RU2724988C1 - Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя - Google Patents

Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя Download PDF

Info

Publication number
RU2724988C1
RU2724988C1 RU2019121731A RU2019121731A RU2724988C1 RU 2724988 C1 RU2724988 C1 RU 2724988C1 RU 2019121731 A RU2019121731 A RU 2019121731A RU 2019121731 A RU2019121731 A RU 2019121731A RU 2724988 C1 RU2724988 C1 RU 2724988C1
Authority
RU
Russia
Prior art keywords
rods
asynchronous motor
induction motor
asynchronous
rotor
Prior art date
Application number
RU2019121731A
Other languages
English (en)
Inventor
Александр Станиславович Страхов
Евгений Михайлович Новоселов
Денис Андреевич Полкошников
Александр Николаевич Назарычев
Никита Сергеевич Чумаков
Андрей Александрович Скоробогатов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ)
Priority to RU2019121731A priority Critical patent/RU2724988C1/ru
Application granted granted Critical
Publication of RU2724988C1 publication Critical patent/RU2724988C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)

Abstract

Изобретение относится к области контроля технического состояния асинхронных электродвигателей и может быть использовано для обнаружения обрывов стержней обмоток роторов асинхронных электродвигателей. Сущность: регистрируют ток статора при пуске асинхронного двигателя, сигнал оцифровывают, разбивают на интервалы ΔT продолжительностьюгде ΔF - относительная ширина главного лепестка используемого окна по сравнению с шириной главного лепестка прямоугольного окна; T- время пуска асинхронного двигателя, с; f- частота сети, Гц. Формируют частотно-временной спектр зарегистрированного сигнала с помощью оконного преобразования Фурье. Определяют наличие в спектре гармонической составляющей от фиктивной обмотки ротора на нижней боковой частоте, порядок которой совпадает с числом пар полюсов асинхронного двигателя. При наличии этой гармонической составляющей делают заключение о наличии оборванных стержней в обмотке ротора асинхронного двигателя. Технический результат: повышение чувствительности к обрыву одного стержня и достоверности определения оборванных стержней для асинхронных электродвигателей с продолжительным пуском (более 0,8 с). 2 ил., 1 табл.

Description

Изобретение относится к области контроля технического состояния асинхронных электродвигателей и может быть использовано для обнаружения обрывов стержней обмоток роторов асинхронных электродвигателей с продолжительным пуском (более 0,8 с).
Известны следующие способы контроля состояния обмоток роторов асинхронных электродвигателей:
Известен способ контроля состояния обмотки ротора асинхронного электродвигателя (Клоков Б.К., Уманцев Р.Б. Ремонт обмоток электрических машин высокого напряжения: Учебное пособие для проф. обучения рабочих на производстве. - М.: Высшая школа, 1991. - 192 с.), называемый способом трех амперметров. Его суть заключается в следующем: во все три фазы обмотки ротора включают амперметры. На статор подают напряжение, равное 1/4-1/5 от номинального значения, а ротор при этом затормаживается. Затем ротор медленно проворачивают и определяют максимальное и минимальное значения тока статора по установленным амперметрам. При исправном роторе ток в статоре во всех положениях ротора будет одинаковым, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора. Критерием исправности обмотки ротора является отношение:
Figure 00000001
Ротор считается исправным, если это соотношение не превышает 3%.
Недостатком этого способа является то, что он непригоден для использования в рабочем режиме работы двигателя.
Известен способ контроля состояния обмотки ротора асинхронного электродвигателя (авторское свидетельство СССР на изобретение №1121633, МПК G01R 31/34, 1984 г.), заключающийся в том, что контроль производится путем регистрации тока статора на работающем двигателе и выделении из тока статора третьей гармоники. Для выделенной гармоники измеряют пульсацию ее амплитуды и по уровню пульсации судят о наличии обрыва стержней ротора. При обрыве стержня ротора возникает электрическая несимметрия, что приводит к несимметрии третьих гармоник в фазных величинах тока обмотки статора, вызывая их пульсацию.
Недостатком данного способа является низкая чувствительность при обрыве малого числа стержней обмотки ротора и влияние на результаты измерений различных эксплуатационных факторов (например, постоянно изменяющаяся нагрузка на валу электродвигателя).
Известен «Способ определения повреждения стержней беличьей клетки роторов асинхронных электродвигателей» (авторское свидетельство СССР на изобретение №800906, МПК G01R 31/06, 1981 г.), принятый за прототип, включающий регистрацию тока статора при пуске асинхронного двигателя, сравнение амплитудного значения тока статора за каждый период после затухания апериодической составляющей, выделение разности амплитудных значений тока статора, определение степени повреждения беличьей клетки ротора по величине разности амплитудных значений тока статора.
Недостатком способа-прототипа является низкая чувствительность к обрыву одного стержня. Способ пригоден для выявления обрыва одного стержня лишь для асинхронных двигателей с числом стержней не превышающим 80, в противном случае способ пригоден для выявления обрывов только двух и более стержней. Это указывают сами авторы в статье «Метод и устройство диагностики состояния роторных обмоток асинхронных электродвигателей» (Брюханов Г.А., Князев С.А. Метод и устройство диагностики состояния роторных обмоток асинхронных электродвигателей // Электрические станции, 1986. - №2. - с. 44-45).
Техническим результатом предлагаемого способа является повышение чувствительности к обрыву одного стержня и достоверности определения оборванных стержней в короткозамкнутой обмотке ротора для асинхронных электродвигателей с продолжительным пуском (более 0,8 с.).
Технический результат достигается тем, что в способе выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя, включающем регистрацию тока статора при пуске асинхронного двигателя, сигнал оцифровывают, формируют частотно-временной спектр зарегистрированного сигнала с помощью оконного преобразования Фурье, определяют наличие в спектре гармонической составляющей от фиктивной обмотки ротора на нижней боковой частоте, порядок которой совпадает с числом пар полюсов асинхронного двигателя, при наличии этой гармонической составляющей делают заключение о наличии оборванных стержней в обмотке ротора асинхронного двигателя.
Перечень графических иллюстраций
На фиг. 1 приведен частотно-временной спектр диагностического сигнала при исправной обмотке ротора двигателя ДАЗО2-17-44-8/10У1.
На фиг. 2 приведен частотно-временной спектр диагностического сигнала при обрыве 1 стержня в обмотке ротора двигателя ДАЗО2-17-44-8/10У1.
Сущность способа заключается в следующем.
Известно, что при обрыве стержней обмотки ротора асинхронного электродвигателя происходит перераспределение тока по стержням, в результате чего появляются гармонические составляющие, которые отсутствуют для исправного асинхронного электродвигателя. В статье «Анализ спектра магнитного поля в зазоре асинхронного двигателя при повреждении обмотки ротора», автор - Скоробогатов АА. (Вестник ИГЭУ. - вып. 2. - Иваново: ИГЭУ, 2006. С. 75-78) данные гармонические составляющие были названы гармониками от фиктивной обмотки ротора (далее - гармониками ФОР), их частоты могут быть определены по выражению:
Figure 00000002
где
ƒс - частота сети, Гц;
s - скольжение двигателя, о.е.;
р - число пар полюсов двигателя;
ν=1,2, 3,4, 5… - порядок гармоники;
Figure 00000003
- нижняя боковая частота гармоники фиктивной обмотки ротора ν-го порядка, Гц;
Figure 00000004
- верхняя боковая частота гармоники фиктивной обмотки ротора ν-го порядка, Гц.
Согласно (Геллер Б., Гамата В. Высшие гармоники в асинхронных машинах / Пер. с англ. Под ред. З.Г. Каганова. - М.: «Энергия», 1981. - 352 с.), часть из этих гармонических составляющих будет наводиться и в сигнале тока статора. Поскольку обмотка статора является фильтром для большинства этих гармоник, то в сигнале будут существовать лишь гармоники ФОР, порядок которых удовлетворяет условию:
ν=(6⋅c±1)⋅p, где с=0, 1, 2,…
Хорошо известно, что наиболее отчетливо при наличии оборванных стержней в спектрах сигналов проявляются гармонические составляющие более низкого порядка, поэтому для выявления обрыва стержня обмотки ротора наиболее удобно использовать гармоники порядка ν=р (при с=0). Так как гармоника порядка, равная числу пар полюсов, на верхней боковой частоте совпадает с основной гармоникой сигнала (частотой 50 Гц), она не может быть использована при контроле. Поэтому наиболее эффективным признаком наличия повреждения обмотки ротора может служить появление в спектре гармоники ФОР порядка р на нижней боковой частоте, которая может быть определена по выражению:
Figure 00000005
Эту гармонику можно обнаружить в спектре, сняв сигнал тока статора с вторичных цепей и при пуске асинхронного двигателя (продолжительностью более 0,8 с). Характерной особенностью этой гармоники будет отражение в спектре от оси времени при скольжении, равном 0,5 о.е.
В процессе пуска гармонический состав спектра двигателя существенно изменяется и применение метода быстрого преобразования Фурье невозможно. В качестве метода, который позволяет обрабатывать нестационарные сигналы и строить их частотно-временные спектры, использовалось оконное преобразование Фурье (ОПФ). Принцип ОПФ заключается в том, что весь зарегистрированный сигнал разбивается на интервалы ΔT, в каждом из которых производится преобразование Фурье. Для получения спектра достаточной точности каждый новый интервал начинается раньше предыдущего, т.е. осуществляется перекрытие интервалов, на которые разбивается сигнал. Для снижения растекания спектра и более точной оценки амплитуд гармонических составляющих применяется ОПФ с низким разрешением. Наиболее точных результатов при определении амплитуд гармонических составляющих можно достигнуть при использовании в качестве оконной функции окна Флэттоп однако, можно использовать и другие оконные функции низкого разрешения (например, окно Блэкмана-Наталла).
Разные оконные функции имеют различные характеристики, и, в частности, различную ширину основного лепестка, поэтому для разных двигателей в зависимости от времени пуска могут применяться разные окна.
Применение ОПФ накладывает ограничения на минимальную продолжительность интервала разбиения всего времени пуска (определяется разрешением сигнала по частоте) и на максимальную продолжительность, которая определяется разрешением по времени. Поскольку в данном случае задачей является выделение лишь одной гармоники в спектре, необходимым условием является четкое отражение этой гармонической составляющей в спектре пускового сигнала. Это может быть достигнуто выполнением следующего условия:
Figure 00000006
ΔF - относительная ширина главного лепестка используемого окна по сравнению с шириной главного лепестка прямоугольного окна (для окна Флэттоп ΔF=5);
ΔТ - продолжительности интервалов, на которые разбивается пусковой сигнал, с;
Тn - время пуска АД, с.
Из выражения (3) можно оценить минимально допустимое время пуска АД, при котором можно проводить оценку состояния обмотки ротора.
Figure 00000007
При применении окна Флэттоп минимальная продолжительность пуска (определенная по выражению (4)), при котором возможна корректная обработка пускового сигнала, составляет 0,8 секунды.
Таким образом, предлагаемый способ функционального контроля оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя по пусковому току статора позволяет сделать вывод о наличии или отсутствии оборванных стержней в обмотке ротора.
Способ реализуется следующим образом:
К вторичным цепям питания асинхронного двигателя (например, к зажимам трансформатора тока) подключают измерительную аппаратуру, осуществляют запись тока статора при пуске асинхронного двигателя. С помощью АЦП получают цифровой сигнал.
Далее полученный сигнал разделяют на интервалы, продолжительность интервалов выбирают с учетом длительности пуска асинхронного двигателя, а также ширины главного лепестка используемого окна преобразования Фурье.
После этого формируют частотно-временной спектр зарегистрированного сигнала с помощью оконного преобразования Фурье (используя в качестве оконной функции окно Флэттоп). Определяют наличие в спектре гармонической составляющей ФОР на нижней боковой частоте, порядок которой совпадает с числом пар полюсов р электродвигателя. При наличии этой гармонической составляющей делают заключение о наличии оборванных стержней в обмотке ротора асинхронного двигателя.
Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя по пусковому току статора был реализован на базе персонального компьютера. Работоспособность способа проверена на математической модели, выполненной в программном комплексе ANSYS. Смоделирован высоковольтный асинхронный двигатель типа ДАЗО, паспортные данные которого приведены в табл. №1. По способу-прототипу «Способ определения повреждения стержней беличьей клетки роторов асинхронных электродвигателей» (авторское свидетельство на изобретение №800906, МПК G01R31/06, 1981 г.) невозможно определить наличие одного оборванного стержня в обмотке ротора данного электродвигателя, так как обмотка ротора имеет 132 стержня.
Пример. Испытание работы заявленного способа на математической модели асинхронного электродвигателя ДАЗО-2-17-44-8/10У1. Данный двигатель двухскоростной и может работать с числом пар полюсов равным 5 (1 скорость) и 4 (2 скорость). В проведенном опыте двигатель пускался на 1 скорости (число пар полюсов равняется 5).
Были выполнены две модели указанного асинхронного двигателя: в исправном состоянии и при наличии одного оборванного стержня в обмотке ротора. Полученные спектры представлены на фиг. 1 и 2 соответственно. Из фиг. 2 хорошо видно, что при обрыве стержня в спектре отчетливо проявляется гармоника на нижней боковой частоте, порядок которой совпадает с числом пар полюсов электродвигателя (обозначена на фиг. 2 ФОР как 5-), которая достигает нулевого значения, то есть «отражается» от оси времени. Именно появление такой гармоники и позволяет судить о наличии обрыва стержня обмотки ротора. В спектре исправного двигателя эта гармоника практически не проявляется. Сравнение амплитуды искомой гармоники в спектрах при пуске с поврежденным и с исправным ротором показало, что амплитуда гармоники двигателя с одним оборванным стержнем более чем в 100 раз превышает ее амплитуду при отсутствии повреждения.
Figure 00000008

Claims (5)

  1. Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя, включающий регистрацию тока статора при пуске асинхронного двигателя, отличающийся тем, что сигнал оцифровывают, разбивают на интервалы продолжительностью ΔT, удовлетворяющей условию
    Figure 00000009
    где
  2. ΔF - относительная ширина главного лепестка используемого окна по сравнению с шириной главного лепестка прямоугольного окна;
  3. Tn - время пуска асинхронного двигателя, с;
  4. ƒс - частота сети, Гц,
  5. формируют частотно-временной спектр зарегистрированного сигнала с помощью оконного преобразования Фурье, определяют наличие в спектре гармонической составляющей от фиктивной обмотки ротора на нижней боковой частоте, порядок которой совпадает с числом пар полюсов асинхронного двигателя, при наличии этой гармонической составляющей делают заключение о наличии оборванных стержней в обмотке ротора асинхронного двигателя.
RU2019121731A 2019-07-09 2019-07-09 Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя RU2724988C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019121731A RU2724988C1 (ru) 2019-07-09 2019-07-09 Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019121731A RU2724988C1 (ru) 2019-07-09 2019-07-09 Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя

Publications (1)

Publication Number Publication Date
RU2724988C1 true RU2724988C1 (ru) 2020-06-29

Family

ID=71509850

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019121731A RU2724988C1 (ru) 2019-07-09 2019-07-09 Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя

Country Status (1)

Country Link
RU (1) RU2724988C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786379C1 (ru) * 2022-03-01 2022-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1099481A (zh) * 1993-08-27 1995-03-01 清华大学 鼠笼异步电动机转子断条监测方法及其监测装置
US6308140B1 (en) * 1996-05-20 2001-10-23 Crane Nuclear, Inc. Motor condition and performance analyzer
WO2011006528A1 (en) * 2009-07-13 2011-01-20 Abb Research Ltd Fault detection in a rotating electrical machine
CN102279364A (zh) * 2011-07-23 2011-12-14 华北电力大学(保定) 一种基于music与psa的笼型异步电动机转子断条故障检测方法
CN102279341A (zh) * 2011-07-23 2011-12-14 华北电力大学(保定) 一种基于esprit与psa的笼型异步电动机转子断条故障检测方法
CN103018669A (zh) * 2012-11-30 2013-04-03 华北电力大学(保定) 一种高可靠性地检测笼型异步电动机转子断条故障的方法
US20140303913A1 (en) * 2013-04-08 2014-10-09 General Electric Company Broken rotor bar detection based on current signature analysis of an electric machine
RU2650821C1 (ru) * 2017-01-30 2018-04-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ обнаружения обрывов стержней короткозамкнутых обмоток роторов асинхронных электродвигателей
RU2654972C1 (ru) * 2017-05-02 2018-05-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ выявления обрывов стержней короткозамкнутой обмотки ротора асинхронного электродвигателя и их количества
CN109856538A (zh) * 2019-03-04 2019-06-07 中国矿业大学 一种基于短时校正fft的感应电机断条故障检测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1099481A (zh) * 1993-08-27 1995-03-01 清华大学 鼠笼异步电动机转子断条监测方法及其监测装置
US6308140B1 (en) * 1996-05-20 2001-10-23 Crane Nuclear, Inc. Motor condition and performance analyzer
WO2011006528A1 (en) * 2009-07-13 2011-01-20 Abb Research Ltd Fault detection in a rotating electrical machine
CN102279364A (zh) * 2011-07-23 2011-12-14 华北电力大学(保定) 一种基于music与psa的笼型异步电动机转子断条故障检测方法
CN102279341A (zh) * 2011-07-23 2011-12-14 华北电力大学(保定) 一种基于esprit与psa的笼型异步电动机转子断条故障检测方法
CN103018669A (zh) * 2012-11-30 2013-04-03 华北电力大学(保定) 一种高可靠性地检测笼型异步电动机转子断条故障的方法
US20140303913A1 (en) * 2013-04-08 2014-10-09 General Electric Company Broken rotor bar detection based on current signature analysis of an electric machine
RU2650821C1 (ru) * 2017-01-30 2018-04-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ обнаружения обрывов стержней короткозамкнутых обмоток роторов асинхронных электродвигателей
RU2654972C1 (ru) * 2017-05-02 2018-05-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ выявления обрывов стержней короткозамкнутой обмотки ротора асинхронного электродвигателя и их количества
CN109856538A (zh) * 2019-03-04 2019-06-07 中国矿业大学 一种基于短时校正fft的感应电机断条故障检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
НОВОСЕЛОВ Е. М., Разработка метода функциональной диагностики обмотки ротора асинхронных двигателей собственных нужд электростанций по внешнему магнитному полю, Диссертация на соискание ученой степени кандидата технических наук, Иваново, 2018, с. 24-28, 37- 38, 119 -с. 120. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786379C1 (ru) * 2022-03-01 2022-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя
RU2791428C1 (ru) * 2022-10-17 2023-03-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя

Similar Documents

Publication Publication Date Title
Singh Experimental investigations on induction machine condition monitoring and fault diagnosis using digital signal processing techniques
Zhang et al. A novel detection method of motor broken rotor bars based on wavelet ridge
Rajagopalan et al. Analytic-wavelet-ridge-based detection of dynamic eccentricity in brushless direct current (BLDC) motors functioning under dynamic operating conditions
EP2790028B1 (en) Broken rotor bar detection based on current signature analysis of an electric machine
US10408879B2 (en) Method and apparatus for diagnosing a fault condition in an electric machine
Irhoumah et al. Detection of the stator winding inter-turn faults in asynchronous and synchronous machines through the correlation between harmonics of the voltage of two magnetic flux sensors
US9389276B2 (en) Fault diagnosis of electric machines
CN103344368B (zh) 基于可测电气量的鼠笼式异步电机能效在线监测方法
Mehala et al. A comparative study of FFT, STFT and wavelet techniques for induction machine fault diagnostic analysis
CN108680858B (zh) 用于监测永磁同步电机转子失磁故障的方法和系统
CN111983452B (zh) 用于检测多相无刷励磁机的电枢绕组故障的方法和系统
Kuptsov et al. A new approach to analysis of induction motors with rotor faults during startup based on the finite element method
Ciszewski et al. Current-based higher-order spectral covariance as a bearing diagnostic feature for induction motors
EP2851698B1 (en) A method for detecting a fault in an electrical machine
Yazidi et al. Broken rotor bars fault detection in squirrel cage induction machines
RU2724988C1 (ru) Способ выявления оборванных стержней в короткозамкнутой обмотке ротора асинхронного электродвигателя
Sadoughi et al. A new approach for induction motor broken bar diagnosis by using vibration spectrum
Saad et al. Fault diagnostics of induction motors based on internal flux measurement
RU2650821C1 (ru) Способ обнаружения обрывов стержней короткозамкнутых обмоток роторов асинхронных электродвигателей
Ciszewski Induction motor bearings diagnostic indicators based on MCSA and normalized triple covariance
Orman et al. Parameter identification and slip estimation of induction machine
RU2654972C1 (ru) Способ выявления обрывов стержней короткозамкнутой обмотки ротора асинхронного электродвигателя и их количества
Li et al. Simulation study on interturn short circuit of rotor windings in generator by RSO method
Ahamed et al. Novel diagnosis technique of mass unbalance in rotor of induction motor by the analysis of motor starting current at no load through wavelet transform
Mabrouk et al. Diagnosis of rotor faults in three-phase induction motors under time-varying loads