RU2725183C1 - Статор для электрической вращающейся машины - Google Patents

Статор для электрической вращающейся машины Download PDF

Info

Publication number
RU2725183C1
RU2725183C1 RU2019126185A RU2019126185A RU2725183C1 RU 2725183 C1 RU2725183 C1 RU 2725183C1 RU 2019126185 A RU2019126185 A RU 2019126185A RU 2019126185 A RU2019126185 A RU 2019126185A RU 2725183 C1 RU2725183 C1 RU 2725183C1
Authority
RU
Russia
Prior art keywords
dielectric material
stator
winding
board
frontal part
Prior art date
Application number
RU2019126185A
Other languages
English (en)
Inventor
Бенджамин СЕВИОЛО
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Application granted granted Critical
Publication of RU2725183C1 publication Critical patent/RU2725183C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • H02K3/505Fastening of winding heads, equalising connectors, or connections thereto for large machine windings, e.g. bar windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/03Machines characterised by the wiring boards, i.e. printed circuit boards or similar structures for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

Изобретение относится к электротехнике. Технический результат заключается в минимизации габаритных показателей. Статор (8) для электрической вращающейся машины (2), который имеет пакет (16) пластин статора со стержнями (20) катушки и по меньшей мере одну плату (24) лобовой части обмотки. По меньшей мере одна плата (24) лобовой части обмотки опирается на торцевую сторону (23) пакета (16) пластин статора. Плата (24) лобовой части обмотки имеет основной корпус с первым диэлектрическим материалом (30), и/или со вторым диэлектрическим материалом (32), и/или с третьим диэлектрическим материалом (34). В плату (24) лобовой части обмотки встроены проводящие полосы (26, 26а, 26b), которые соединены со стержнями (20) катушки. Второй диэлектрический материал (32) имеет более высокую теплопроводность, чем первый диэлектрический материал (30) основного корпуса. Третий диэлектрический материал (34) имеет более высокое сопротивление пробою, чем первый диэлектрический материал (30). 2 н. и 8 з.п. ф-лы, 11 ил.

Description

Изобретение относится к статору для электрической вращающейся машины.
Кроме того, изобретение относится к электрической вращающейся машине по меньшей мере с одним статором подобного типа.
Статор такого рода встречается по большей части в электрической вращающейся машине, в частности, в двигателе или генераторе, который имеет потребляемую мощность по меньшей мере один мегаватт.
Обычно обмотки статора подобной электрической вращающейся машины выполнены в виде формованных катушек, которые также называются стержневыми катушками. Формованные катушки изготавливаются, например, посредством литья или способами порошковой металлургии. На концах формованных катушек находится лобовая часть обмотки, которая образуется изгибанием и загибанием проводников формованных катушек. Для этой лобовой части обмотки требуется значительное монтажное пространство в осевом направлении. Вследствие дополнительной неактивной длины проводника в лобовой части обмотки возникают омические потери, которые снижают коэффициент полезного действия электрической вращающейся машины. Кроме того, необходимо охлаждать лобовые части обмотки. Для охлаждения требуется дополнительное монтажное пространство.
В частности, в случае быстроходных машин с малым числом полюсов вследствие увеличенного из-за лобовых частей обмотки расстояния между подшипниками проявляется негативное влияние на динамику ротора. Кроме того, требуются дополнительные дорогостоящие меры для придания жесткости вследствие больших длин проводников, чтобы предотвращать недопустимые вибрации и деформации при работе. Более того, возрастают общая длина и вес электрической вращающейся машины. В частности, при модульной конструкции крупных машин, при которой многочисленные отдельные машины в осевом направлении образуют общую машину, вследствие лобовых частей обмоток возникают значительные электрически бесполезные длины.
Патентный документ DE 102009032882 В3 описывает способ получения формованной катушки для ярусной обмотки динамоэлектрических машин, а также изготовленную указанным способом формованную катушку. Для упрощения изготовления формованной катушки она формируется из сырьевой катушки, причем сырьевая катушка имеет две продольных стороны, которые предусмотрены для укладки в пазы статора или ротора динамоэлектрической машины. Сырьевая катушка имеет две стороны лобовых частей обмотки, которые предназначены для того, чтобы в каждом случае образовывать лобовую часть обмотки формованной катушки, причем продольные стороны отогнуты на 90° таким образом, что продольные стороны вставляются в пазы, и стороны лобовых частей обмотки отгибаются от продольных сторон.
Выложенное описание к изобретению DE 19914942 А1 описывает способ получения статорной обмотки для электрической машины, и такую статорную обмотку. Машина имеет ясновыраженный полюс. Проводники обмотки выступают своими концами в осевом направлении за пакет пластин статора и закреплены в зажимах конструктивных узлов. На конструктивных узлах находятся проводящие полосы, которые образуют витки с проводниками и, соответственно, пролегают от зажимов к внешним соединительным разъемам.
Патентный документ ЕР 1742330 В1 описывает лобовую часть обмотки статора для детали статора турбогенератора. Лобовая часть обмотки статора выполнена в форме диска со срединным проемом для пропускания якоря, причем диск имеет изолирующий основной корпус, в который встроено электрическое соединение для контактов проводников статора. Контакты изготовлены в форме штекерного соединения и/или с переходными соединениями.
Выложенное описание к изобретению DE 102014207621 А1 раскрывает статор электрической вращающейся машины, который содержит сердечник статора с многочисленными пазами, сегментированную обмотку с многочисленными фазами, а также многочисленные базовые пластины, которые на каждом конце сердечника статора по осевому направлению уложены слоями. Сердечник статора и многочисленные стержни катушки сегментированной обмотки образуют сборный узел сердечника статора. Многочисленные базовые пластины и многочисленные концевые соединители обмотки сегментированной обмотки образуют многочисленные сборные узлы базовых пластин. Статор конфигурирован сборным узлом сердечника статора и многочисленными сборными узлами базовых пластин, которые на каждом конце сборного узла сердечника статора уложены слоями.
В основу изобретения положена задача создания статора для электрической вращающейся машины, который, по сравнению с прототипом, имеет улучшенные свойства.
Эта задача решается согласно изобретению посредством статора для электрической вращающейся машины, который имеет пакет пластин статора со стержнями катушки и по меньшей мере одну плату лобовой части обмотки, причем по меньшей мере одна плата лобовой части обмотки прилегает к торцевой стороне пакета пластин статора, причем плата лобовой части обмотки имеет основной корпус с первым диэлектрическим материалом, причем в плату лобовой части обмотки встроены проводящие полосы, которые соединены со стержнями катушки, причем плата лобовой части обмотки имеет область со вторым диэлектрическим материалом и/или область с третьим диэлектрическим материалом, причем второй диэлектрический материал имеет более высокую теплопроводность, чем первый диэлектрический материал основного корпуса, причем область со вторым диэлектрическим материалом размещается между по меньшей мере одной проводящей полосой и пакетом пластин статора таким образом, что тепло может переноситься через второй диэлектрический материал между по меньшей мере одной проводящей полосой и пакетом пластин, причем третий диэлектрический материал имеет более высокое сопротивление пробою, чем первый диэлектрический материал, причем область с третьим диэлектрическим материалом размещается между по меньшей мере двумя проводящими полосами, и
причем область со вторым диэлектрическим материалом (32) размещается между по меньшей мере одной проводящей полосой (26, 26a, 26b) и корпусом (15) машины электрической вращающейся машины (2), на который опирается по меньшей мере одна плата лобовой части обмотки, таким образом, что тепло может переноситься через второй диэлектрический материал (32) между по меньшей мере одной проводящей полосой (26, 26а, 26b) и корпусом (15) машины.
Кроме того, задача решается согласно изобретению посредством электрической вращающейся машины по меньшей мере с одним подобным статором.
Приведенные далее преимущества относительно статора и предпочтительные варианты исполнения могут быть по смыслу отнесены на счет электрической вращающейся машины.
Изобретение основывается на намерении сократить осевую длину электрической вращающейся машины посредством по возможности компактной платы лобовой части обмотки. Значительную часть монтажного пространства платы лобовой части обмотки занимают, например, охлаждающие каналы, которые размещаются в плате лобовой части обмотки, и через которые протекает хладагент, например, охлаждающая текучая среда, для отведения тепла от токоведущих проводящих полос платы лобовой части обмотки. В частности, подобные охлаждающие каналы необходимы тогда, когда теплопроводность первого диэлектрического материала основного корпуса оказывается недостаточной, чтобы отводить тепло от токоведущих проводящих полос. Кроме того, в частности, между проводящими полосами выдерживаются минимальные расстояния, чтобы между проводящими полосами не происходил пробой, причем минимальные расстояния зависят от свойств материалов применяемого диэлектрика. Чтобы обеспечить возможность создания компактной конструкции платы лобовой части обмотки, например, по возможности с малыми расстояниями между проводящими полосами, и по меньшей мере меньшими охлаждающими каналами, предлагается использовать различные диэлектрические материалы для платы лобовой части обмотки, которые различаются в отношении их теплопроводности и сопротивления пробою. Применением специализированных материалов и целенаправленным размещением их значительно сокращается занимаемый платой лобовой части обмотки объем.
При этом второй диэлектрический материал имеет более высокую теплопроводность, чем первый диэлектрический материал основного корпуса, причем область со вторым диэлектрическим материалом размещается между по меньшей мере одной проводящей полосой и пакетом пластин статора таким образом, что тепло может переноситься через второй диэлектрический материал между по меньшей мере одной проводящей полосой и пакетом пластин статора. Например, второй диэлектрический материал содержит нитрид алюминия и/или оксид бериллия. Размещением области с оптимизированным по высокой теплопроводности вторым диэлектрическим материалом можно, по меньшей мере частично, отказаться от охлаждающих каналов в плате лобовой части обмотки, благодаря чему сокращается занимаемый платой лобовой части обмотки объем, в особенности по осевому направлению.
Кроме того, третий диэлектрический материал имеет более высокое сопротивление пробою, чем первый диэлектрический материал, причем область с третьим диэлектрическим материалом находится между по меньшей мере двумя проводящими полосами. Благодаря повышенному сопротивлению пробою, в частности, в области между по меньшей мере двумя соседними проводящими полосами, можно уменьшить расстояние между проводящими полосами и сократить занимаемый платой лобовой части обмотки объем.
При этом по меньшей мере одна плата лобовой части обмотки прилегает к корпусу машины электрической вращающейся машины. Корпус машины выполнен, например, из металлического материала. Альтернативно или дополнительно, выделяющееся в токоведущих проводящих полосах тепло может отводиться через корпус машины, что обусловливает улучшенное отведение тепла от платы лобовой части обмотки.
При этом область со вторым диэлектрическим материалом размещается между по меньшей мере одной проводящей полосой и корпусом машины таким образом, что тепло может переноситься через второй диэлектрический материал между по меньшей мере одной проводящей полосой и корпусом машины. В результате такой конфигурации выделяющееся в токоведущих проводящих полосах тепло может эффективно отводиться по направлению к корпусу машины и/или к пакету пластин статора. Поэтому можно по меньшей мере сэкономить на охлаждающих каналах в плате лобовой части обмотки, сообразно чему сокращается занимаемый платой лобовой части обмотки объем, в особенности по осевому направлению.
В предпочтительном варианте исполнения по меньшей мере одна плата лобовой части обмотки, по меньшей мере частично, выполнена аддитивным способом формования. Аддитивные способы формования представляют собой, например, 3D-печать и трафаретную печать. Например, по меньшей мере один из диэлектрических материалов размещается посредством способа 3D-печати или способом трафаретной печати, тогда как проводящие полосы в последующей технологической стадии вводятся литьем, например, способом литья под давлением. Аддитивный способ формования позволяет создавать более сложные и более компактные структуры, что приводит к уменьшению размера платы лобовой части обмотки.
По меньшей мере один из диэлектрических материалов предпочтительно сформирован как керамический материал. Керамический материал включает керамические и композитные материалы, которые имеют по меньшей мере один керамический компонент, например, керамический порошок. Подобные керамические материалы имеют, например, хорошие изоляционные свойства, высокую механическую прочность и/или хорошую теплопроводность. Применение по меньшей мере одного керамического материала позволяет сформировать компактную плату лобовой части обмотки.
В дополнительном предпочтительном варианте исполнения второй диэлектрический материал и/или третий диэлектрический материал содержат нитрид алюминия и/или оксид бериллия. Теплопроводность нитрида алюминия составляет величину в диапазоне от 180 до 220 Вт/м⋅К, теплопроводность оксида бериллия составляет от 200 до 250 Вт/м⋅К. Поэтому нитрид алюминия и оксид бериллия благодаря их высокой теплопроводности весьма пригодны для отведения выделяемого токоведущими проводящими полосами тепла.
Первый диэлектрический материал предпочтительно имеет более высокую механическую прочность, чем второй диэлектрический материал и третий диэлектрический материал. В частности, первый диэлектрический материал, по меньшей мере частично, охватывает первый диэлектрический материал основного корпуса из второго и третьего диэлектрического материала. Благодаря более высокой механической прочности плата лобовой части обмотки не повреждается даже при больших механических нагрузках, например, при вибрациях, высоких числах оборотов или больших изменениях крутящего момента.
В предпочтительном варианте исполнения по меньшей мере один диэлектрический материал содержит синтетический материал с керамическим порошком. Подобный композитный материал имеет электрические и/или термические характеристики керамики, и, в частности, в случае аддитивного способа формования, может быть обработан простым и экономичным путем. В частности, могут быть простым и экономичным путем изготовлены платы лобовой части обмотки с областями из различных синтетических материалов и/или различных керамических порошков.
В дополнительном предпочтительном варианте исполнения плата лобовой части обмотки имеет по меньшей мере два слоя. Подобное слоистое строение облегчает проектирование, в особенности моделирование, платы лобовой части обмотки.
По меньшей мере в одном слое платы лобовой части обмотки предпочтительно размещаются по меньшей мере два различных диэлектрических материала. В частности, применением специализированных материалов и их целенаправленным размещением, например, внутри одного слоя, значительно сокращается занимаемый платой лобовой части обмотки объем.
Далее изобретение подробнее описывается и разъясняется посредством приведенных в Фигурах примеров осуществления.
Как показано:
ФИГ. 1 представляет вид электрической вращающейся машины в продольном разрезе,
ФИГ. 2 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно первому варианту исполнения в области платы лобовой части обмотки,
ФИГ. 3 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно второму-варианту исполнения в области платы лобовой части обмотки,
ФИГ. 4 представляет увеличенный вид в поперечном разрезе статора согласно второму варианту исполнения в области платы лобовой части обмотки,
ФИГ. 5 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно третьему варианту исполнения в области платы лобовой части обмотки,
ФИГ. 6 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно четвертому варианту исполнения в области платы лобовой части обмотки,
ФИГ. 7 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно пятому варианту исполнения в области платы лобовой части обмотки,
ФИГ. 8 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно шестому варианту исполнения в области платы лобовой части обмотки,
ФИГ. 9 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно седьмому варианту исполнения в области платы лобовой части обмотки,
ФИГ. 10 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно восьмому варианту исполнения в области платы лобовой части обмотки, и
ФИГ. 11 представляет увеличенный вид в продольном разрезе статора электрической вращающейся машины согласно девятому варианту исполнения в области платы лобовой части обмотки.
Одинаковые кодовые номера позиций в различных Фигурах имеют одинаковое значение.
ФИГ. 1 показывает вид электрической вращающейся машины 2 в продольном разрезе, которая имеет ротор 4 с валом 5. Ротор 4 может вращаться вокруг оси 6 вращения. Вал 5 опирается на подшипники 7. Кроме того, электрическая вращающаяся машина 2 имеет окружающий ротор 4 статор 8. Между ротором 4 и статором 8 находится зазор 10, который, в частности, выполнен как воздушный зазор. Ось 6 вращения определяет осевое направление и радиальное направление.
Электрическая вращающаяся машина 2 представлена в качестве примера выполненной как синхронная машина 12, и имеет на роторе 4 постоянные магниты 14. Статор 8 включает пакет 16 пластин статора с обмотками 18, причем пакет 16 пластин статора набран из многочисленных составленных слоями листов электротехнической стали. Обмотки 18 имеют стержни 20 катушки, которые пролегают в осевом направлении в каждом случае через паз 22 в пакете 16 пластин статора.
К обеим торцевым сторонам 23 пакета 16 пластин статора в каждом случае прилегает по меньшей мере одна плата 24 лобовой части обмотки платы. Плата 24 лобовой части обмотки платы дополнительно опирается на стенку корпуса 15 электрической вращающейся машины 2 и включает проводящие полосы 26, которые соединяют друг с другом проложенные в пазах 22 стержни 20 катушки. Проводящие полосы 26, а также стержни 20 катушки выполнены из металла с высокой теплопроводностью и высокой электрической проводимостью, например, из меди. Соединительные элементы обмоток 18 на клеммных выводах не представлены из соображений наглядности.
ФИГ. 2 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно первому варианту исполнения в области платы 24 лобовой части обмотки, которая в качестве примера сформирована из пяти слоев L1, L2, L3, L4, L5. Толщина D всей платы 24 лобовой части обмотки составляет величину в сантиметровом диапазоне, в частности, в диапазоне от 3 до 10 см. Первый слой L1 платы 24 лобовой части обмотки примыкает к пакету 16 пластин статора так, что возникает термический контакт платы 24 лобовой части обмотки с пакетом 16 пластин статора. Необязательно самый верхний, в данном примере пятый, слой L5 термически связан с дополнительной металлической поверхностью, например, с корпусом 15 машины, которая представлена в ФИГ. 1, так, что плата 24 лобовой части обмотки дополнительно термически соединена с корпусом 15 машины.
Во втором слое L2 пролегает проводящая полоса 26. Слои L1, L2, L3, L4, L5 платы 24 лобовой части обмотки по большей части выполнены из первого диэлектрического материала 30. В частности, диэлектрический материал 30 сформирован в виде керамического материала, например, оксида алюминия. Оксид алюминия обеспечивает компромисс между прочностью (прочность на изгиб между 480 и 520 МПа), теплопроводностью (между 19 и 30 Вт/м⋅К) и стоимостью. Для улучшения термического контакта проводящей полосы 26 с пакетом 16 пластин статора проводящая полоса 26 во втором слое L2 термически соединяется с пакетом 16 пластин статора через второй диэлектрический материал 32 в первом слое L1. Второй диэлектрический материал 32 имеет более высокую теплопроводность, чем первый диэлектрический материал 30. В частности, второй диэлектрический материал 32 выполнен в виде керамического материала. Например, второй диэлектрический материал 32 содержит нитрид алюминия (теплопроводность между 180 и 220 Вт/м⋅К) или оксид бериллия (теплопроводность между 200 и 250 Вт/м⋅К). Второй диэлектрический материал 32 сформирован, в частности, как сплошная область между проводящей полосой 26 и пакетом 16 пластин статора. Благодаря улучшению термического контакта проводящей полосы 26 и обусловленному этим улучшенному отведению тепла можно, по меньшей мере частично, отказаться от охлаждающих каналов в плате 24 лобовой части обмотки, что приводит к более компактной плате 24 лобовой части обмотки.
Плата 24 лобовой части обмотки, по меньшей мере частично, сформирована аддитивным способом формования. Например, по меньшей мере один из диэлектрических материалов 30, 32, 34 размещается способом 3D-печати или способом трафаретной печати, тогда как проводящие полосы 26 формируются литьем в следующей за этим стадии, например, способом литья под давлением.
В альтернативном варианте, проводящие полосы 26 изготавливаются способом 3D-печати или способом трафаретной печати. Затем вокруг проводящих полос 26 размещаются диэлектрические материалы 30, 32, 34.
Дополнительная возможность получения платы 24 лобовой части обмотки состоит в том, что как проводящие полосы 26, так и диэлектрические материалы 30, 32, 34, предпочтительно одновременно, формируются способом 3D-печати или способом трафаретной печати.
ФИГ. 3 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно второму варианту исполнения в области платы 24 лобовой части обмотки. В качестве примера, проводящая полоса 26 размещена в четвертом слое L4 платы 24 лобовой части обмотки. Область со вторым диэлектрическим материалом 32 структурирована, в частности, в форме многочисленных, например, идентичных, стоек, размещенных между проводящей полосой 26 и пакетом 16 пластин статора, и благодаря более высокой теплопроводности и ввиду меньшей прочности второго диэлектрического материала 32, сравнительно с первым диэлектрическим материалом 30, представляет оптимальный вариант термического контакта проводящей полосы 26 с пакетом 16 пластин статора и прочности платы 24 лобовой части обмотки. В остальном вариант исполнения статора 8 соответствует варианту исполнения в ФИГ. 2.
ФИГ. 4 показывает увеличенный вид в поперечном разрезе статора 8 согласно второму варианту исполнения в области платы 24 лобовой части обмотки. Структурированная конфигурация области со вторым диэлектрическим материалом 32 в плате 24 лобовой части обмотки выполнена в форме многочисленных, в частности, идентичных, стоек, которые равномерно распределены в области проводящей полосы 26. В остальном конструкция статора 8 соответствует конструкции в ФИГ. 3.
ФИГ. 5 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно третьему варианту исполнения в области платы 24 лобовой части обмотки, которая имеет три слоя L1, L2, L3. В порядке примера, в среднем втором слое L2 пролегают две проводящих полосы 26а, 26b. Равным образом, во втором слое между обеими проводящими полосами 26а, 26b находится область с третьим диэлектрическим материалом 34, который имеет более высокое сопротивление пробою, чем первый диэлектрический материал 30. В частности, третий диэлектрический материал 34 выполнен как керамический материал. В альтернативном варианте, третий диэлектрический материал 34 выполнен как синтетический материал с высоким сопротивлением пробою. Благодаря высокому сопротивлению пробою в области между обеими проводящими полосами 26а, 26b можно сократить расстояние между проводящими полосами. В остальном конструкция статора 8 соответствует конструкции в ФИГ. 2.
ФИГ. 6 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно четвертому варианту исполнения в области платы 24 лобовой части обмотки, которая, как в ФИГ. 2, имеет пять слоев L1, L2, L3, L4, L5. Во втором слое L2 и в четвертом слое L4 в каждом случае размещается проводящая полоса 26а, 26b. В частности, первая проводящая полоса 26а находится непосредственно над второй проводящей полосы 26b. Как в ФИГ. 2, в первом слое L1 размещена сплошная область со вторым диэлектрическим материалом 32, причем второй диэлектрический материал 32, который имеет более высокую теплопроводность, чем первый диэлектрический материал 30, создает термическое соединение между второй проводящей полосой 26b и пакетом 16 пластин статора.
Кроме того, в третьем слое L3 между первой проводящей полосой 26а и второй проводящей полосой 26b размещается дополнительная сплошная область с третьим диэлектрическим материалом 34. Третий диэлектрический материал 34 имеет более высокое сопротивление пробою, чем первый диэлектрический материал 30. В частности, третий диэлектрический материал 34 выполнен как керамический материал. В альтернативном варианте, третий диэлектрический материал 34 выполнен как синтетический материал с высоким сопротивлением пробою. Благодаря высокому сопротивлению пробою в области между обеими проводящими полосами 26а, 26b можно уменьшить толщину третьего слоя L3. В остальном конструкция статора 8 соответствует конструкции в ФИГ. 2.
ФИГ. 7 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно пятому варианту исполнения в области платы 24 лобовой части обмотки, которая, в качестве примера, имеет три слоя L1, L2, L3. Слои L1, L2, L3 платы 24 лобовой части обмотки по большей части сформированы из первого диэлектрического материала 30, который выполнен как керамический материал и содержит первый синтетический материал 36, который снабжен первым керамическим порошком 38, например, оксидом алюминия. В частности, первый диэлектрический материал 30 изоляционного основного корпуса простым и экономичным путем формируется аддитивным способом формования из снабженного первым керамическим порошком 38 первого синтетического материала 36.
Чтобы улучшить термический контакт проводящей полосы 26 с пакетом 16 пластин статора и тем самым отведение тепла, проводящая полоса 26 в первом слое L1 термически соединяется с пакетом 16 пластин статора через сплошную область со вторым диэлектрическим материалом 32. Второй диэлектрический материал 32 также выполнен в виде керамического материала и содержит, например, нитрид алюминия. Кроме того, второй диэлектрический материал 32 имеет более высокую теплопроводность, чем первый керамический порошок 38 первого диэлектрического материала 32. По меньшей мере один из диэлектрических материалов статора 8 в ФИГ. 7 наносится аддитивным способом формования. В остальном конструкция статора 8 соответствует конструкции в ФИГ. 2.
ФИГ. 8 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно шестому варианту исполнения в области платы 24 лобовой части обмотки. Область со вторым диэлектрическим материалом 32 термически соединяет проводящую полосу 26 в первом слое L1 с пакетом 16 пластин статора. Второй диэлектрический материал 32 выполнен как второй синтетический материал 40 со вторым керамическим порошком 42. В альтернативном варианте, первый синтетический материал 36 идентичен второму синтетическому материалу 40, и первый керамический материал 30 и второй керамический материал 32 различаются только примешанным к синтетическому материалу 36, 40 керамическим порошком 38, 42. Поскольку второй диэлектрический материал 32 имеет более высокую теплопроводность по меньшей мере благодаря второму керамическому порошку 42, чем первый керамический материал 30 с первым керамическим порошком 40, отведение тепла от токоведущей проводящей полосы 26 улучшается. В остальном конструкция статора 8 соответствует конструкции в ФИГ. 7.
ФИГ. 9 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно седьмому варианту исполнения в области платы 24 лобовой части обмотки. Корпус 15 машины прилегает к плате 24 лобовой части обмотки, причем в третьем слое L3 размещается дополнительная область со вторым диэлектрическим материалом 32 так, что тепло дополнительно отводится от проводящей полосы 26 через корпус 15 машины. В остальном конструкция статора 8 соответствует конструкции в ФИГ. 7.
ФИГ. 10 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно восьмому варианту исполнения в области платы 24 лобовой части обмотки. Плата 24 лобовой части обмотки, которая опирается на пакет 16 пластин статора, выполнена без слоистой конфигурации из двух диэлектрических материалов 30, 32 аддитивным способом формования.
Первый диэлектрический материал 30 выполнен как керамический материал, и содержит первый синтетический материал 36, который снабжен первым керамическим порошком 38. Машинный корпус 15 электрической вращающейся машины 2 примыкает к плате 24 лобовой части обмотки. Проводящая полоса 26 размещена в плате 24 лобовой части обмотки. Область со вторым диэлектрическим материалом 32, который выполнен как керамический материал, например, нитрид алюминия, и имеет более высокую теплопроводность, чем первый диэлектрический материал 30, размещается между пакетом 16 пластин статора и корпусом 15 машины, окружая проводящую полосу 26 так, что тепло от проводящей полосы 26 переносится через область со вторым диэлектрическим материалом 32 на пакет 16 пластин статора и на корпус 15 машины. Форма и размещение области со вторым диэлектрическим материалом 32 оптимизируется в отношении эффективности теплопередачи и высокой механической стабильности. В частности, чтобы обеспечивать высокую механическую стабильность, область со вторым диэлектрическим материалом 32 полностью окружена первым диэлектрическим материалом 30, и тем самым встроена в изолирующий основной корпус. Изолирующий основной корпус без шва выводится наружу. В остальном конструкция статора 8 соответствует конструкции в ФИГ. 7.
ФИГ. 11 показывает увеличенный вид в продольном разрезе статора 8 электрической вращающейся машины 2 согласно девятому варианту исполнения в области платы 24 лобовой части обмотки. Как в ФИГ. 10, плата 24 лобовой части обмотки изготовлена без слоистой конфигурации аддитивным способом формования и имеет три различных диэлектрических материала 30, 32, 34. В порядке примера, в плате 24 лобовой части обмотки проложены две проводящих полосы 26а, 26b. На каждой из обеих проводящих полос 26а, 26b область со вторым диэлектрическим материалом 32, который выполнен как керамический материал, например, нитрид алюминия, и имеет более высокую теплопроводность, чем первый диэлектрический материал 30, сформирована между пакетом 16 пластин статора и корпусом 15 машины так, что тепло от данной проводящей полосы 26а, 26b переносится через второй диэлектрический материал 32 на пакет 16 пластин статора и на корпус 15 машины. При этом область со вторым диэлектрическим материалом 32 полностью окружена областью с первым диэлектрическим материалом 30 и тем самым встроена в изолирующий основной корпус, чтобы обеспечивать высокую механическую прочность. В альтернативном варианте, второй диэлектрический материал 32 выполнен как синтетический материал 40 с керамическим порошком 42.
В дополнение, между проводящими полосами 26а, 26b находится область с третьим диэлектрическим материалом 34, который имеет более высокое сопротивление пробою, чем первый диэлектрический материал 30 и второй диэлектрический материал 32. Третий диэлектрический материал 34 выполнен как керамический материал или как синтетический материал с высоким сопротивлением пробою. Размещение области с третьим диэлектрическим материалом 34 оптимизировано относительно распределения поля между проводящими полосами 26а, 26b. В остальном конструкция статора 8 соответствует конструкции в ФИГ. 10.
В порядке обобщения, изобретение относится к статору 8 для электрической вращающейся машины 1. Чтобы, по сравнению с прототипом, достигнуть уменьшенной осевой длины, предлагается, что пакет 16 пластин статора со стержнями 20 катушки имеет по меньшей мере одну плату 24 лобовой части обмотки, причем по меньшей мере одна плата 24 лобовой части обмотки опирается на торцевую сторону 23 пакета 16 пластин статора, причем плата 24 лобовой части обмотки имеет основной корпус с первым диэлектрическим материалом 30, причем в плату 24 лобовой части обмотки встроены проводящие полосы 26, 26а, 26b, которые соединены со стержнями 20 катушки, причем плата 24 лобовой части обмотки имеет область со вторым диэлектрическим материалом 32 и/или область с третьим диэлектрическим материалом 34, причем второй диэлектрический материал 32 имеет более высокую теплопроводность, чем первый диэлектрический материал 30 основного корпуса, причем область со вторым диэлектрическим материалом 32 размещается между по меньшей мере одной проводящей полосой 26, 26а, 26b и пакетом 16 пластин статора таким образом, что тепло может переноситься через второй диэлектрический материал 32 между по меньшей мере одной проводящей полосой 26, 26а, 26b и пакетом 16 пластин статора, причем третий диэлектрический материал 34 имеет более высокое сопротивление пробою, чем первый диэлектрический материал 30, причем область с третьим диэлектрическим материалом 34 размещается между по меньшей мере двумя проводящими полосами 26, 26а, 26b.

Claims (23)

1. Статор (8) для электрической вращающейся машины (2), который имеет пакет (16) пластин статора со стержнями (20) катушки и по меньшей мере одну плату (24) лобовой части обмотки, причем упомянутая по меньшей мере одна плата (24) лобовой части обмотки прилегает к торцевой стороне (23) пакета (16) пластин статора, причем плата (24) лобовой части обмотки имеет основной корпус с первым диэлектрическим материалом (30), причем в плату (24) лобовой части обмотки встроены проводящие полосы (26, 26а, 26b), которые соединены со стержнями (20) катушки,
причем плата (24) лобовой части обмотки имеет область со вторым диэлектрическим материалом (32) и/или область с третьим диэлектрическим материалом (34), причем второй диэлектрический материал (32) имеет более высокую теплопроводность, чем первый диэлектрический материал (30) основного корпуса,
причем область со вторым диэлектрическим материалом (32) размещается между по меньшей мере одной проводящей полосой (26, 26а, 26b) и пакетом (16) пластин статора таким образом, что тепло может переноситься через второй диэлектрический материал (32) между по меньшей мере одной проводящей полосой (26, 26а, 26b) и пакетом (16) пластин,
причем третий диэлектрический материал (34) имеет более высокое сопротивление пробою, чем первый диэлектрический материал (30),
причем область с третьим диэлектрическим материалом (34) размещается между по меньшей мере двумя проводящими полосами (26, 26а, 26b), и
причем область со вторым диэлектрическим материалом (32) размещается между по меньшей мере одной проводящей полосой (26, 26а, 26b) и корпусом (15) машины электрической вращающейся машины (2), на который опирается по меньшей мере одна плата лобовой части обмотки, таким образом, что тепло может переноситься через второй диэлектрический материал (32) между упомянутой по меньшей мере одной проводящей полосой (26, 26а, 26b) и корпусом (15) машины.
2. Статор (8) по п. 1,
причем по меньшей мере одна плата (24) лобовой части обмотки, по меньшей мере частично, выполнена аддитивным способом формования.
3. Статор (8) по одному из пп. 1 или 2,
причем по меньшей мере один из диэлектрических материалов (30, 32, 34) выполнен как керамический материал.
4. Статор (8) по одному из предшествующих пунктов,
причем второй диэлектрический материал (32) и/или третий диэлектрический материал (34) содержат нитрид алюминия и/или оксид бериллия.
5. Статор (8) по одному из предшествующих пунктов,
причем первый диэлектрический материал (30) содержит оксид алюминия.
6. Статор (8) по одному из предшествующих пунктов,
причем первый диэлектрический материал (30) имеет более высокую механическую прочность, чем второй диэлектрический материал (32) и третий диэлектрический материал (34).
7. Статор (8) по одному из предшествующих пунктов,
причем по меньшей мере один из диэлектрических материалов (30, 32, 34) содержит синтетический материал (36, 40, 44) с керамическим порошком (38, 42, 46).
8. Статор (8) по одному из предшествующих пунктов,
причем плата (24) лобовой части обмотки имеет по меньшей мере два слоя (L1, L2, L3, L4, L5).
9. Статор (8) по п. 8,
причем по меньшей мере в одном слое (L1, L2, L3, L4, L5) платы (24) лобовой части обмотки размещаются по меньшей мере два различных диэлектрических материала (30, 32, 34).
10. Электрическая вращающаяся машина (2) по меньшей мере с одним статором (8) по одному из пп. 1-9.
RU2019126185A 2017-02-21 2018-02-14 Статор для электрической вращающейся машины RU2725183C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17157172.2A EP3364524A1 (de) 2017-02-21 2017-02-21 Stator für eine elektrische rotierende maschine
EP17157172.2 2017-02-21
PCT/EP2018/053661 WO2018153745A1 (de) 2017-02-21 2018-02-14 Stator für eine elektrische rotierende maschine

Publications (1)

Publication Number Publication Date
RU2725183C1 true RU2725183C1 (ru) 2020-06-30

Family

ID=58098575

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019126185A RU2725183C1 (ru) 2017-02-21 2018-02-14 Статор для электрической вращающейся машины

Country Status (5)

Country Link
US (1) US11165310B2 (ru)
EP (2) EP3364524A1 (ru)
CN (1) CN110326192B (ru)
RU (1) RU2725183C1 (ru)
WO (1) WO2018153745A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297131A1 (de) * 2016-09-19 2018-03-21 Siemens Aktiengesellschaft Stator für eine elektrische rotierende maschine
EP3462182A1 (de) * 2017-09-28 2019-04-03 Siemens Aktiengesellschaft Passive komponente zum nachweis elektrischer überbeanspruchung in elektrisch rotierenden maschinen
EP3627671A1 (de) 2018-09-21 2020-03-25 Siemens Aktiengesellschaft Verfahren zur herstellung einer wickelkopfanordnung für eine elektrische rotierende maschine
EP3723244A1 (de) * 2019-04-08 2020-10-14 Siemens Aktiengesellschaft Wickelkopfanordnung für eine elektrische rotierende maschine
US11146891B1 (en) 2019-05-30 2021-10-12 Facebook Technologies, Llc Microelectromechanical system coil assembly for reproducing audio signals
DE102020133274A1 (de) 2020-12-14 2022-06-15 Bayerische Motoren Werke Aktiengesellschaft Anordnung eines Kontaktelements an freien Spulenleiterenden einer elektrischen Maschine, elektrische Maschine für ein Kraftfahrzeug, Verfahren zum Bereitstellen eines Kontaktelements für eine elektrische Maschine sowie Kraftfahrzeug

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU132307A1 (ru) * 1960-02-24 1960-11-30 Б.Л. Айзенберг Статор асинхронного электродвигател дл виброударных машин
US5623178A (en) * 1993-07-19 1997-04-22 Toyota Jidosha Kabushiki Kaisha Coil structure for electric motor
US20060232143A1 (en) * 2005-04-15 2006-10-19 Delaware Capital Formation Over molded stator
RU2294588C2 (ru) * 2003-02-07 2007-02-27 Кор Инновэйшн, Ллк Ротационная электрическая машина с аксиальным полем
EP2621062A1 (en) * 2012-01-26 2013-07-31 Siemens Aktiengesellschaft Connecting device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670508A (ja) 1992-08-07 1994-03-11 Nippondenso Co Ltd 回転電機
US5783888A (en) 1994-03-17 1998-07-21 Fuji Electric Co., Ltd. Rotary electric machine
JPH10290543A (ja) 1997-04-15 1998-10-27 Toyota Motor Corp モータ
EP0874444A1 (en) * 1997-04-22 1998-10-28 General Motors Corporation Heat conducting means for electric motor or generator
DE19914942A1 (de) 1999-04-01 2000-10-12 Daimler Chrysler Ag Verfahren zur Herstellung der Statorwicklung von elektrischen Maschinen mit ausgeprägten Statorpolen und Statorwicklung einer elektrischen Maschine, die ausgeprägte Statorpole hat
DE19943446B4 (de) 1999-09-11 2006-12-14 Eberhardt, Heinz Dieter, Prof. Dr.-Ing. Kühlung und Befestigung von Wicklungsköpfen rotierender elektrischer Maschinen
JP2004166414A (ja) 2002-11-14 2004-06-10 Ebara Corp 水中モータ
EP1742330B1 (de) 2005-07-08 2009-09-30 Siemens Aktiengesellschaft Ständerwickelkopf, Ständerteil und Turbogenerator
TWI412506B (zh) * 2006-05-12 2013-10-21 Denki Kagaku Kogyo Kk 陶瓷粉末及其用途
DE102007021737A1 (de) * 2007-05-09 2008-11-20 Compact Dynamics Gmbh Wanderfeldmaschine
EP2109208B1 (en) 2008-04-10 2013-09-18 Siemens Aktiengesellschaft Stator arrangement, generator and wind turbine
US20100038988A1 (en) * 2008-08-12 2010-02-18 Gannon Ramy Stator and Method of Making the Same
DE102009032882B3 (de) 2009-07-13 2010-11-04 Siemens Aktiengesellschaft Herstellungsverfahren für Formspulen
SE534838C2 (sv) 2010-05-21 2012-01-17 Bae Systems Haegglunds Ab Kylanordning för elmotor
WO2014089047A1 (en) * 2012-12-05 2014-06-12 Remy Technologies, Llc Electric machine and accessory
JP5835205B2 (ja) * 2012-12-20 2015-12-24 株式会社デンソー 電動圧縮機
JP6126897B2 (ja) 2013-04-24 2017-05-10 本田技研工業株式会社 回転電機のステータ及びその製造方法
GB201320242D0 (en) * 2013-11-15 2014-01-01 Coreteq Ltd Electric actuator
US10177620B2 (en) * 2014-05-05 2019-01-08 Boulder Wind Power, Inc. Methods and apparatus for segmenting a machine
JP2016163393A (ja) 2015-02-27 2016-09-05 パナソニックIpマネジメント株式会社 固定子構成体、電動機、装置、固定子構成体の製造方法、電動機の製造方法
WO2017085860A1 (ja) 2015-11-20 2017-05-26 三菱電機株式会社 電動機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU132307A1 (ru) * 1960-02-24 1960-11-30 Б.Л. Айзенберг Статор асинхронного электродвигател дл виброударных машин
US5623178A (en) * 1993-07-19 1997-04-22 Toyota Jidosha Kabushiki Kaisha Coil structure for electric motor
RU2294588C2 (ru) * 2003-02-07 2007-02-27 Кор Инновэйшн, Ллк Ротационная электрическая машина с аксиальным полем
US20060232143A1 (en) * 2005-04-15 2006-10-19 Delaware Capital Formation Over molded stator
EP2621062A1 (en) * 2012-01-26 2013-07-31 Siemens Aktiengesellschaft Connecting device

Also Published As

Publication number Publication date
US20190372433A1 (en) 2019-12-05
EP3568900B1 (de) 2024-03-27
CN110326192B (zh) 2021-07-30
EP3364524A1 (de) 2018-08-22
WO2018153745A1 (de) 2018-08-30
EP3568900A1 (de) 2019-11-20
CN110326192A (zh) 2019-10-11
US11165310B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
RU2725183C1 (ru) Статор для электрической вращающейся машины
RU2707883C1 (ru) Статор для электрической вращающейся машины
US9762099B2 (en) Segmented stator for an axial field device
US10910897B2 (en) Water-cooled generator strip having a cooling channel gap space
CN108736612B (zh) 用于安置在绝缘体内的导体的系统和方法
US10826345B2 (en) Conductor and method of forming thereof
WO2021062100A1 (en) Stator winding with integrated cooling
US9819238B2 (en) Rotary electric machine having stator with coil conductors having different cross-sectional width
Wu et al. Investigation of an addtively-manufactured modular permanent magnet machine for high specific power design
US20050057106A1 (en) Methods and systems for electric machines having windings
CN105281504B (zh) 用于电机的导体的腔室
CN111066223B (zh) 用于旋转电机的定子
RU2772303C1 (ru) Способ изготовления системы лобовой части обмотки для электрической вращающейся машины
RU2777723C1 (ru) Система лобовой части обмотки для электрической вращающейся машины
CN111900816B (zh) 一种散线绕组电机
US11901783B2 (en) Method for producing a winding overhang assembly for an electrical rotating machine
US20210384788A1 (en) I-pin stator with planar winding connection
WO2019012178A1 (en) INDUCTION MACHINE ROTOR AND METHOD OF ASSEMBLING ROTOR CAGE WINDING
JP2023181995A (ja) ロータ用の変位体及びそれにより形成されたロータ
CN117121340A (zh) 电动轴向通量型机器的定子及轴向通量型机器
CN117157856A (zh) 电动通量型机器的定子以及轴向通量型机器
CN111864928A (zh) 电机定子、其制造方法及电机