RU2722824C1 - Способ получения низкосернистого дизельного топлива - Google Patents

Способ получения низкосернистого дизельного топлива Download PDF

Info

Publication number
RU2722824C1
RU2722824C1 RU2019140885A RU2019140885A RU2722824C1 RU 2722824 C1 RU2722824 C1 RU 2722824C1 RU 2019140885 A RU2019140885 A RU 2019140885A RU 2019140885 A RU2019140885 A RU 2019140885A RU 2722824 C1 RU2722824 C1 RU 2722824C1
Authority
RU
Russia
Prior art keywords
triglycerides
fatty acids
stage
sulfide
catalyst
Prior art date
Application number
RU2019140885A
Other languages
English (en)
Inventor
Галина Александровна Бухтиярова
Евгения Николаевна Власова
Алексей Леонидович Нуждин
Александр Андреевич Порсин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ)
Priority to RU2019140885A priority Critical patent/RU2722824C1/ru
Application granted granted Critical
Publication of RU2722824C1 publication Critical patent/RU2722824C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к способам совместной гидропереработки триглицеридов жирных кислот и нефтяных дизельных фракций на сульфидных катализаторах с целью получения низкосернистого дизельного топлива с улучшенными низкотемпературными характеристиками и может быть использовано в нефтеперерабатывающей промышленности. Описан способ получения низкосернистого дизельного топлива в процессе гидропереработки смеси триглицеридов жирных кислот и прямогонной дизельной фракций в двух последовательно соединенных реакторах, в первом из которых проводят реакции гидродеоксигенации триглицеридов жирных кислот на сульфидном Mo/AlOкатализаторе, а во втором - реакции гидроочистки нефтяного сырья и гидроизомеризации алканов; реакции второй стадии осуществляют с использованием сульфидного NiMo катализатора на носителе, представляющем собой композицию оксида алюминия и силикоалюмофосфата SAPO-11. Реакции гидроочистки нефтяного сырья и реакции гидроизомеризации алканов на второй стадии проводят при температуре 360-390°С, давлении водорода 4,0-7,0 МПа, объемной скорости сырья 1,0-2,0 ч, отношении водород/сырье 600-1000 Нм/м. Содержание триглицеридов жирных кислот ТЖК в прямогонной дизельной фракции составляет 15- 30 мас. %. Технический результат - снижение температуры помутнения продуктов совместной гидропереработки триглицеридов жирных кислот и нефтяных дизельных фракций в низкосернистое дизельное топливо. 4 з.п. ф-лы, 2 табл., 6 пр.

Description

Изобретение относится к способам совместной гидропереработки триглицеридов жирных кислот и нефтяных дизельных фракций на сульфидных катализаторах с целью получения низкосернистого дизельного топлива с улучшенными низкотемпературными характеристиками и может быть использовано в нефтеперерабатывающей промышленности.
Снижение запасов и ухудшение качества нефтяного сырья, а также необходимость уменьшения выбросов парниковых газов для замедления глобального повышения температуры и изменения климата стимулирует разработку катализаторов и способов, направленных на вовлечение возобновляемых ресурсов в процессы производства экологически чистых моторных топлив. Одним из перспективных подходов является гидродеоксигенация триглицеридов жирных кислот (ТЖК), так как продукты представляют собой смесь алканов C12-C22, которая легко смешивается с моторным топливом на основе нефтяного сырья, что позволяет использовать имеющуюся инфраструктуру для ее транспортировки и хранения и не требует адаптации автомобильных двигателей. В качестве триглицерид-содержащего сырья может использоваться широкий спектр непищевых растительных масел (рапсового, рыжикового, пальмового и т.д.), отработанные пищевые масла, животные жиры, таловые масла и т.д. [М. Al-Sabawi, J.W. Chen, Hydroprocessing of Biomass-Derived Oils and Their Blends with Petroleum Feedstocks: A Review, Energy & Fuels, 26 (2012) 5373-5399].
Для переработки триглицеридов жирных кислот широко используют традиционные сульфидные CoMo/Al2O3 и NiMo/Al2O3 катализаторы гидроочистки [D. Kubicka, V. Tukac, Hydrotreating of Triglyceride-Based Feedstocks in Refineries, Advances in Chemical Engineering, V. 42 (2013) 141-194.]. Триглицериды жирных кислот не содержат серу, поэтому для поддержания катализаторов в активном сульфидном состоянии необходимо постоянно дозировать в реакционную смесь осерняющий агент, чаще всего диметилдисульфид [Kubicka, D., Horacek J., Deactivation of HDS catalysts in deoxygenation of vegetable oils // Applied Catalysis A, 394 (2011) 9-17]. Гидропереработка ТЖК совместно с нефтяными фракциями позволяет использовать серосодержащие соединения нефтяных фракций для сохранения активного компонента в сульфидной форме. При этом улучшаются потребительские свойства моторных топлив: увеличивается цетановое число, снижается плотность, содержание ароматических соединений [Bezergianni S., Dimitriadis A., Kikhtyanin О, Kubicka D, Refinery co-processing of renewable feeds // Progress in Energy and Comb. Sci. V. 68. (2018) 29-64].
Известно, что для гидропереработки смесей ТЖК и нефтяных дистиллятов используются сульфидные NiMo, СоМо или NiW катализаторы, традиционно применяющиеся в процессах гидроочистки нефтяного сырья [US 2006/0186020, B01J 29/70; ЕР 2428548, C10G 3/00, 14.03.12; US 9556387, C10G 49/04, 31.01.2017]. При этом возникают, по крайней мере, две проблемы. Во-первых, высокая активность катализаторов в экзотермических реакциях гидродеоксигенации ТЖК вызывает локальные перегревы в лобовом слое реактора и приводит к образованию углеродных отложений, дезактивации и уменьшению срока службы катализаторов. Во-вторых, в присутствии биметаллических сульфидных катализаторов (NiMo. СоМо или NiW) гидродеоксигенация ТЖК протекает с образованием оксидов углерода, с последующим гидрированием до метана, следствием чего является снижение парциального давления водорода, чистота которого является одним из критических параметров для получения низкосернистых моторных топлив (<10 ppm серы) из нефтяных фракций [A. Stanislaus, A. Marafi, М. S. Rana. Recent advances in the science and technology of ultra-low sulfur diesel (ULSD) production // Catalysis Today. 2010. V. 153. P. 1-68].
Для улучшения контроля температуры в реакторе и уменьшения образования оксидов углерода гидропереработку смесей ТЖК с нефтяными фракциями предлагается проводить в две стадии [US 8507738 В2, С07С 1/00, 13.08.2013; US 9598645 В2, C07G 3/00, 21.03.2017; US 2012/0216450, C10L 1/00, 30.08.2011; US 2012/0216450, C10L 1/00, 30.08.2011]. На первой стадии смесь ТЖК и нефтяных дизельных фракций пропускают через слой сульфидных Mo/Al2O3 или W/Al2O3 катализаторов, на которых гидродеоксигенация ТЖК протекает без образования оксидов углерода, а малая активность таких катализаторов позволяет избежать перегревов. После первой стадии реакционная смесь поступает во второй слой, где в присутствии традиционных сульфидных NiMo, СоМо или NiW катализаторов протекают реакции гидроочистки нефтяного сырья, направленные на снижение содержания серы, азота и полициклических ароматических углеводородов.
Общим недостатком описанных выше способов совместной гидропереработки триглицеридов жирных кислот и нефтяных дизельных фракций являются неудовлетворительные низкотемпературные свойства получаемого продукта (температура помутнения, температура застывания) - обусловленные высокими температурами застывания линейных алканов C16-C22, получаемых в процессе гидродеоксигенации ТЖК. Для улучшения низкотемпературных свойств продуктов гидропереработки дополнительно к стадиям гидродеоксигенации и гидроочистки предлагается использовать дополнительную, третью, стадию, на которой проводят изомеризацию алканов C16-C22 в присутствии бифункциональных катализаторов, содержащих металлы VIII группы (Pt,Pd) или сульфидные NiMo, NiW наночастицы, на носителях, в состав которых входят алюмосиликаты или цеолиты [US 2012/0216450, C10L 1/00, 30.08.2011].
Более эффективным решением проблемы по сравнению с трехстадийной схемой является использование на второй стадии сульфидных катализаторов на цеолитсодержащих носителях, которые могли бы обеспечивать одновременное протекание реакций гидроочистки компонентов нефтяных фракций и реакций изомеризации или мягкого гидрокрекинга
Figure 00000001
C16-C22, полученных на первой стадии в результате гидродеоксигенации ТЖК. Известно, что температура застывания алканов уменьшается по мере уменьшения числа атомов углерода в цепи, а температура застывания изо-алканов ниже по сравнению с температурой застывания
Figure 00000001
.
Наиболее близким к предлагаемому техническому решению является способ гидропереработки ТЖК в смеси с прямогонными нефтяными фракциями [RU 2495082, C10G 3/00, 10.10.2013], включающий следующие стадии: а) формирование исходного сырья путем комбинирования ископаемого углеводородного топлива с возобновляемым органическим материалом (до 35 об. %), b) гидродеоксигенация исходного сырья в присутствии нанесенного Mo-содержащего катализатора, с) гидроочистка потока, выходящего из стадии (b) в присутствии катализатора гидроочистки, d) гидроизомеризация потока из стадии b) или с) в присутствии катализатора гидроизомеризации.
Согласно одному из вариантов, приведенных в RU 2495082, гидропереработку можно проводить в две стадии: на первой стадии исходная смесь контактирует с сульфидным Мо катализатором гидродеоксигенации при давлении водорода 1-200 бар, температуре 50-350°С, объемной скорости 0,1-10 ч-1, а на второй стадии одновременно проводят реакции гидроочистки и изомеризации алканов, полученных на первой стадии, при давлении водорода 1-200 бар, температуре 50-450°С, объемной скорости 0,1-10 ч-1. На стадии изомеризации используется сульфидный NiW катализатор на носителе, содержащем в своем составе оксид алюминия, диоксид кремния, диоксид титана, алюмосиликат, цеолиты ZSM-5 или бета-цеолит.
Анализ примеров, иллюстрирующих процесс, согласно прототипу, показал, что использование катализатора гидроизомеризации для улучшения качества продукта гидродеоксигенации приводит к существенному изменению фракционного состава при относительно небольшом снижении температуры помутнения (на 6,2°С). Так, согласно приведенным данным, температура выкипания 5 и 10 мас. % продукта снижается от 233 и 255 до 158 и 199°С, следствием чего является уменьшение выхода дизельной фракции (температура кипения 160-360°С). Причиной этого является использование на стадии гидроизомеризации (стадия (d)) катализатора, который, наряду с реакциями гидроизомеризации, активен в реакциях гидрокрекинга. Известно, что аморфные алюмосиликаты, цеолит ZSM-5 и бета-цеолит входят в состав катализаторов гидрокрекинга.
Изобретение решает задачу разработки эффективного способа получения низкосернистого дизельного топлива в процессе гидропереработки смеси триглицеридов жирных кислот ТЖК и прямогонной дизельной фракции в двух последовательно соединенных реакторах, в первом из которых проводят реакции гидродеоксигенации триглицеридов жирных кислот ТЖК на сульфидном Mo/Al2O3 катализаторе, а во втором - реакции гидроочистки нефтяного сырья и реакции гидроизомеризации алканов.
Задача решается созданием катализатора, применяемого на второй стадии получения низкосернистого дизельного топлива (<10 мг/кг серы) с улучшенными низкотемпературными свойствами при совместной переработке ТЖК и нефтяных дизельных фракций.
Технический результат состоит в снижении температуры застывания продуктов совместной гидропереработки триглицеридов жирных кислот и нефтяных фракций в низкосернистое дизельное топливо
Катализатор на носителе для второй стадии в качестве активного компонента содержит соединения Ni и Мо в количестве, мас. %: оксид молибдена MoO3 - 16,0-19,5, оксид никеля NiО - 3,4-4,2, а носитель представляет собой композицию, содержащую силикоалюмофосфат SAPO-11 в количестве 25-30 мас. % и оксид алюминия - остальное.
Способ приготовления катализатора включает формовку гранул носителя методом экструзии пасты, приготовленной из смеси порошков гидроксида алюминия и силикоалюмофосфата SAPO-11, с последующей термообработкой и однократной пропиткой прокаленного носителя водным раствором солей металлов и промотирующих добавок, в качестве которых используются фосфорная кислота и диэтиленгликоль. Использование силикоалюмофосфата SAPO-11 в составе носителя способствует равномерному распределению сульфидных NiMo наночастиц, образующихся в результате сульфидирования активных компонентов, по поверхности всего носителя, включая поверхность частиц силикоалюмофосфата. В результате равномерного распределения обеспечивается близкое расположение кислотных и гидрирующих центров, что, в совокупности с одномерной системой пор силикоалюмофосфата SAPO-11 способствует эффективному протеканию реакций гидроизомеризации, без избыточного крекинга алканов.
Сульфидные катализаторы, согласно прототипу, в которых для приготовления носителей использовались цеолиты бета и ZSM-5, наряду с реакциями изомеризации, могут проводить реакции гидрокрекинга, так как эти цеолиты характеризуются трехмерной системой пор, а при приготовлении сульфидных катализаторов на носителях, содержащих эти цеолиты, сульфидные наночастицы располагаются преимущественно на поверхности оксида алюминия. Следствием этих особенностей является избыточный крекинг, приводящий к образованию углеводородов с низкой температурой кипения, выходящей за рамки температур кипения дизельных фракций.
Задача решается также усовершенствованием способа совместной гидропереработки ТЖК и нефтяных дизельных фракций, которую проводят в двух последовательно соединенных реакторах: в первом реакторе осуществляют реакцию гидродеоксигенации ТЖК в смеси с прямогонной дизельной фракцией с использованием селективного Mo/Al2O3 катализатора, а во втором реакторе проводят реакции гидроочистки нефтяного сырья и гидроизомеризации алканов, полученных на первой стадии в реакции гидродеоксигенации ТЖК. В первом реакторе могут быть использованы Mo/Al2O3 катализаторы гидродеоксигенации, приготовленные любым из известных способов, содержащие 16,5-19,5 мас. % Мо, во втором реакторе используется NiMo катализатор согласно изобретению, приготовленный на носителе, представляющем собой композицию SAPO-11 и оксида алюминия. Катализаторы перед использованием переводят в сульфидное состояние путем обработки сырьем, содержащим сернистые соединения, при повышенной температуре и давлении водорода. Процесс проводят при температуре 360-390°С, давлении водорода 4,0-7,0 МПа, объемной скорости сырья 1,0-2,0 ч-1, соотношении водород/сырье 600-1000 Нм33. Содержание триглицеридов жирных кислот ТЖК в смеси с прямогонной дизельной фракцией составляет 15-30 мас. %.
Отличительными признаками предлагаемого катализатора и способа гидропереработки ТЖК в смеси с нефтяными фракциями в низкосернистое дизельное топливо с улучшенными низкотемпературными характеристиками являются:
1. Состав катализатора для второй стадии гидропереработки, включающий в качестве активного компонента соединения Ni и Мо в количестве, мас. %: оксид молибдена MoO3 - 16,0-19,5, оксид никеля NiO - 3,4-4,2, которые диспергированы на носителе, представляющем собой композицию силикоалюмофосфата SAPO-11 (25-30 мас. %) и оксида алюминия (70-75 мас. %).
2. Способ совместной гидропереработки ТЖК и нефтяных фракций, который осуществляют в двух последовательно соединенных реакторах: в первом реакторе, содержащем сульфидный Mo/Al2O3 катализатор (содержание MoO3, мас. % - 16,5-19,5) протекают реакции гидродеоксигенации ТЖК в смеси с прямогонной дизельной фракцией; а во втором реакторе протекают реакции гидроочистки нефтяного сырья и реакции гидроизомеризации алканов, полученных в результате гидродеоксигенации ТЖК на первой стадии, с использованием сульфидного NiMo катализатора на носителе, представляющем собой композицию оксида алюминия и SAPO-11, при температуре 360-390°С, давлении водорода 4,0-7,0 МПа, объемной скорости сырья 1,0-2,0 ч-1, отношении водород/сырье - 600-1000 Нм33.
Описанный выше способ позволит повысить эффективность гидропереработки триглицеридов жирных кислот в смеси с нефтяными фракциями в низкосернистое дизельное топливо с улучшенными низкотемпературными характеристиками, а именно: обеспечить снижение температуры помутнения продукта гидропереработки не менее чем на 10°С в результате одновременной реализации реакций гидрообессеривания, гидродеазотирования, гидрирования полициклических ароматических углеводородов и гидроизомеризации алканов на второй стадии в присутствии NiMo катализатора, нанесенного на носитель, представляющий собой композицию силикоалюмофосфата SAPO-11 (25-30 мас. %) и оксида алюминия (70-75 мас. %).
Тестирование катализаторов в процессе совместной гидропереработки нефтяных дизельных фракций с ТЖК проводили на 2-х реакторной пилотной установке с последовательным соединением реакторов, диаметр каждого реактора - 26 мм, длина - 1300 мм. В качестве нефтяного сырья использовали прямогонную дизельную фракцию, в качестве триглицерид-содержащего сырья - рапсовое масло. Суммарная доля кислот C18 (олеиновой, линолевой, линоленовой и стеариновой) в использованном в работе растительном масле составляет 90,5% мас. %, содержание кислорода - 11,19 мас. %. Сырье подавали с помощью жидкостных хроматографических насосов Gilson-305 из емкостей, расположенных на весах, расход сырья контролировали по изменению массы. Водород дозировали автоматическими дозаторами Bronkhorst, сырье и водород поступали в реактор сверху вниз. Гранулы катализатора (длиной 4-6 мм) загружали в реактор, разбавляя его мелкими частицами карбида кремния (фракция 0,1-0,25 мм) в объемном соотношении 1:4. Перед проведением экспериментов проводили сульфидирование катализаторов прямогонной дизельной фракцией (ПДФ), содержащей дополнительно 0,6 мас. % серы в виде диметилдисульфида согласно процедуре, описанной в примере 1.
В продуктах гидропереработки анализировали содержание серы, кислорода, ароматических соединений; также определяли плотность, фракционный состав и температуру помутнения. Определение серы проводили с помощью анализатора серы ANTEK 9000NS в соответствии с ГОСТ Р 56342-2015. Содержание кислорода определяли с использованием CHNSO элементного анализатора Vario EL Cube (Elementar Analysensysteme GmbH, Германия). Содержание ароматических соединений в продуктах определяли на хроматографе Varian ProStar, укомплектованном рефрактометрическим детектором (ГОСТ Р ЕН 12916-2008). Плотность исходного сырья и продуктов гидропереработки определяли с помощью цифрового денсиметра Mettler Toledo 30 PX по методике ГОСТ P 57037-2016. Определение фракционного состава образцов проводили методом имитированной дистилляции по стандартной методике ГОСТ Р 56720-2015 с использованием хроматографа Agilent 6890N. Температуру помутнения продуктов гидропереработки (Тп) определяли с помощью автоматического аппарата ТПЗ-ЛАБ-22 (АО «ЛОиП», Россия) в соответствии с методикой ГОСТ 5066-2018.
Сущность предлагаемого изобретения иллюстрируется следующими примерами и данными, приведенными в таблице 2.
Примеры 1-2 иллюстрируют состав катализатора.
Пример 1.
Катализатор согласно изобретению, а именно, NiMo катализатор на носителе, представляющем собой композицию SAPO-11 (30 мас. %) и оксида алюминия (70 мас. %) и обозначаемый далее в тексте NiMo/Al2O3-SAP, используют для одновременного проведения реакций гидрообессеривания, гидродеазотирования, гидрирования ПАУ и гидроизомеризации алканов.
Носитель готовят методом экструзии пасты, полученной смешением порошков гидроксида алюминия (Pural SB) в количестве 145,8 г, SAPO-11 в количестве 45,0 г и ~ 120 мл 0,5% раствора азотной кислоты в смесителе с Z-образными лопастями в течение 25-35 минут. Полученную пасту формуют через фильеру с отверстием в виде трилистника с размером 1,3 мм, полученные экструдаты сушат при температуре 110°С в течение 6 ч и прокаливают в токе воздуха при температуре 550°С. После прокаливания экструдаты содержат, мас. %: 3,2 соединений кремния в пересчете на SiO2, 12,4 соединений фосфора в пересчете на Р2О5, оксид алюминия - остальное. Носитель в количестве 40 г пропитывают водным раствором, содержащим соединения никеля, молибдена, фосфорную кислоту и диэтиленгликоль, под вакуумом.
Для приготовления пропиточного раствора к 100 мл дистиллированной воды при температуре 70°С добавляют при постоянном перемешивании ортофосфорную кислоту в количестве 5,25 г и загружают 16,2 г оксида молибдена (VI). После полного растворения оксида молибдена (VI) добавляют 5,04 г гидроксида никеля и 8,1 г диэтиленгликоля. В результате получают прозрачный раствор зеленого цвета. Гранулы катализатора после пропитки сушат в потоке воздуха при комнатной температуре до сыпучего состояния и в сушильном шкафу при температуре 110°С в течение 4-х ч. Содержание активных компонентов определяют после прокаливания при температуре 550°С в течение 4-х ч, содержание активных компонентов в NiMo катализаторе составляет, мас. %: MoO3 - 19,5, МО - 4,2.
На первой стадии, предназначенной для гидродеоксигенации ТЖК в смеси с прямогонной дизельной фракцией, используют Mo/Al2O3 катализатор гидродеоксигенации, для приготовления которого использовали гранулированный алюмооксидный носитель (цилиндры с поперечным сечением в виде трилистника размером 1,2±0,1 мм) со следующими текстурными характеристиками: Sуд, м2/г - 235; объем пор, см3/г - 0,79; средний диаметр пор,
Figure 00000002
- 134. Катализатор гидродеоксигенации Mo/Al2O3 готовят методом пропитки гранул алюмооксидного носителя водным раствором, содержащим рассчитанные количества оксида молибдена (VI), ортофосфорной (Н3РО4) и лимонной кислоты. Катализаторы используют после сушки в потоке азота при комнатной температуре до сыпучего состояния и в сушильном шкафу («Binder», Германия) при температуре (110±10)°С в течение 4-х ч. Содержание активных компонентов определяют после прокаливания при температуре 550°С в течение 4-х ч, содержание молибдена в Mo/Al2O3 катализаторе гидродеоксигенации составляет, мас. %: MoO3 - 19,5.
Перед проведением экспериментов проводят сульфидирование катализаторов прямогонной дизельной фракцией (ПДФ), содержащей дополнительно 0,6 мас. % серы в виде диметилдисульфида (при объемной скорости 2 ч-1, соотношении водород/сырье - 300, давлении водорода - 3,5 МПа) в несколько этапов: при температуре 240°С в течение 8 ч, при температуре 340°С в течение 6 ч, скорость увеличения температуры между этапами составляла 25°С в час. После окончания сульфидирования катализаторы эксплуатируют в процессе гидроочистки прямогонной дизельной фракции при объемной скорости 2 ч-1, соотношении водород/сырье - 300, давлении водорода - 3,5 МПа в течение 3-х суток. По истечении этого срока смесь, содержащую 30 масс% рапсового масла, дозировали в систему со скоростью 60 мл/час (объемная скорость 1,5 ч-1) при давлении - 5,0 МПа, отношении водород/сырье - 1000 Нм3 водорода/м3 сырья. Температура реакции в первом реакторе составляла 360°С, во втором реакторе - 380°С. Сырье, содержащее 30 мас. % рапсового масла и 70 мас. % прямогонной дизельной фракции, имеет следующие характеристики: содержание серы - 0,61 мас. %, содержание азота - 76 мг/кг, содержание кислорода - 3,2 мас. %, плотность - 0,864 г/см3.
Показатели процесса гидропереработки ТЖК в смеси с прямогонной дизельной фракцией приведены в таблице 2.
Пример 2.
NiMo катализатор (NiMo/Al2O3-SAP) согласно примеру 1, отличающийся тем, что содержание активных компонентов в полученном катализаторе составляет, мас. %: МоО3 - 16,0, NiO - 3,4; а для приготовления катализатора используют носитель, представляющий собой композицию SAPO-11 (25 мас. %) и оксида алюминия (75 мас. %). Прокаленный носитель, использованный для приготовления катализаторов, содержит, мас. %: 2,6 соединений кремния в пересчете на SiO2, 10,7 соединений фосфора в пересчете на Р2О5, оксид алюминия - остальное; характеризуется величиной удельной поверхности 220 м2/г, объемом пор - 0,55 см3/г, средним диаметром пор - 10,1 нм. В первом слое используют Mo/Al2O3 катализатор, содержание молибдена в котором составляет, мас. %: MoO3 - 16,5.
Тестирование катализатора проводят по примеру 1, показатели процесса гидропереработки ТЖК в смеси с прямогонной дизельной фракцией приведены в таблице 2.
Примеры 3-5 иллюстрируют способ совместной гидропереработки ТЖК и прямогонных дизельных фракций в низкосернистое дизельное топливо с улучшенными низкотемпературными характеристиками.
Пример 3.
В первый реактор загружают 40 мл Mo/Al2O3 катализатора гидродеоксигенации, а во второй - 40 мл NiMo катализатора NiMo/Al2O3-SAP, согласно примеру 1. Катализаторы сульфидируют в условиях, описанных в примере 1, и эксплуатируют в процессе гидроочистки прямогонной дизельной фракции в течение 3-х суток. По истечении этого срока в последовательно соединенные реакторы подавали смесь, содержащую 30 мас. % рапсового масла, со скоростью 80 мл/ч (объемная скорость 2,0 ч-1) при давлении - 7,0 МПа, отношении водород/сырье - 600 Нм3 водорода/м3 сырья. Температура в первом реакторе составляла 340°С, во втором - 390°С.
Показатели процесса гидропереработки ТЖК в смеси с прямогонной дизельной фракцией приведены в таблице 2.
Пример 4.
Способ совместной гидропереработки смеси, содержащей 30 мас. % рапсового масла и 70 мас. % прямогонной дизельной фракции по примеру 3, отличающийся тем, что гидропереработку проводят при давлении 4,0 МПа, отношении водород/сырье - 1000 Нм3 водорода/м3 сырья; объемной скорости подачи сырья - 1,0 ч-1; температура в первом реакторе составляет 370°С, во втором - 380°С.
Показатели процесса гидропереработки ТЖК в смеси с прямогонной дизельной фракцией приведены в таблице 2.
Пример 5.
Способ совместной гидропереработки смеси, содержащей 30 мас. % рапсового масла и 70 мас. % прямогонной дизельной фракции по примеру 3, отличающийся тем, что гидропереработку проводили при давлении 5,0 МПа, отношении водород/сырье - 1000 Нм3 водорода/м3 сырья, объемной скорости подачи сырья - 1,0 ч-1; температура в первом реакторе составляла 360°С, во втором - 360°С.
Показатели процесса гидропереработки ТЖК с нефтяными дизельными фракциями приведены в таблице 2.
Пример 6 иллюстрирует результаты гидродеоксигенации смеси, содержащей 30 мас. % рапсового масла в смеси с прямогонной дизельной фракцией, которые используются, чтобы продемонстрировать снижение температуры помутнения продукта после гидропереработки на второй стадии с использованием катализатора согласно изобретению.
Пример 6.
Гидродеоксигенацию рапсового масла (30 мас. %) в смеси с прямогонной дизельной фракцией проводят в реакторе, содержащем 40 мл гранулированного Mo/Al2O3 катализатора гидродеоксигенации, приготовленного по примеру 1, и имеющего содержание MoO3, мас. % - 16,5. Катализатор сульфидируют в соответствии с процедурой, описанной в примере 1. Гидродеоксигенацию проводят при давлении 4,0 МПа, скорости подачи сырья - 60 мл/ч (объемная скорость - 1,5 ч-1), отношении водород/сырье - 1000 Нм3 водорода/м3 сырья, температуре 340°С.
Свойства продукта приведены в таблице 2 для сравнения с другими примерами.
В продуктах гидропереработки по примерам 1-6 не обнаружено кислородсодержащих соединений в пределах чувствительности анализатора Vario EL Cube (100 ppm). Селективность реакции по маршруту декарбонилирования, рассчитанная по результатам анализа оксидов углерода в газовой фазе как отношение количества образовавшихся оксидов углерода к теоретически возможному количеству, не превышает 3% во всех экспериментах. Полученный результат указывает на то, что кислородсодержащие соединения рапсового масла полностью превращаются в первом реакторе на селективном Mo/Al2O3 катализаторе.
Результаты, приведенные в таблице 2, показывают, что использование на второй стадии сульфидного NiMo катализатора на носителе, представляющем собой композицию силикоалюмофосфата SAPO-11 (25-30 мас. %) и оксида алюминия (70-75 мас. %), позволяет уменьшить температуру застывания продуктов гидропереработки смеси, содержащей 30 масс. % рапсового масла, по крайней мере на 10°С. При этом не наблюдается снижения начала кипения (Н.К.) продуктов гидропереработки ниже 180°С, что свидетельствует об отсутствии нежелательных реакций крекинга.
Таким образом, предлагаемый способ позволяет снизить температуры помутнения продуктов совместной гидропереработки триглицеридов жирных кислот и нефтяных фракций в низкосернистое дизельное топливо с использованием сульфидного Mo/Al2O3 катализатора гидродеоксигенации на первой стадии и сульфидного NiMo катализатора на носителе, представляющем собой композицию оксида алюминия и силикоалюмофосфата SAPO-11, - на второй.
Figure 00000003
Figure 00000004
Figure 00000005

Claims (5)

1. Способ получения низкосернистого дизельного топлива в процессе гидропереработки смеси триглицеридов жирных кислот ТЖК и прямогонной дизельной фракций в двух последовательно соединенных реакторах, в первом из которых проводят реакции гидродеоксигенации триглицеридов жирных кислот ТЖК на сульфидном Мо/Al2O3 катализаторе, а во втором - реакции гидроочистки нефтяного сырья и реакции гидроизомеризации алканов, отличающийся тем, что вторую стадию осуществляют с использованием сульфидного NiMo катализатора на носителе, представляющем собой композицию оксида алюминия и силикоалюмофосфата SAPO-11.
2. Способ по п. 1, отличающийся тем, что NiMo катализатор второй стадии до стадии сульфидирования в качестве активного компонента содержит соединения Ni и Мо в количестве, мас. %: оксид молибдена MoO3 - 16,0-19,5, оксид никеля NiO - 3,4-4,2 носитель представляет собой композицию, содержащую силикоалюмофосфат SAPO-11 в количестве 25-30 мас. % и оксид алюминия - остальное.
3. Способ по п. 1, отличающийся тем, что реакции гидроочистки нефтяного сырья и реакции гидроизомеризации алканов на второй стадии проводят при температуре 360-390°С, давлении водорода 4,0-7,0 МПа, объемной скорости сырья 1,0-2,0 ч-1, отношении водород/сырье 600-1000 Нм33.
4. Способ по п. 1, отличающийся тем, что реакции гидродеоксигенации триглицеридов жирных кислот на первой стадии проводят при температуре 340-370°С, давлении водорода 4,0-7,0 МПа, объемной скорости сырья 1,0-2,0 ч-1, отношении водород/сырье 600-1000 Нм33.
5. Способ по п. 1, отличающийся тем, что содержание триглицеридов жирных кислот ТЖК в прямогонной дизельной фракции составляет 15-30 мас. %.
RU2019140885A 2019-12-11 2019-12-11 Способ получения низкосернистого дизельного топлива RU2722824C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019140885A RU2722824C1 (ru) 2019-12-11 2019-12-11 Способ получения низкосернистого дизельного топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019140885A RU2722824C1 (ru) 2019-12-11 2019-12-11 Способ получения низкосернистого дизельного топлива

Publications (1)

Publication Number Publication Date
RU2722824C1 true RU2722824C1 (ru) 2020-06-04

Family

ID=71067669

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019140885A RU2722824C1 (ru) 2019-12-11 2019-12-11 Способ получения низкосернистого дизельного топлива

Country Status (1)

Country Link
RU (1) RU2722824C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120216450A1 (en) * 2009-09-02 2012-08-30 IFP Energies Nouvelles Method of converting feeds from renewable sources in co-processing with a petroleum feed using a catalyst based on nickel and molybdenum
US8507738B2 (en) * 2009-04-27 2013-08-13 Petroleo Brasileiro S.A. - Petrobras Process for hydrotreating biomass oil diluted in a refinery stream of petroleum hydrocarbons
RU2495082C2 (ru) * 2008-09-10 2013-10-10 Хальдор Топсеэ А/С Способ и катализатор гидропереработки
RU2691064C1 (ru) * 2018-12-17 2019-06-10 Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз") Способ приготовления катализатора и способ гидрооблагораживания дизельных дистиллятов с использованием этого катализатора

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2495082C2 (ru) * 2008-09-10 2013-10-10 Хальдор Топсеэ А/С Способ и катализатор гидропереработки
US8507738B2 (en) * 2009-04-27 2013-08-13 Petroleo Brasileiro S.A. - Petrobras Process for hydrotreating biomass oil diluted in a refinery stream of petroleum hydrocarbons
US20120216450A1 (en) * 2009-09-02 2012-08-30 IFP Energies Nouvelles Method of converting feeds from renewable sources in co-processing with a petroleum feed using a catalyst based on nickel and molybdenum
RU2691064C1 (ru) * 2018-12-17 2019-06-10 Акционерное Общество "Газпромнефть - Московский Нпз" (Ао "Газпромнефть - Мнпз") Способ приготовления катализатора и способ гидрооблагораживания дизельных дистиллятов с использованием этого катализатора

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shih-Yuan Chen et al. "Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide catalysts" Catalysts, 2018, 8, 59. *

Similar Documents

Publication Publication Date Title
Ameen et al. Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production
US9458396B2 (en) Process for conversion of feedstocks obtained from renewable sources based on marine fuels
JP5857095B2 (ja) モリブデンベースの触媒を用いることにより再生可能な起源の流出物を優れた品質の燃料に転化する方法
US8324439B2 (en) Method of converting feedstocks from renewable sources to good-quality diesel fuel bases using a zeolite type catalyst
JP5525865B2 (ja) ニッケル及びモリブデンをベースとする触媒を用いる、脱炭酸転化が限定された、再生可能な供給源由来の仕込原料の水素化脱酸素法
JP5525786B2 (ja) 航空燃料油基材の製造方法及び航空燃料油組成物の製造方法
RU2495082C2 (ru) Способ и катализатор гидропереработки
JP5330935B2 (ja) 航空燃料油基材の製造方法及び航空燃料油組成物
JP5317644B2 (ja) 航空燃料油基材の製造方法
US8282815B2 (en) Method of converting feedstocks from renewable sources to good-quality diesel fuel bases using a zeolite catalyst without intermediate gas-liquid separation
EP2817275B1 (en) Conversion of lipids
SG182114A1 (en) Production of paraffinic fuels from renewable materials using a continuous hydrotreatment process
RU2652991C1 (ru) Способ гидрооблагораживания триглицеридов жирных кислот в смеси с нефтяными фракциями
KR20120073237A (ko) 항공 연료유 조성물
JP5022117B2 (ja) 炭化水素油の製造方法
CN105143410A (zh) 基于含fe的分子筛的加氢异构化催化剂
US20130116488A1 (en) Catalyst compositions for conversion of vegetable oils to hydrocarbon products in the diesel boiling range and process of preparation thereof
JP2011068728A (ja) 炭化水素油及び潤滑油基油の製造方法
CN104066818A (zh) 可再生原料的加氢转化
RU2722824C1 (ru) Способ получения низкосернистого дизельного топлива
RU2725870C1 (ru) Катализатор для получения низкосернистого дизельного топлива
CN109294746B (zh) 一种油脂类原料加氢制备柴油馏分的方法
CN109294623B (zh) 一种油脂类原料制备柴油馏分的加氢方法
WO2013147219A1 (ja) 水素化異性化触媒の製造方法及び潤滑油基油の製造方法
RU2602278C1 (ru) Катализатор и процесс гидродеоксигенации растительного сырья с его использованием

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20201110