RU2722431C1 - Способ определения ориентации естественной трещиноватости горной породы - Google Patents

Способ определения ориентации естественной трещиноватости горной породы Download PDF

Info

Publication number
RU2722431C1
RU2722431C1 RU2019140819A RU2019140819A RU2722431C1 RU 2722431 C1 RU2722431 C1 RU 2722431C1 RU 2019140819 A RU2019140819 A RU 2019140819A RU 2019140819 A RU2019140819 A RU 2019140819A RU 2722431 C1 RU2722431 C1 RU 2722431C1
Authority
RU
Russia
Prior art keywords
gamma
orientation
natural
determined
gamma radiation
Prior art date
Application number
RU2019140819A
Other languages
English (en)
Inventor
Ленар Гамбарович Рахмаев
Юлий Андреевич Гуторов
Original Assignee
Публичное акционерное общество «Татнефть» имени В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество «Татнефть» имени В.Д. Шашина filed Critical Публичное акционерное общество «Татнефть» имени В.Д. Шашина
Priority to RU2019140819A priority Critical patent/RU2722431C1/ru
Application granted granted Critical
Publication of RU2722431C1 publication Critical patent/RU2722431C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/10Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Использование: для определения ориентации естественной трещиноватости горной породы. Сущность изобретения заключается в том, что осуществляют спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм плотности цементного камня с привязкой к изменению угла регистратором при помощи излучателей и детекторов гамма-излучения и датчика углового положения относительно выбранной ориентировочной плоскости. Ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг, определяемый инклинометром, спускаемым в составе измерительного оборудования. Одновременно определяют при помощи дополнительных датчиков гамма-излучения толщину стенок труб обсадной колонны в исследуемом интервале. Ориентацию естественной трещиноватости определяют по направлению максимальной глубины в противоположных направлениях от скважины проникновения цементного камня в пласт, превосходящее вероятностное отклонение. Чувствительность детекторов гамма-излучения могут регулировать в обратной зависимости от толщины стенок труб обсадной колонны для нивелирования затухания гамма-излучения. Технический результат: обеспечение возможности определения преобладающей ориентации естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам определения трещиноватости горной породы с привязкой к направлению.
Прибор для контроля технического состояния обсаженных скважин (патент на ПМ RU № 39958, МПК G01V 5/12, E21B 47/00, опубл. 20.08.2004 Бюл. № 23), содержащий кожух, заглушки, центраторы и размещенные внутри кожуха прибора измерительные зонды плотномера и толщиномера, причем в нижней заглушке установлены шток с источником гамма излучения, наконечник и свинцовый экран с коллимационными окнами для источника и приемного преобразователя зонда толщиномера, а на верхней заглушке – электронный блок, взаимоэкранированные свинцовым экраном, равномерно расположенные и равноудаленные от оси прибора приемные преобразователи зонда плотномера и, расположенный по оси прибора, приемный преобразователь зонда толщиномера, причем приемные преобразователи зонда плотномера развернуты на 180°, центраторы установлены по концам кожуха прибора и выполнены в виде втулки с равномерно расположенными по окружности продольными пазами, в которые установлены опоры, зафиксированные с двух сторон, а прибор снабжен узлом соединения со средством его доставки.
Этим прибором осуществляют способ контроля технического состояния обсаженных скважин, включающий последовательное протягивания прибора от одного исследуемого интервала к другому с записью каротажных диаграмм, при этом источник гамма излучения генерирует гамма кванты, а приемные преобразователи зонда толщиномера и зондов плотномера принимают и преобразуют рассеиваемое от исследуемого пространства гамма излучение, информацию с которых через электронный блок и кабель передают в наземный регистратор.
Недостатками данного способа являются отсутствие привязки к направлению измерений, узкая область применения из-за исследования только состояния труб трубопроводом или обсадной колонны.
Известна также забойная телеметрическая система (патент RU № 2509210, МПК E21B 47/12, E21B 47/20, E21B 47/02, G01V 5/1, опубл. 10.03.2014 Бюл. № 7), содержащая соединенные между собой модуль электрогенератора-пульсатора, модуль инклинометра, модуль гамма-каротажа, включающие телеметрические блоки, причем она дополнительно содержит блок анализа и управления коммутатором и коммутатор, соединенные с указанными модулями, при этом вход блока анализа и управления коммутатором соединен с выходом блока управления пульсациями модуля гамма-каротажа, установленным в модуле гамма-каротажа, и первым входом коммутатора, а выход блока анализа и управления коммутатором соединен с входом управления коммутатора, второй вход коммутатора соединен с выходом блока управления пульсациями модуля инклинометра, установленным в модуле инклинометра, а выход коммутатора соединен с входом пульсатора, установленным в модуле электрогенератора-пульсатора, причем модуль инклинометра выполнен с возможностью раздельной или совместной работы с модулем гамма-каротажа.
Этой системой осуществляют контроль при работе бурильного инструмента, включающий модуль инклинометра, модуль гамма-каротажа и модуль электрогенератора-пульсатора, которые спускают в скважину, предварительно соединяя попарно через кабельные соединения и монтируя в защитный кожух, способный выдерживать высокое давление бурового раствора, создаваемое при бурении насосами, в процессе работы прокачкой потока бурового раствора через направляющий аппарат и ротор гидротурбины электрогенератора для выработки электрическое напряжение, поступающее на модули инклинометра и гамма-каротажа для контроля за состоянием стенок скважины, при совместной работе модуль гамма-каротажа является ведущим по отношению к модулю инклинометра, при этом электронный блок модуля гамма-каротажа периодически опрашивает по интерфейсной линии связи электронный блок модуля инклинометра и получает от него инклинометрическую информацию.
Недостатками данного способа являются узкая область применения из-за возможности работы в составе с бурильным инструментом при прокачке бурового раствора и исследования только состояния стенок скважины в процессе бурения.
Наиболее близким по технической сущности является устройство для исследования цементного кольца за обсадной колонной в скважине (патент RU № 2254598, МПК G01V 5/12, опубл. 20.06.2005 Бюл. № 17), содержащее корпус и неподвижный относительно корпуса экран с коллимационными окнами для источника и детекторов гамма-излучения; детекторы гамма-излучения, расположенные равномерно по периметру корпуса устройства на двух уровнях дальности относительно источника, соответствующих двум измерительным зондам - малому и большому и взаимоэкранированных, электронную схему, датчик углового положения, отличающееся тем, что парные детекторы гамма-излучения малого и большого зондов расположены по обе стороны от источника гамма-излучения, причем парные детекторы гамма-излучения малого и большого зондов, расположенные с одной стороны источника гамма-излучения, смещены в поперечном сечении относительно парных детекторов гамма-излучения малого и большого зондов, расположенных с другой стороны источника гамма-излучения, на угол, равный 360/N, где N - общее число парных детекторов малого и большого зондов; датчик углового положения жестко ориентирован в плоскости, проходящей через ось устройства и продольную ось одного из парных детекторов гамма-излучения малого и большого зондов, электронная схема снабжена телесистемой.
Данным устройством осуществляется способ исследования цементного кольца за обсадной колонной, включающий спуск в скважину на глубину исследуемого интервала и при последующем подъем выше исследуемого интервала, запись каротажных диаграмм наземным регистратором, при этом детекторы гамма-излучения, расположенные равномерно по окружности устройства, регистрируют интенсивность рассеянного гамма-излучения и выдают N-ное число селективных диаграмм, соответствующих количеству установленных детекторов, по N числу каналов телесистемы одновременно, а датчик углового положения регистрирует изменение угла между ориентированной плоскостью, проходящей через ось устройства и ось одной пары детекторов, условно принятых за отсчетные - нулевые, например детекторов А, и апсидальной плоскостью скважины, сигналы с детекторов гамма-излучения и датчика углового положения формируются в блоке формирователей импульсов, преобразуются в блоках регистров, упаковываются в контроллере телесистемы и через согласующее устройство и выходной блок передаются на наземный регистратор, при этом на наземном регистраторе записывают диаграммы от всех детекторов гамма-излучения и углограмма от датчика углового положения.
Недостатками данного способа являются привязка показаний датчиков углового положения только к относительной системе координат, достаточной для определения целостности цементного кольца и его плотности.
Недостатками всех способов является то, что они не предназначены для определения ориентации естественной трещиноватости горной породы в обсаженных скважинах, так как гамма-каротаж при этом проводится без привязки по сторонам света и без учета толщины стенок труб обсадной колонны, что не позволяет определить глубину проникновения цементного раствора в соответствующую горную породу.
Технической задачей предполагаемого изобретения является создание способа, позволяющего определить преобладающую ориентацию естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра.
Техническая задача решается способом определения ориентации естественной трещиноватости горной породы, включающим спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм плотности цементного камня с привязкой к изменению угла регистратором при помощи излучателей и детекторов гамма-излучения и датчика углового положения относительно выбранной ориентировочной плоскости.
Новым является то, что ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг, определяемым инклинометром, спускаемым в составе измерительного оборудования, одновременно определяют при помощи дополнительных датчиков гамма-излучения толщину стенок труб обсадной колонны в исследуемом интервале, а ориентацию естественной трещиноватости определяют по направлению максимальной глубины в противоположных направлениях от скважины проникновения цементного камня в пласт, превосходящее вероятностное отклонение.
Новым является также, что чувствительность детекторов гамма-излучения регулируется в обратной зависимости от толщины стенок труб обсадной колонны для нивелирования затухания гамма-излучения.
На фиг. 1 изображена схема реализации способа.
На фиг. 2 изображены разрезы обсадной колонны с цементным камнем по сторонам света: север-юг (N-S) и запад-восток (W-O).
На фиг. 3 изображены развертки соответствующих разрезов, где за ноль принято направление на север (N) – каротажные диаграммы.
Способ определения ориентации естественной трещиноватости горной породы включает спуск в зацементированную обсадную колонну 1 скважины 2 измерительного оборудования 3 на глубину ниже исследуемого интервала (не показан), подъем оборудования 3 с записью каротажных диаграмм (фиг. 3) плотности цементного камня 4 (фиг. 1 – 3) с привязкой к изменению угла регистратором при помощи соответственно излучателей 5 (фиг. 1) и детекторов 6 гамма-излучения и датчика углового положения 7 относительно выбранной ориентировочной плоскости. Ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг (N-S, фиг. 2), определяемым инклинометром 8 (фиг. 1), спускаемым в составе измерительного оборудования. Одновременно определяют при помощи дополнительных датчиков 9 гамма-излучения толщину стенок h1 (фиг. 3) и h2 труб обсадной колонны 1 в исследуемом интервале. Ориентацию естественной трещиноватости определяют по направлению максимальной глубины Н в противоположных направлениях 10 и 11 от скважины 2 проникновения цементного камня 4 в пласт 12 (фиг. 1), превосходящее вероятностное отклонение. В случаях, когда при строительстве скважины 2 применялись трубы обсадной колонны 1 различной толщины h1 (фиг. 3) и h2, на участке с более толстыми трубами h2 детекторы 6 (фиг. 1) гамма-излучения для определения плотности цементного камня 4 настраивают электронным блоком 13 более чувствительным для нивелирования затухания гамма-излучения, так как увеличение толщины стенок h2 (фиг. 3) снижает глубину проникновения H и усиливают затухание гамма-излучений. Для регулирования чувствительности детекторов 6 (фиг. 1) электронные блоки 13 настраиваются в лабораторных условиях, чтобы выдавать сопоставимые с остальными измерениями результаты для построения каротажных диаграмм (фиг. 3) соответствующих действительности.
Конструктивные элементы и технологические соединения
Пример конкретного выполнения.
После бурения скважины 2 (фиг. 1) в нее спустили и зацементировали обсадную колонну 1 (с наружным диаметром 146 мм) с образованием в ее затрубье цементного камня 4. Во время цементирования цементный раствор проникает внутрь горной породы, вскрытой скважиной 2, пропорционально ее проницаемости: где проницаемость выше, особенно в направлении преобладающей трещиноватости, цементный раствор проникает на большую глубину Н (фиг. 3) от скважины 2 (Фиг. 1). Для исследования скважины 2 в обсадную колонну 1 спустили на геофизическом кабеле 14 (для подачи электрического питания и передачи информации на устье) измерительное оборудование 3 ниже исследуемого интервала. При помощи кабеля 14 поднимали оборудование 3, при этом излучатели 5 генерируют гамма-излучения (γ-излучения), датчики 9 и детекторы 6 принимают их, преобразовывают в электрические сигналы, которые принимаются, обрабатываются с привязкой к угловому положению, определяемому датчиком 7 и передаются на поверхность, где блоком обработки (не показан) перерабатываются и строятся каротажные диаграммы (фиг. 3). Датчик 7 (фиг. 1) определяет угловое положение измеряемой информации относительно ориентировочной плоскости – вертикальную плоскость, идущую через магнитный меридиан N-S (фиг. 2), который определяется инклинометром 8 (фиг. 1). Датчики 9 (приемники γ-излучения, настроенные более грубо чем детекторы 6), идущие перед детекторами 6 при подъеме вверх, определяют h1 (фиг. 3) и h2 труб обсадной колонны 1 в исследуемом интервале для настройки чувствительности детекторов 6 (фиг. 1). В ходе исследований оборудованием 3 определили четыре основные зоны в исследуемом интервале: первая 15 сверху – с содержанием глины, вторая, продуктовый пласт 12 – песчаник, третья 16 – глина, четвертая 17 – известняк. Толщина трубы обсадной колонны 1 по всей длине составила h1=7,0 мм (фиг. 3), а в третьей зоне 16 (фиг. 1) – h2=7,7 мм (фиг. 3). Разрезы А-А, Б-Б,
В-В и Г-Г соответствующей каждой зоны 15, 12, 16 и 17 показаны на фиг. 2 с ориентацией севером наверх. В третьей зоне 16 чувствительность детекторов 6 из-за большей толщины h2 (фиг. 3) труб обсадной колонны 1 была повышена электронным блоком 13 (фиг. 1) для нивелирования затухания γ-излучения в соответствии с толщиной h2 (фиг. 3). В других зонах 15 (фиг. 1), 12 и 17 чувствительность детекторов 6 поддерживалась блоком 13 на начальном уровне. Полученные сигналы с датчиков 9 и детекторов 6 обрабатывались подавались кабелем 14 на поверхность, где блоком обработки строятся каротажные диаграммы (фиг. 3) состояния цементного камня 4. Для улучшения точности измерений оборудование 3 (фиг. 1) рекомендуется оснащать с двух сторон центраторами 18. Из диаграмм (фиг. 3) в зоне продуктивного пласта 12 (фиг. 1) разрез Б-Б (фиг. 2) выявили явные максимумы 10 (фиг. 3) (по направлению на восток – O) и 11 (по направлению на запад – W) по сравнению с другими направлениями и превосходящими вероятностное отклонение (для данной скважины определили отклонение – 2 мм (определяется эмпирическим путем). Исходя из максимумов 10 и 11 определили преобладающую ориентацию естественной трещиноватости в направлении W-O (фиг. 2) в продуктивном пласте 12 (фиг. 1).
Так как перепад плотностей между горными породами в зонах 15, 12, 16 и 17 и цементным камнем 4 очень отличается, то граница перехода между ними легко определяется гамма-каротажем детекторами 6, а привязка к направлению сторон N-S и O-W позволяет определить преобладающую ориентацию трещиноватости горных пород.
Предлагаемый способ позволяет определить преобладающую ориентацию естественной трещиноватости горной породы в обсаженных скважинах с абсолютной привязкой по сторонам света при помощи инклинометра.

Claims (2)

1. Способ определения ориентации естественной трещиноватости горной породы, включающий спуск в обсаженную скважину измерительного оборудования на глубину ниже исследуемого интервала, подъем оборудования с записью каротажных диаграмм плотности цементного камня с привязкой к изменению угла регистратором при помощи излучателей и детекторов гамма-излучения и датчика углового положения относительно выбранной ориентировочной плоскости, отличающийся тем, что ориентировочной плоскостью выбирают вертикальную плоскость, идущую через магнитный меридиан север-юг, определяемый инклинометром, спускаемым в составе измерительного оборудования, одновременно определяют при помощи дополнительных датчиков гамма-излучения толщину стенок труб обсадной колонны в исследуемом интервале, а ориентацию естественной трещиноватости определяют по направлению максимальной глубины в противоположных направлениях от скважины проникновения цементного камня в пласт, превосходящее вероятностное отклонение.
2. Способ определения ориентации естественной трещиноватости горной породы по п. 1, отличающийся тем, что чувствительность детекторов гамма-излучения регулируется в обратной зависимости от толщины стенок труб обсадной колонны для нивелирования затухания гамма-излучения.
RU2019140819A 2019-12-11 2019-12-11 Способ определения ориентации естественной трещиноватости горной породы RU2722431C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019140819A RU2722431C1 (ru) 2019-12-11 2019-12-11 Способ определения ориентации естественной трещиноватости горной породы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019140819A RU2722431C1 (ru) 2019-12-11 2019-12-11 Способ определения ориентации естественной трещиноватости горной породы

Publications (1)

Publication Number Publication Date
RU2722431C1 true RU2722431C1 (ru) 2020-05-29

Family

ID=71067628

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019140819A RU2722431C1 (ru) 2019-12-11 2019-12-11 Способ определения ориентации естественной трещиноватости горной породы

Country Status (1)

Country Link
RU (1) RU2722431C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054587A1 (en) * 2001-12-13 2003-07-03 Baker Hughes Incorporated Method of using electrical and acoustic anisotropy measurements for fracture identification
RU2254598C1 (ru) * 2004-01-13 2005-06-20 Открытое акционерное общество НПФ "Геофизика" Устройство для исследования цементного кольца за обсадной колонной в скважинах (варианты)
RU2485553C1 (ru) * 2011-10-25 2013-06-20 Общество с ограниченной ответственностью "Научно-производственный центр "ГЕОСТРА" Способ оценки трещинной пористости по данным скважинной сейсморазведки
RU2507396C9 (ru) * 2012-08-01 2014-04-10 Алик Нариман Оглы Касимов Способ определения параметров системы трещин гидроразрыва
RU2014151536A (ru) * 2014-12-18 2016-07-10 Открытое акционерное общество Научно-производственная фирма "Геофизика" (ОАО НПФ "Геофизика") Способ определения параметров трещины гидроразрыва пласта с применением импульсного генератора нейтронов
RU2626502C1 (ru) * 2016-04-26 2017-07-28 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ определения пространственной ориентации трещины гидроразрыва

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003054587A1 (en) * 2001-12-13 2003-07-03 Baker Hughes Incorporated Method of using electrical and acoustic anisotropy measurements for fracture identification
RU2254598C1 (ru) * 2004-01-13 2005-06-20 Открытое акционерное общество НПФ "Геофизика" Устройство для исследования цементного кольца за обсадной колонной в скважинах (варианты)
RU2485553C1 (ru) * 2011-10-25 2013-06-20 Общество с ограниченной ответственностью "Научно-производственный центр "ГЕОСТРА" Способ оценки трещинной пористости по данным скважинной сейсморазведки
RU2507396C9 (ru) * 2012-08-01 2014-04-10 Алик Нариман Оглы Касимов Способ определения параметров системы трещин гидроразрыва
RU2014151536A (ru) * 2014-12-18 2016-07-10 Открытое акционерное общество Научно-производственная фирма "Геофизика" (ОАО НПФ "Геофизика") Способ определения параметров трещины гидроразрыва пласта с применением импульсного генератора нейтронов
RU2626502C1 (ru) * 2016-04-26 2017-07-28 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ определения пространственной ориентации трещины гидроразрыва

Similar Documents

Publication Publication Date Title
US7782709B2 (en) Multi-physics inversion processing to predict pore pressure ahead of the drill bit
RU2503981C2 (ru) Способ и устройство для определения во время бурения насыщения водой пласта
US5360066A (en) Method for controlling sand production of formations and for optimizing hydraulic fracturing through perforation orientation
AU2011369452B2 (en) Azimuthal brittleness logging systems and methods
EA008080B1 (ru) Система и способ для установки и использования устройств в буровых микроскважинах
RU2649195C1 (ru) Способ определения параметров трещины гидроразрыва пласта
BR112020016739A2 (pt) Método para determinar propriedades de formações de rocha sendo perfuradas usando medidas de vibração de coluna de perfuração.
NO20101136L (no) Karakterisering av bruddlengder og formasjonsresistivitet ut ifra matrise induksjonsdata
BR112016011163B1 (pt) Método de perfilagem de furo de poço
CN107179555B (zh) 随钻地震钻头震源侧帮地质构造探测方法
WO2017116261A1 (ru) Способ определения параметров трещины гидроразрыва пласта в скважине
CN105068146B (zh) 一种探测黄土中采煤导水裂隙高度的方法
RU2722431C1 (ru) Способ определения ориентации естественной трещиноватости горной породы
Avasthi et al. In-situ stress evaluation in the McElroy field, West Texas
RU2390805C1 (ru) Способ контроля геометрических и гидродинамических параметров гидроразрыва пласта
Ureel et al. Rock core orientation for mapping discontinuities and slope stability analysis
RU2728000C1 (ru) Способ проводки горизонтального ствола скважины в целевом интервале осадочных пород на основании элементного анализа шлама
CN113530523A (zh) 一种煤层气钻探的随钻仪器
RU160808U1 (ru) Комплексная геофизическая аппаратура
US20190064388A1 (en) Integrated logging tool
Smith et al. Fracture Azimuth—A Shallow Experiment
CN111090120B (zh) 一种水下隧道探水方法
SU918918A1 (ru) Способ контрол зоны гидроразрыва горных пород
Drobchik Measuring system to investigate geo-and gas-dynamic processes in hydraulic fracturing of coal seams
Ma et al. Natural and induced fracture classification using image analysis