиненным уплотнительным узлом с седлом, отличающийся тем, что первый канал, сообщенный с первой группой скважин с высокой приемистостью и низким давлением закачки, с уплотнительным узлом расположен под прямым углом к патрубку, имеющему площадь поперечного сечения, превосходящую пропускную площадь открытого уплотнительного узла, отжимаемого от седла пружиной с усилием, превосходящим усилие прижатия уплотнительного узла к седлу в закрытом состоянии, второй канал, соосный с патрубком и сообщенный со второй группой скважин с меньшей проницаемостью и более высоким давлением закачки по сравнению с первой группой, дополнительно оснащен гидравлическим сопротивлением и гидрокомпенсатором, установленным между второй группой скважин и гидравлическим сопротивлением.
RU2019132846A 2019-10-16 2019-10-16 Распределитель потока жидкости в системах поддержания пластового давления RU2725206C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019132846A RU2725206C1 (ru) 2019-10-16 2019-10-16 Распределитель потока жидкости в системах поддержания пластового давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019132846A RU2725206C1 (ru) 2019-10-16 2019-10-16 Распределитель потока жидкости в системах поддержания пластового давления

Publications (1)

Publication Number Publication Date
RU2725206C1 true RU2725206C1 (ru) 2020-06-30

Family

ID=71509905

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019132846A RU2725206C1 (ru) 2019-10-16 2019-10-16 Распределитель потока жидкости в системах поддержания пластового давления

Country Status (1)

Country Link
RU (1) RU2725206C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1622588A1 (ru) * 1989-02-27 1991-01-23 Краснодарское Научно-Производственное Объединение "Промавтоматика" Система управлени перекрытием газовых скважин
US5046522A (en) * 1989-08-02 1991-09-10 Fmc Corporation Rotary elbow fluid distribution/collection valve
RU2255211C1 (ru) * 2004-10-25 2005-06-27 Салахов Минзагит Мукатдисович Скважинная установка для совместно-раздельной закачки и отбора жидкости по пластам
EP2976559A1 (en) * 2013-07-08 2016-01-27 Alagarsamy Sundararajan Gate valve with seat assembly
RU2598490C2 (ru) * 2014-12-15 2016-09-27 Общество с ограниченной ответственностью "Завод нефтегазового оборудования "ТЕХНОВЕК" Переключатель скважин многоходовой

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1622588A1 (ru) * 1989-02-27 1991-01-23 Краснодарское Научно-Производственное Объединение "Промавтоматика" Система управлени перекрытием газовых скважин
US5046522A (en) * 1989-08-02 1991-09-10 Fmc Corporation Rotary elbow fluid distribution/collection valve
RU2255211C1 (ru) * 2004-10-25 2005-06-27 Салахов Минзагит Мукатдисович Скважинная установка для совместно-раздельной закачки и отбора жидкости по пластам
EP2976559A1 (en) * 2013-07-08 2016-01-27 Alagarsamy Sundararajan Gate valve with seat assembly
RU2598490C2 (ru) * 2014-12-15 2016-09-27 Общество с ограниченной ответственностью "Завод нефтегазового оборудования "ТЕХНОВЕК" Переключатель скважин многоходовой

Similar Documents

Publication Publication Date Title
RU2668629C1 (ru) Системы общего коллектора с встроенными гидравлическими системами передачи энергии
US20180224044A1 (en) Fluid connector for multi-well operations
CN201394444Y (zh) 一种矿用乳化液配比器
RU2553689C1 (ru) Способ эксплуатации нефтяной скважины
RU2015106202A (ru) Программно-управляемая нагнетательная скважина
RU2725206C1 (ru) Распределитель потока жидкости в системах поддержания пластового давления
AU2018357831B2 (en) Conveying pump apparatus for immobile high viscosity paste
RU2576729C1 (ru) Установка для одновременно-раздельной эксплуатации нескольких залежей одной скважиной (варианты)
RU176789U1 (ru) Кустовая дожимная мультифазная насосная установка
CN105793517B (zh) 连续循环钻井方法和截留并再分配该方法所用流体的装置
CN210317259U (zh) 一种适用于气井全生命周期排水采气的气举装置
CN105370924A (zh) 滑阀式减压型倒流防止器
RU2549946C1 (ru) Насосная пакерная система для многопластовой скважины
RU2522837C1 (ru) Устройство для одновременно-раздельной добычи скважинного флюида и закачки жидкости
WO2011099895A2 (en) Downhole circular liquid, gas or gas/liquid mixture flow restrictor
CN109779871B (zh) 一种液力注入装置及其用途
RU2747387C2 (ru) Способ снижения давления газа в затрубном пространстве низкодебитных скважин
CN102943659B (zh) 液动泵采油方法及液动泵
CN201016329Y (zh) 可调式组合阀液力平衡泵头
CN116877408B (zh) 液压式多级活塞提液实验装置及实验方法
CN205155256U (zh) 滑阀式减压型倒流防止器
RU2539053C1 (ru) Установка для одновременно-раздельной эксплуатации нескольких эксплуатационных объектов одной скважиной (варианты) и клапан-отсекатель револьверного типа для нее
CN109611406B (zh) 一种液压换向阀
CN203685545U (zh) 一种高压泵泵头
RU2522013C1 (ru) Автомат разгерметизации гидросистемы