RU2503981C2 - Способ и устройство для определения во время бурения насыщения водой пласта - Google Patents

Способ и устройство для определения во время бурения насыщения водой пласта Download PDF

Info

Publication number
RU2503981C2
RU2503981C2 RU2011111290/28A RU2011111290A RU2503981C2 RU 2503981 C2 RU2503981 C2 RU 2503981C2 RU 2011111290/28 A RU2011111290/28 A RU 2011111290/28A RU 2011111290 A RU2011111290 A RU 2011111290A RU 2503981 C2 RU2503981 C2 RU 2503981C2
Authority
RU
Russia
Prior art keywords
formation
resistivity
measurements
water
penetration
Prior art date
Application number
RU2011111290/28A
Other languages
English (en)
Other versions
RU2011111290A (ru
Inventor
Бернар Монтарон
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU2011111290A publication Critical patent/RU2011111290A/ru
Application granted granted Critical
Publication of RU2503981C2 publication Critical patent/RU2503981C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • G01V5/10Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
    • G01V5/104Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources and detecting secondary Y-rays as well as reflected or back-scattered neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging

Abstract

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт. Измерения имеют различные глубины исследования в пласте. Углерод и кислород в пласте измеряют в по существу том же продольном положении, как положение определения глубины проникновения. Измеренные углерод, кислород и глубину проникновения используют для определения насыщения водой в по существу не затронутой проникновением фильтрата части пласта. Технический результат: повышение точности данных относительно насыщения пластовых пород флюидами. 2 н. и 17 з.п. ф-лы, 4 ил.

Description

Область техники, к которой относится изобретение
В общем изобретение относится к области петрофизического оценивания подземных пластов породы. Более конкретно, изобретение относится к способам и устройству для количественного определения насыщения флюидом поровых пространств пластов пород на основании других измерений, а не на основании измерений электрического удельного сопротивления пластов.
Уровень техники
Проходку пористых подземных пластов пород осуществляют стволами скважины для извлечения флюидов из поровых пространств таких пластов. В частности, нефть и газ извлекают, используя такие стволы скважины. По экономическим соображениям до заканчивания конструкции ствола скважины важно определять, какой относительный объем поровых пространств проходимых пластов занят нефтью и/или газом. Способы, известные из уровня техники, предназначенные для определения относительного объема порового пространства, занимаемого реликтовой водой и нефтью и/или газом, преимущественно основаны на измерениях электрического удельного сопротивления пластов пород. При оценивании подземных пластов определяемой величиной является относительный объем порового пространства, занимаемый водой (называемый насыщением водой и обозначаемый Sw), при этом предполагается, что поровое пространство, не занятое водой, содержит нефть и/или газ.
Большинство способов определения насыщения водой по измерениям удельного сопротивления пласта породы основаны на исследовании, выполненном в 1940-х годах. См. Archie G.E., “Electrical resistivity log as an aid in determining some reservoir characteristics”, AIME Trans. 146, 1942, p.54-62.
Зависимость удельного сопротивления Rt пористой породы от удельного сопротивления RW реликтовой воды, насыщения Sw водой и относительного объема породы, занимаемого поровым пространством (пористости),
Figure 00000001
, определяется уравнением Арчи (см. выше):
Figure 00000002
.
Точность приведенной выше зависимости проверена на многих пластах, в которых образуются коллекторы углеводородов. В случае смоченных водой пластов пород показатели n и m степени из зависимости Арчи, приведенной выше, обычно близки к 2. Стабильность этих показателей степени в случае смоченных водой пластов позволяет делать достаточно приемлемые оценки запасов в новых коллекторах непосредственно по результатам измерений удельного сопротивления и пористости, выполняемых внутри стволов скважины (по каротажным диаграммам). Для песчаниковых пород, содержащих глинистый сланец, известны модифицированные формулы для коррекции за влияние удельной проводимости глинистого сланца.
Было замечено, что в частности, для пластов известняковых/доломитовых пород (собирательно называемых карбонатами) значения приведенных выше показателей степени могут изменяться очень значительно в зависимости от глубины даже в пределах одного и того же геологического пласта породы. Это обусловлено естественными неоднородностями в карбонатах, например, изменениями состава минералов породы и поровой структуры породы, изменениями смачивающей способности и т.д.
Кроме того, если оцениваемый пласт заполнен, например, жидкой фазой раствора (глинистого бурового раствора), используемого при бурении ствола скважины, реликтовая вода, первоначально находившаяся в пласте в поровых пространствах, смешивается с изменяющимися количествами жидкости бурового раствора (фильтрата бурового раствора) и становится трудно или невозможно определять соленость воды в поровых пространствах, используя результаты измерений только удельного сопротивления. Поэтому значения насыщения водой, получаемые по формуле Арчи, для многих карбонатных пластов считаются недостоверными.
Другие способы, известные из уровня техники, предназначенные для определения насыщения водой, включают в себя измерение диэлектрической постоянной пласта, времен ядерной магнитной резонансной релаксации и распределений их, поперечного сечения захвата нейтронов и соотношения углерод/кислород. Поперечная глубина упомянутых измерений в пласт от стенки ствола скважины обычно ограничена несколькими дюймами. В результате во время ввода таких приборов в ствол скважины для измерений (обычно после удаления буровых инструментов и ввода приборов на бронированном электрическом кабеле) зоны измерений упомянутых параметров обычно полностью заполнены фильтратом бурового раствора и измерение насыщения водой не отражает содержания нефти и/или газа в не затронутой проникновением фильтрата породе.
Среди упомянутых выше измерений наибольшей поперечной глубине соответствует поперечное сечение захвата нейтронов. Наиболее вероятно, что на такое измерение из числа упомянутых выше не влияет проникновение фильтрата бурового раствора, если измерение выполняют во время бурения ствола скважины. Прибор, известный под фирменным наименованием ECOSCOPE 6, которое является товарным знаком правопреемника настоящего изобретения, присоединяют внутри бурильной колонны и получают результаты измерений поперечного сечения захвата нейтронов во время бурения ствола скважины. Во многих случаях проникновение фильтрата бурового раствора во время бурения ограничивается на меньшей глубине, чем поперечная глубина исследования различных датчиков на приборе ECOSCOPE, и поэтому можно получать результаты измерений, относящиеся к концентрации хлора в пласте породы. Если соленость реликтовой пластовой воды является известной, результаты измерений поперечного сечения захвата нейтронов можно непосредственно использовать для определения Sw. Однако рассмотренное выше не применимо к пластам породы, имеющим низкую соленость (то есть при концентрации хлорида натрия меньше чем около 50000 частей на миллион [kppm]) реликтовой воды, и упомянутым выше прибором не решается проблема зон проникновения фильтрата, имеющих воду с неизвестной соленостью.
Продолжает существовать необходимость в способах скважинного каротажа, которыми можно количественно определять насыщение водой в пластах, когда применимость зависимости Арчи является ограниченной.
Краткое изложение изобретения
Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых внутри ствола скважины, пробуренного сквозь пласт. Измерения имеют различные поперечные глубины исследования в пласте. Углерод и кислород в пласте измеряют в по существу таком же продольном положении, как положение определения глубины проникновения. Измеренные углерод и кислород и глубину проникновения используют для определения насыщения водой в по существу не затронутой проникновением фильтрата части пласта.
В одном примере способ включает в себя повторение определения глубины проникновения, измерения углерода и кислорода и определения насыщения водой спустя выбранное время и формулирование зависимости между электрическим удельным сопротивлением и насыщением водой на основании изменений глубины проникновения и насыщения водой.
Скважинный каротажный прибор согласно другому объекту изобретения включает в себя корпус, выполненный с возможностью присоединения внутри бурильной колонны. Импульсный источник нейтронов расположен внутри корпуса и выполнен с возможностью облучения пластов, прилегающих к стволу скважины, когда корпус расположен в нем. Множество детекторов излучения расположено в корпусе. Детекторы выполнены с возможностью обнаружения излучения из пластов, являющегося результатом взаимодействия нейтронов из источника с пластами. Детекторы излучения выполнены с возможностью обнаружения излучения, связанного с по меньшей мере поперечным сечением захвата тепловых нейтронов на по меньшей мере двух различных поперечных глубинах в пластах от ствола скважины и концентрациями углерода и кислорода в пластах. Прибор включает в себя датчик удельного сопротивления, соединенный с корпусом и выполненный с возможностью измерения удельного сопротивления пластов на по меньшей мере двух различных поперечных глубинах в пластах от ствола скважины.
В одном примере датчики удельного сопротивления и датчики излучения скомпонованы так, что имеют одинаковый диапазон глубины исследования, то есть они выполняют измерения в одном и том же объеме породы.
Другие аспекты и преимущества изобретения станут очевидными из нижеследующего описания и сопровождающих чертежей.
Краткое описание чертежей
На чертежах:
фиг.1 - пример системы для бурения ствола скважины, включая прибор согласно изобретению;
фиг.2 - разрез проницаемого пласта, загрязненного фильтратом, для идентификации различных, насыщенных раствором зон, прилегающих в поперечном направлении к стволу скважины;
фиг.3 - более детальный вид примера переводника для оценивания пласта из системы на фиг.1.
Подробное описание
Как представлено на фиг.1, на буровой установке 24 или аналогичном подъемном устройстве подвешен трубопровод, называемый бурильной колонной 20, находящийся внутри ствола 18 скважины, пробуренной сквозь подземные пласты пород, в целом показанные позицией 11. Бурильную колонну 20 можно собрать путем резьбового соединения друг с другом непрерывной цепью некоторого количества сегментов (звеньев) 22 бурильной трубы. На нижнем конце бурильная колонна 20 может включать в себя буровое долото 12. Когда буровое долото 12 продвигается в осевом направлении в пласты 11 в забое ствола 18 скважины и когда оно вращается посредством оборудования (например, посредством верхнего привода 26) на буровой установке 24 или посредством двигателя в бурильной колонне (непоказанного), такое продвижение и вращение побуждают долото 12 удлинять (углублять) ствол 18 скважины. В соответствии с различными аспектами изобретения нижний конец бурильной колонны 20 на выбранном месте выше и вблизи бурового долота 12 может включать в себя переводник 10 для оценивания пласта, который будет дополнительно пояснен ниже. Вблизи нижнего конца бурильная колонна 20 также может включать в себя прибор 14 для измерения в процессе бурения и телеметрический блок 16 хорошо известных в данной области техники типов. По меньшей мере часть энергии для работы прибора 14 для измерения в процессе бурения и телеметрического блока 16 может быть получена от движения бурового раствора через бурильную колонну 20, поясняемого ниже. Телеметрический блок 16 выполнен с возможностью передачи некоторых или всех измерений, выполняемых различными датчиками (поясняемыми ниже) переводника 10 для оценивания пласта и прибора 14 для измерения в процессе бурения, на поверхность для декодирования и интерпретации.
Во время бурения ствола 18 скважины насос 32 всасывает буровой раствор (глинистый буровой раствор) 30 из резервуара 28 или ямы и выпускает глинистый буровой раствор 30 под давлением через стояк 34 и гибкую трубу или шланг 35, через верхний привод 26 во внутренний канал (не показанный отдельно на фиг.1) внутри бурильной колонны 20. Глинистый буровой раствор 30 выходит из бурильной колонны 20 через каналы или сопла (не показанные отдельно) в буровом долоте 12, где он затем охлаждает и смазывает буровое долото 12 и поднимает на земную поверхность обломки выбуренной породы, образуемые буровым долотом 12.
Некоторые примеры телеметрического блока 16 могут включать в себя телеметрический передатчик (не показанный отдельно), который модулирует поток глинистого бурового раствора 30 через бурильную колонну 20. Такая модуляция может вызывать вариации давления в глинистом буровом растворе 30, которые могут обнаруживаться на земной поверхности одним или несколькими преобразователями 36 давления, находящимися в связи по давлению с внутренним пространством бурильной колонны 20 на выбранных местах между выпускным отверстием насоса 32 и верхним приводом 26. Сигналы с преобразователя 36, которые могут быть, например, электрическими и/или оптическими сигналами, могут передаваться на регистрирующий блок 38 для декодирования и интерпретации с использованием способов, хорошо известных в данной области техники. Декодированные сигналы обычно соответствуют измерениям, выполняемым одним или несколькими датчиками (непоказанными) в приборе 14 для измерения в процессе бурения и в переводнике 10 для оценивания пласта.
Специалистам в данной области техники должно быть понятно, что для вращения бурильной колонны 20 и в то же время обеспечения герметизированного канала через бурильную колонну 20 для глинистого бурового раствора 30 в других примерах верхний привод 26 может быть заменен вертлюгом, ведущей трубой, вкладышем под рабочую трубу и роторным столом (не показанными на фиг.1). В соответствии с этим объем изобретения не ограничен использованием буровых систем с верхним приводом.
Также должно быть понятно, что телеметрический блок 16 может быть дополнительно или как вариант выполнен с возможностью передачи сигналов в канал связи по так называемой «снабженной кабелем» бурильной трубе. Неограничивающий пример снабженной кабелем бурильной трубы описан в заявке №2002/0193004 на патент США, поданной Boyle и соавторами, основополагающей заявке на патент, которая переуступлена правопреемнику настоящего изобретения. Кроме того, в данной области техники известно использование электромагнитной телеметрии для передачи измерений приборов из ствола скважины к наземной поверхности и обратно. В соответствии с этим объем этого изобретения не ограничен типом телеметрии, используемой в любом примере.
Должно быть понятно, что способ транспортировки переводника 10 для оценивания пласта, показанный на фиг.1, является только одним возможным примером. Другие примеры могут включать в себя бурение на обсадных трубах, показанное, например, в патенте США №6705413, выданном Tessari. Кроме того, можно проводить бурильные работы с применением переводника для оценивания пласта, используя гибкую трубу при транспортировке бурильных приспособлений в ствол скважины. Смотри, например, патент США №7028789, выданный Krueger и соавторам, и патент США №6047784, выданный Dorel и переуступленный правопреемнику настоящего изобретения. В соответствии с этим объем изобретения не ограничен показанным на фиг.1 использованием бурильных труб с резьбовым соединением для бурения ствола скважины и для транспортировки измерительных приборов вдоль по скважине.
Теперь обратимся к фиг.2, где, как должно быть понятно специалистам в данной области техники, во время бурения ствола 18 скважины, когда буровым долотом (12 на фиг.1) проходят проницаемый пласт 11, жидкая фаза бурового раствора 30 в стволе 18 скважины, называемая фильтратом бурового раствора, будет входить в поровые пространства пласта 11 и будет вытеснять некоторое количество реликтовых флюидов из поровых пространств. Флюиды на самом деле вытесняются и степень, с которой они вытесняются, зависит от относительной подвижности флюидов в поровых пространствах, перепада давлений флюида между стволом 18 скважины и пластом 11 и интенсивности, с которой твердые частицы в буровом растворе 30 образуют глинистую корку (непоказанную) на стенке ствола 18 скважины, прилегающей к проницаемому пласту 11. Пласты выше 11А и ниже 11В проницаемого пласта 11 показаны на фиг.2 как непроницаемые, такие как глинистый сланец, и для целей настоящего изобретения как не подвергающиеся воздействию бурового раствора 30. Изображение на фиг.2 предназначено только для описания в общем виде различных зон, расположенных в поперечном направлении вокруг ствола скважины в проницаемом пласте породы, поэтому для упрощения изображения переводник для оценивания пласта не показан. Различные зоны, показанные на фиг.2, встречаются по существу сразу же после прохождения проницаемого пласта буровым долотом (12 на фиг.1); пространственное распределение различных зон изменяется с течением времени по мере того как все большее количество раствора входит в пласт из ствола скважины (при условии, что давление раствора в стволе скважины больше, чем давление флюида в поровых пространствах пласта породы).
Обычно считают, что в поперечном направлении к стволу 18 скважины прилегает зона, называемая промытой зоной 40, при этом по существу вся реликтовая вода в пласте 11 вытесняется жидкой фазой бурового раствора, если его жидкая фаза на водной основе, и по существу все подвижные углеводороды (нефть и/или газ) полностью вытесняются из поровых пространств пласта 11. На конкретном поперечном расстоянии («глубине») от ствола скважины, показанном как di, и далее вытеснение реликтовых флюидов по существу не происходит. Зону, находящуюся в поперечном направлении за пределами di, называют не затронутой проникновением фильтрата зоной 44. Она представляет собой не затронутую проникновением фильтрата зону 44, для которой необходимо определять насыщение водой (относительный объем порового пространства, занятый водой), поскольку насыщение водой показывает объем нефти и/или газа, присутствующего в пласте 11. Понятно, что в общем случае насыщение углеводородами (газом, нефтью или смесями из них) равно единице за вычетом насыщения водой (Sh=1-Sw). Зону между промытой зоной 40 и не затронутой проникновением фильтрата зоной 44 называют зоной 42 проникновения фильтрата, из которой неопределенное количество реликтового флюида вытеснено фильтратом бурового раствора.
В не затронутой проникновением фильтрата зоне представляющие интерес физические величины включают в себя насыщение Sw водой, упомянутое выше, и также включают в себя пористость Ø, электрическое удельное сопротивление Rt, удельное сопротивление RW реликтовой воды, результаты элементной спектроскопии нейтронного захвата (ECS) для различных элементов, включая углерод (С), кислород (О), хлор (Cl), и поперечное сечение Σt захвата тепловых нейтронов. Соответствующие величины можно задать для зоны проникновения фильтрата (все с нижним индексом «i») и промытой зоны (все с нижним индексом «хо» за исключением фильтрата бурового раствора, для которого предназначен нижний индекс «mf»). Относительный объем порового пространства («пористость» Ø) в пласте породы предполагается по существу одинаковой в каждой из упомянутых выше зон 40, 42, 44. Как в этой заявке пояснялось в разделе «Предпосылки создания изобретения», для определения Sw с использованием основанных на удельном сопротивлении способов требуются определение RW и некоторые сведения или предположения о показателях m и n степени Арчи, поскольку они характеризуют зависимость между удельным сопротивлением пласта породы и удельным сопротивлением флюида в поровых пространствах пласта породы. На результаты измерений, выполняемых некоторыми приборами с небольшой глубиной исследования (в поперечном направлении), которые являются чувствительными к удельному сопротивлению или солености воды, может существенно влиять присутствие фильтрата бурового раствора вследствие его электрического удельного сопротивления (Rmf), его солености и/или его химического состава, и поэтому они не могут быть полезными для определения RW. Например, результаты измерений на небольшой глубине поперечного сечения захвата тепловых нейтронов являются чувствительными к солености флюида и для определения насыщения требуются точные сведения о солености воды.
В одном примере использования способа согласно изобретению первый набор измерений можно выполнять во время бурения, используя переводник (10 на фиг.1) для оценивания пласта. Используемый в этой заявке термин «во время бурения» означает, что переводник (10 на фиг.1) перемещается мимо пласта в первый раз как только буровое долото (12 на фиг.1) наращивает ствол (18 на фиг.1) скважины в достаточной степени, чтобы сделать возможным такое перемещение. Как должно быть понятно специалистам в данной области техники, предполагается, что такое перемещение переводника (10 на фиг.1) в первый раз мимо такого недавно пробуренного пласта будет приводить к вытеснению в пласт практически настолько малого количества фильтрата бурового раствора, что зона проникновения фильтрата в поперечном направлении будет иметь относительно небольшую глубину (небольшое di), в противоположность ситуации, которая как правило существует позднее в процессе бурения ствола скважины, то есть когда проникновение раствора становится намного глубже.
Теперь с обращением к фиг.3 будет более подробно пояснен пример переводника (10 на фиг.1) для оценивания пласта. Переводник 10 может иметь функциональные компоненты, расположенные в по существу цилиндрической утяжеленной бурильной трубе 48 или в аналогичном компоненте бурильной колонны, выполненном с возможностью присоединения в бурильной колонне (20 на фиг.1). Как правило, утяжеленная бурильная труба 48 должна изготавливаться из высокопрочного немагнитного сплава, такого как нержавеющая сталь, монель или сплав, имеющийся в продаже под фирменным наименованием INCONEL (инконель), которое является зарегистрированным товарным знаком Huntington Alloys Corporation, Хантингтон, Западная Виргиния. Утяжеленная бурильная труба 48 может включать в себя подходящие места и на них соответствующие корпусы с импульсным источником 50 нейтронов и контрольным детектором 52 нейтронов, который выполнен с возможностью реагирования преимущественно на нейтроны, создаваемые источником 50. Импульсный источник 50 нейтронов выполнен с возможностью излучения с управляемой длительностью всплесков высокоэнергетических нейтронов и может быть таким же, как источник, используемый в приборе ECOSCOPE (для оценивания пласта и геологической проводки скважин), идентифицируемом в других местах этой заявки и описанном в заменяющем патенте США №36012, выданном Loomis и соавторам и переуступленном правопреемнику настоящего изобретения. Множество разнесенных в продольном направлении детекторов 54, 56, 58 нейтронов и/или гамма-излучения выполнено с возможностью измерения нейтронов и/или гамма-излучения, являющегося следствием взаимодействия нейтронов из источника 50 с пластами (11 на фиг.2), прилегающими к стенке ствола скважины. Результаты измерений с контрольного детектора 52 можно использовать для нормирования скоростей счета от других детекторов 54, 56, 58 при любых изменениях выходной скорости и/или уровня энергии нейтронов из источника 50 нейтронов.
Переводник 10 может включать в себя каверномер 60, такой как акустический каверномер с измерением по времени пробега, предназначенный для измерения расстояния между стенкой переводника 10 и стенкой ствола скважины, и спектрометрический детектор 62 гамма-излучения для измерения гамма-излучения, естественным путем исходящего из пластов пород. Упомянутые выше компоненты в значительной степени описаны в заменяющем патенте США №36012, выданном Loomis и соавторам и переуступленном правопреемнику настоящего изобретения. Как описано в упомянутом выше заменяющем патенте, источник нейтронов и детекторы нейтронов/гамма-излучения могут быть выполнены с возможностью получения результатов измерений, соответствующих объемной плотности пласта, пористости по данным нейтронного каротажа (связанной с концентрацией водорода в пласте) и концентрации различных химических элементов в пласте. Последние анализы химического состава обеспечиваются спектральным анализом обнаруживаемого гамма-излучения, являющегося следствием неупругих соударений высокоэнергетических нейтронов с определенными ядрами в пластах пород, и на основании длины пути замедления нейтронов и/или поперечного сечения захвата тепловых нейтронов, обеспечиваемого анализом обнаруженного «захваченного» гамма-излучения. Другие детекторы или те же самые детекторы могут быть выполнены с возможностью измерения фотоэлектрического эффекта, являющегося результатом взаимодействия активированного нейтронами гамма-излучения с материалами пласта. Чтобы определять объемную плотность пласта, другие детекторы или те же самые детекторы можно выполнять с возможностью обнаружения комптоновски рассеянного гамма-излучения (возникающего вследствие неупругих соударений нейтронов из источника). Изложенные выше измерения являются технически достижимыми при использовании упомянутого выше прибора ECOSCOPE и в настоящем примере переводник 10 может включать в себя упомянутые выше компоненты прибора ECOSCOPE. В настоящем примере компоновка детекторов 54, 56, 58 может быть такой, что можно будет определять поперечное сечение захвата тепловых нейтронов в пласте на множестве (трех в настоящем примере) различных поперечных глубинах в пласте от стенки ствола скважины. Например, некоторые из детекторов можно выполнять с возможностью обнаружения гамма-излучения, испускаемого из пласта в результате захвата ядрами тепловых нейтронов.
В настоящем примере по меньшей мере один из детекторов, например, детектор, показанный позицией 58, может быть детектором гамма-излучения со сцинтилляционным счетчиком, соединенным с многоканальным анализатором амплитуды импульсов (для упрощения не показанным) для анализа скорости счета и уровня энергии обнаруживаемого гамма-излучения, в частности, гамма-излучения, испускаемого в результате соударений высокоэнергетических нейтронов с атомными ядрами в пласте. Такое гамма-излучение может содержать информацию, касающуюся относительных концентраций атомов углерода и атомов кислорода в пласте, и такие концентрации могут быть связаны с относительным объемом порового пространства, занимаемого водой, и с относительным объемом порового пространства, занимаемого нефтью и/или газом. Принципы работы таких детекторов и способы определения концентраций углерода и кислорода описаны, например, в патенте США №6703606, выданном Adolph и переуступленном правопреемнику настоящего изобретения. Как будет дополнительно пояснено ниже, одна задача заключается в том, чтобы иметь такие компоненты в переводнике 10 и придавать переводнику такую способность к измерениям, чтобы можно было непосредственно определять насыщение водой в одной или нескольких зонах (например, 40, 42, 44 на фиг.2) без необходимости определения удельного сопротивления воды в поровых пространствах или показателей степени Арчи, упомянутые в этой заявке в разделе «Предпосылки создания изобретения».
В настоящем примере переводник 10 может включать в себя множество фокусируемых гальванических датчиков удельного сопротивления, совместно показанных позицией 64. Датчики 64 удельного сопротивления выполнены с возможностью выполнения измерений электрического удельного сопротивления вблизи стенки ствола скважины и на множестве приблизительно задаваемых, различных поперечных глубинах от ствола скважины. Компоненты в датчиках 64 удельного сопротивления имеются в приборе, известном под фирменным наименованием GEOVISION, которое является товарным знаком правопреемника настоящего изобретения. Прибор GEOVISION (для построения изображений удельных сопротивлений в процессе бурения) может также включать в себя датчики (непоказанные) для выполнения измерений удельного сопротивления пласта вблизи бурового долота (12 на фиг.1), и такие датчики могут использоваться в некоторых примерах. Структура электродов и связанных с ними схем, которые можно использовать в некоторых примерах, описаны в патенте США №6373254, выданном Dion и соавторам и переуступленном правопреемнику настоящего изобретения.
Переводник 10 может включать в себя электромагнитные передающие антенны 66А, 66В и электромагнитные приемные антенны 70, 72, расположенные на внешней поверхности утяжеленной бурильной трубы 48, для выполнения измерений при электромагнитном каротаже удельного сопротивления на более значительной поперечной глубине в пласте (в некоторых случаях в не затронутой проникновением фильтрата зоне 44 на фиг.2). Внутренние компоненты, связанные с упомянутыми выше антеннами, могут быть аналогичны компонентам скважинного каротажного прибора, предназначенного для выполнения таких измерений, описанного в патенте США №4968940, выданном Clark и соавторам и переуступленном правопреемнику настоящего изобретения.
Специалисты в данной области техники должны представлять, что упомянутые выше источник 50 и детекторы с 52 по 58, каверномер 60 и датчики 64, и антенны 66А, 66В, 70, 72 могут быть соединены с подходящим источником электропитания, устройствами преобразования сигналов и передачи сигналов. Упомянутое выше может быть сделано в соответствии со структурами, хорошо известными в данной области техники, и не показано на фиг.3 ради упрощения изображения.
Желательно, чтобы детекторы и датчики на переводнике 10 имели примерно одинаковую чувствительность (но необязательно точно одинаковую) на продольном интервале вдоль бурильной колонны (20 на фиг.1). Более конкретно, желательно, чтобы глубина проникновения была по существу одной и той же при каждом из различных измерений. Такая конфигурация является возможной, например, при распределении различных датчиков по окружности утяжеленной бурильной трубы 48 в по существу одном и том же продольном положении. При таком конфигурировании датчиков и детекторов предполагается, что диаметр проникновения будет по существу одинаковым для всех выполняемых измерений, поясняемых ниже.
С учетом пояснения общих терминов, относящихся к примеру прибора, применяемого для выполнения измерений, предназначенных для использования в изобретении, теперь с обращением к фиг.4 будет пояснен пример способа согласно изобретению. В одном примере, как показано позицией 80, во время бурения регистрируют результаты измерений, выполняемых с помощью переводника. В течение 82 первым элементом способа является обработка множества результатов измерений удельного сопротивления для определения глубины (di на фиг.2) проникновения. Такая обработка может включать в себя инверсию, при которой образуют исходную модель распределения удельных сопротивлений, для такой модели формируют ожидаемый (прямой) отклик датчиков (64 на фиг.3) удельного сопротивления, а модель корректируют и прямой отклик пересчитывают до тех пор, пока прямой отклик в пределах выбранного допустимого отклонения не будет согласован с результатами измерений, выполненных в стволе скважины. Исходно предполагают, что проникновение меньше, чем глубина исследования, соответствующая отсчитываемому замеру прибором GEOVISION на наибольшей глубине, например, около 7 дюймов (17,78 см). Такое предположение может быть приемлемым, если измерения выполняют во время бурения ствола скважины. Соленость реликтовой воды в промытой зоне, зоне проникновения фильтрата и не затронутой проникновением фильтрата зоне не требуется в качестве входного значения для определения глубины проникновения. Упомянутой выше процедурой будет обеспечиваться оценочный профиль поперечного проникновения, который можно использовать при интерпретации поперечного сечения захвата тепловых нейтронов и результатов измерений соотношения углерод/кислород («С/О»).
При выполнении следующего элемента 83 процесса результаты измерений поперечного сечения захвата тепловых нейтронов можно обработать, чтобы определить, является ли проникновение настолько неглубоким, что мало сказывается на результатах измерений удельного сопротивления, и/или чтобы выполнить перекрестную проверку профиля проникновения, определяемого на основании измерений удельного сопротивления. Как и в предыдущем элементе процесса, используя результаты измерений удельного сопротивления, профиль (Σt, Σi, Σxo и di) проникновения с поперечными сечениями захвата можно определять с помощью процесса инверсии. Кроме того, как и в предыдущем элементе процесса, определение профиля проникновения с поперечными сечениями захвата можно выполнять непосредственно на основании результатов измерений поперечного сечения захвата тепловых нейтронов без необходимости получать значение солености реликтовой воды на этом этапе процесса. Предполагается, что любой скважинный каротажный прибор, используемый для выполнения настоящего способа, должен выполнять измерения поперечного сечения захвата тепловых нейтронов на по меньшей мере двух, а предпочтительно на трех различных поперечных глубинах исследования. Прибор ECOSCOPE, упомянутый выше, обладает такой способностью.
Предполагается, что зависимость результата измерения соотношения углерод/кислород от насыщения флюидом и пористости полностью описана до использования результатов измерений соотношения углерод/кислород в настоящем способе, то есть характеристика соотношения углерод/кислород для различных радиальных проникновений и двумерных профилей насыщения должна определяться заранее. Поэтому, используя результаты измерений соотношения углерод/кислород и профиль радиального проникновения, определяемый, как пояснялось выше, с использованием измерений удельного сопротивления и/или поперечного сечения захвата, оценку Sw в не затронутой проникновением фильтрата зоне (44 на фиг.2) можно получить по измерениям соотношения углерод/кислород. Такое оценивание показано на блок-схеме последовательности действий позицией 84. Предполагается, что получение такой оценки является применимым в ситуациях, когда определяют, что проникновение должно быть относительно неглубоким (например, меньше чем около 4 дюймов (10,16 см)). Если определяют, что проникновение должно быть больше чем около 6 дюймов (15,24 см), оценивание Sw по соотношению углерод/кислород можно еще использовать, но значения, определяемые таким образом, следует идентифицировать в записи данных как результаты измерений из зоны проникновения фильтрата и промытой зоны (42 и 40 на фиг.2).
Измерения углерода и кислорода, выполняемые с помощью переводника (10 на фиг.1), можно использовать для определения насыщения водой в карбонатных пластах, в том числе в известняковых, доломитных и смешанных, в соответствии с выражением
Figure 00000003
,
где
Figure 00000004
представляет молекулярную массу определенных составляющих пласта, для похожего на известняковый (кальциево-карбонатный)
Figure 00000005
, доломитного (магниево-карбонатного)
Figure 00000006
, оценочное значение для нефти, Mнефти≈14, для метана (природного газа)
Figure 00000007
и для воды
Figure 00000008
.
Плотность
Figure 00000009
цемента (зерен породы) связана с количеством магния (доломитизацией), при этом плотность известняка составляет 2,71 г/см3 и доломита 2,87 г/см3. Плотность рассола (реликтовой воды) также связана с его соленостью Х:
Figure 00000010
В случае, когда пласт не содержит свободного газа: SG=0, So=1-Sw и в результате:
Figure 00000011
Пористость и плотность цемента можно определять на основании результатов измерений, выполняемых прибором ECOSCOPE, в том числе объемную плотность, пористость по данным нейтронного каротажа и фотоэлектрический эффект.
Затем соленость пластовой воды в не затронутой проникновением фильтрата зоне (44 на фиг.2) можно определить на основании результатов измерений поперечного сечения захвата тепловых нейтронов, используя Sw, определяемое, как пояснялось выше, на основании измерений соотношения углерод/кислород. Соленость связана с объемом воды в поровых пространствах [(1-Sw)*
Figure 00000001
] и поперечным сечением захвата тепловых нейтронов, определяемым, как пояснялось выше, путем инверсии результатов измерений поперечного сечения захвата. Соленость, определенную таким образом, можно сравнивать с количеством хлора, которое определяют, используя результаты измерений гамма-спектроскопией неупругого рассеяния, выполненные так, как они должны выполняться прибором ECOSCOPE.
На данном этапе процесса для не затронутой проникновением фильтрата зоны (44 на фиг.2) определены величины Rt, Sw и
Figure 00000001
. Применяя способы, известные в данной области техники, величину Sw можно использовать для оценивания балансовых запасов нефти и/или газа в подземном коллекторе. RW можно определять по эмпирической формуле, связывающей соленость с удельным сопротивлением, используя соленость, определяемую, как пояснялось выше, на основании поперечного сечения захвата тепловых нейтронов. Изложенное выше показано позицией 86 на фиг.4.
Упомянутые выше величины Rt, Sw, RW и
Figure 00000001
можно использовать для формулирования одного уравнения, чтобы определять неизвестные петрофизические параметры, такие как показатели n и m степени в уравнении Арчи, описанном выше, или параметры μ (показатель степени связности воды) и XW (индекс связности воды) в уравнении связности. Уравнение связности и упомянутые выше, включенные в него параметры описаны в D.B. Montaron, “Connectivity theory - A new approach to modeling non-Archie rocks”, SPWLA 49th Annual Logging Symposium, May 25-28, 2008. Уравнение связности, описанное в этом источнике, имеет вид:
Figure 00000012
, где
Figure 00000013
.
Такая первая формулировка показана позицией 88. Второе уравнение можно сформулировать, повторяя упомянутые выше измерения (удельного сопротивления, поперечного сечения захвата тепловых нейтронов и соотношения углерод/кислород) и повторяя упомянутые выше элементы процесса после продвижения проникновения на более значительную глубину в пласт. В одном примере такой процедуры переводник 10 работает при извлечении бурильной колонны из ствола скважины после временного прекращения бурения или при повторном вводе бурильной колонны по истечении определенного периода времени после бурения. Такую процедуру можно назвать каротажем при спуске и подъеме. Как показано позицией 90, затем можно решить два сформулированных уравнения, чтобы получить показатели n и m степени из уравнения Арчи, описанного выше, или μ и XW из уравнения связности.
Способ и устройство согласно изобретению позволяют получать количественные показатели насыщения водой и углеводородами в подземных пластах пород, которые трудно получать, используя удельное сопротивление и пористость, основанные на эмпирических зависимостях. Способ и устройство согласно изобретению позволяют получать такие количественные показатели даже в случаях, когда зависимости между удельным сопротивлением, пористостью и насыщением водой изменяются в пределах конкретного пласта. Кроме того, возможно использование способов и устройства согласно изобретению без необходимости определения солености или удельного сопротивления реликтовой воды в подземных пластах.
Хотя изобретение было описано применительно к ограниченному количеству осуществлений, специалистам в данной области техники, имеющим выгоду от этого раскрытия, должно быть понятно, что могут быть разработаны другие осуществления без отступления от объема изобретения, раскрытого в этой заявке. В соответствии с этим объем изобретения должен ограничиваться только прилагаемой формулой изобретения.

Claims (19)

1. Способ определения насыщения водой в подземном пласте, заключающийся в том, что определяют глубину проникновения в пласт на основании множества измерений, выполняемых внутри ствола скважины, пробуренного сквозь пласт, при этом измерения имеют различные поперечные глубины исследования в пласте, измеряют углерод и кислород в пласте в, по существу, таком же продольном положении, как положение определения глубины проникновения, и используют измеренные углерод и кислород и глубину проникновения для определения насыщения водой в, по существу, не затронутой проникновением фильтрата части пласта.
2. Способ по п.1, в котором измерение углерода и кислорода и определение глубины проникновения выполняют во время бурения ствола скважины.
3. Способ по п.1, в котором множество измерений содержит измерения поперечного сечения захвата тепловых нейтронов.
4. Способ по п.3, дополнительно содержащий определение солености воды в не затронутом проникновением фильтрата пласте на основании измерений поперечного сечения захвата тепловых нейтронов.
5. Способ по п.1, в котором множество измерений содержит измерения электрического удельного сопротивления.
6. Способ по п.5, дополнительно содержащий определение удельного сопротивления реликтовой воды на основании солености.
7. Способ по п.1, дополнительно содержащий повторение определения глубины проникновения, измерения углерода и кислорода и определения насыщения водой спустя выбранное время и формулирование зависимости между электрическим удельным сопротивлением и насыщением водой на основании изменений глубины проникновения и насыщения водой.
8. Способ по п.7, в котором формулирование содержит определение показателей тип степени в уравнении:
Figure 00000014

в котором Rt является электрическим удельным сопротивлением пласта;
RW является удельным сопротивлением реликтовой воды;
Sw является относительным объемом порового пространства пласта, занимаемым реликтовой водой, и
φ является относительным объемом породы, занимаемым поровым пространством.
9. Способ по п.7, в котором формулирование содержит определение параметров µ (показателя степени связности воды) и Xw (индекса связности воды) в уравнении:
Figure 00000015

где
Figure 00000013
;
Rt является электрическим удельным сопротивлением пласта;
RW является удельным сопротивлением реликтовой воды;
Sw является относительным объемом порового пространства пласта, занимаемым реликтовой водой, и
φ является относительным объемом породы, занимаемым поровым пространством.
10. Способ по п.5, в котором измерения удельного сопротивления содержат гальванические измерения.
11. Способ по п.5, в котором измерения удельного сопротивления содержат электромагнитные каротажные измерения.
12. Способ по п.1, в котором измерение углерода и кислорода содержит измерение неупругого рассеяния гамма-излучения, являющегося результатом взаимодействия нейтронов из источника с ядрами в пласте.
13. Скважинный каротажный прибор, содержащий импульсный источник нейтронов, расположенный внутри корпуса, выполненного с возможностью перемещения вдоль ствола скважины, при этом источник выполнен с возможностью облучения пластов, прилегающих к стволу скважины, множество детекторов излучения, расположенных в корпусе и выполненных с возможностью обнаружения излучения из пластов, являющегося результатом взаимодействия нейтронов из источника с пластами, при этом детекторы излучения выполнены с возможностью обнаружения излучения, связанного с по меньшей мере поперечным сечением захвата тепловых нейтронов на по меньшей мере двух различных поперечных глубинах в пластах от ствола скважины и концентрациями углерода и кислорода в пластах, и датчик удельного сопротивления, выполненный с возможностью измерения удельного сопротивления пластов на по меньшей мере двух различных поперечных глубинах в пластах от ствола скважины, при этом датчик удельного сопротивления и детекторы излучения скомпонованы в продольном направлении для реагирования на пласты, имеющие, по существу, одинаковую глубину проникновения.
14. Прибор по п.13, в котором датчик удельного сопротивления содержит фокусируемый гальванический датчик.
15. Прибор по п.13, в котором датчик удельного сопротивления содержит электромагнитный каротажный датчик.
16. Прибор по п.13, в котором детекторы излучения содержат детекторы гамма-излучения, выполненные реагирующими на плотность пластов.
17. Прибор по п.13, в котором детекторы излучения содержат детекторы нейтронов, выполненные реагирующими на водородный индекс пластов.
18. Прибор по п.13, в котором детекторы излучения содержат детекторы гамма-излучения, выполненные реагирующими на фотоэлектрический эффект пластов.
19. Прибор по п.13, в котором детекторы излучения содержат детекторы гамма-излучения, выполненные реагирующими на гамма-излучение при захвате тепловых нейтронов.
RU2011111290/28A 2008-08-26 2009-08-04 Способ и устройство для определения во время бурения насыщения водой пласта RU2503981C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9197808P 2008-08-26 2008-08-26
US61/091,978 2008-08-26
PCT/EP2009/005714 WO2010022851A2 (en) 2008-08-26 2009-08-04 Method and apparatus for determining formation water saturation during drilling

Publications (2)

Publication Number Publication Date
RU2011111290A RU2011111290A (ru) 2012-10-10
RU2503981C2 true RU2503981C2 (ru) 2014-01-10

Family

ID=41722002

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011111290/28A RU2503981C2 (ru) 2008-08-26 2009-08-04 Способ и устройство для определения во время бурения насыщения водой пласта

Country Status (7)

Country Link
US (1) US8928322B2 (ru)
EP (1) EP2324374A2 (ru)
CN (1) CN102159970B (ru)
BR (1) BRPI0918767A2 (ru)
MX (1) MX2011002056A (ru)
RU (1) RU2503981C2 (ru)
WO (1) WO2010022851A2 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441269B2 (en) * 2009-03-19 2013-05-14 Schlumberger Technology Corporation Determining formation properties while drilling
US10324224B2 (en) 2010-09-02 2019-06-18 Baker Huges, A Ge Company, Llc Elemental concentration determination using neutron-induced activation gamma radiation
WO2014172002A1 (en) * 2013-04-19 2014-10-23 Schlumberger Canada Limited Total gas in place estimate
CN104278989B (zh) * 2013-07-02 2017-02-15 中国石油天然气股份有限公司 一种获取低孔低渗储层饱和度指数的方法
US10724367B2 (en) * 2013-10-03 2020-07-28 Schlumberger Technology Corporation Estimation of fluid properties from well logs
AU2013402496B2 (en) * 2013-10-09 2016-10-27 Halliburton Energy Services, Inc. Systems and methods for measuring downhole fluid characteristics in drilling fluids
US9417355B2 (en) * 2013-12-31 2016-08-16 Schlumberger Technology Corporation Composition-matched inelastic or capture spectroscopy tool
CA2933141A1 (en) * 2014-01-02 2015-07-09 Shell Internationale Research Maatschappij B.V. System and method for making downhole measurements
EP2943817A4 (en) * 2014-04-11 2016-03-09 Halliburton Energy Services Inc ESTIMATION OF UNDERGROUND TRAINING AND INVASION PROPERTIES
US10488547B2 (en) 2014-04-11 2019-11-26 Halliburton Energy Services, Inc. Estimating subsurface formation and invasion properties
US9274245B2 (en) * 2014-05-30 2016-03-01 Baker Hughes Incorporated Measurement technique utilizing novel radiation detectors in and near pulsed neutron generator tubes for well logging applications using solid state materials
US20160017707A1 (en) * 2014-07-18 2016-01-21 Schlumberger Technology Corporation Water Volume Fraction of Flowing Fluids
CA2983269A1 (en) * 2015-04-30 2016-11-03 Schlumberger Canada Limited Method to estimate water saturation in electromagnetic measurements
US10274637B2 (en) 2015-08-11 2019-04-30 Schlumberger Technology Corporation Method for evaluating formations using neutron induced gamma ray measurements
US10552553B2 (en) * 2015-08-17 2020-02-04 Saudi Arabian Oil Company Capillary pressure analysis for petrophysical statistical modeling
WO2017127108A1 (en) * 2016-01-22 2017-07-27 Halliburton Energy Services, Inc. Determining downhole wettability
AU2019207660A1 (en) * 2018-01-10 2020-07-02 Shell Internationale Research Maatschappij B.V. Apparatus and method for downhole measurement
US10900353B2 (en) 2018-09-17 2021-01-26 Saudi Arabian Oil Company Method and apparatus for sub-terrain chlorine ion detection in the near wellbore region in an open-hole well
WO2020167791A1 (en) * 2019-02-12 2020-08-20 Schlumberger Technology Corporation Water saturation estimation of pyrite-rich formation rock
CN112302622B (zh) * 2020-10-29 2022-06-17 大庆油田有限责任公司 一种脉冲中子全谱测井综合解释剩余油饱和度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045693A (en) * 1988-06-07 1991-09-03 Schlumberger Technology Corporation Carbon/oxygen well logging method and apparatus
US5055676A (en) * 1990-05-09 1991-10-08 Schlumberger Technology Corporation Method for determining oil and water saturation in earth formation surrounding a borehole
US5808298A (en) * 1997-02-11 1998-09-15 Western Atlas International, Inc. Method for determining formation hydrocarbon saturation and wellbore hydrocarbon holdup from multidetector carbon-oxygen measurements
RU2232409C1 (ru) * 2003-03-24 2004-07-10 Общество с ограниченной ответственностью "Союзпромгеофизика" Способ определения текущей нефте- и газонасыщенности коллекторов в обсаженных скважинах и устройство для его осуществления
WO2005106190A2 (en) * 2004-04-30 2005-11-10 Schlumberger Canada Limited Method and system for determining hydrocarbon properties
EP1729151A1 (en) * 2005-05-27 2006-12-06 Services Petroliers Schlumberger Method and apparatus for measuring the wettability of geological formations

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2562992A (en) * 1951-08-07 Schlumberger
US3255353A (en) * 1962-12-21 1966-06-07 Serge A Scherbatskoy Apparatus for nuclear well logging while drilling
US3638484A (en) 1968-11-05 1972-02-01 Schlumberger Technology Corp Methods of processing well logging data
US3780302A (en) * 1971-09-20 1973-12-18 Texaco Inc Pulsed neutron logging system
US4786874A (en) * 1986-08-20 1988-11-22 Teleco Oilfield Services Inc. Resistivity sensor for generating asymmetrical current field and method of using the same
US4968940A (en) 1987-10-30 1990-11-06 Schlumberger Technology Corporation Well logging apparatus and method using two spaced apart transmitters with two receivers located between the transmitters
WO1995003557A1 (en) * 1993-07-21 1995-02-02 Western Atlas International, Inc. Method of determining formation resistivity utilizing combined measurements of inductive and galvanic logging instruments
US5539225A (en) * 1994-09-16 1996-07-23 Schlumberger Technology Corporation Accelerator-based methods and apparatus for measurement-while-drilling
US6047784A (en) 1996-02-07 2000-04-11 Schlumberger Technology Corporation Apparatus and method for directional drilling using coiled tubing
CA2279338C (en) 1997-01-30 2007-08-07 Baker Hughes Incorporated Drilling assembly with a steering device for coiled-tubing operations
CA2271401C (en) 1999-02-23 2008-07-29 Tesco Corporation Drilling with casing
US6703606B2 (en) 2000-09-28 2004-03-09 Schlumberger Technology Corporation Neutron burst timing method and system for multiple measurement pulsed neutron formation evaluation
US6648083B2 (en) * 2000-11-02 2003-11-18 Schlumberger Technology Corporation Method and apparatus for measuring mud and formation properties downhole
US6465775B2 (en) * 2000-12-19 2002-10-15 Schlumberger Technology Corporation Method of detecting carbon dioxide in a downhole environment
US6641434B2 (en) 2001-06-14 2003-11-04 Schlumberger Technology Corporation Wired pipe joint with current-loop inductive couplers
CA2487384C (en) * 2002-05-24 2009-12-22 Baker Hughes Incorporated A method and apparatus for high speed data dumping and communication for a downhole tool
US7114565B2 (en) * 2002-07-30 2006-10-03 Baker Hughes Incorporated Measurement-while-drilling assembly using real-time toolface oriented measurements
US6944548B2 (en) * 2002-12-30 2005-09-13 Schlumberger Technology Corporation Formation evaluation through azimuthal measurements
US7112783B2 (en) * 2003-09-08 2006-09-26 Schlumberger Technology Corporation Neutron measurement method for determining porosity of a formation surrounding a borehole
US7091877B2 (en) * 2003-10-27 2006-08-15 Schlumberger Technology Corporation Apparatus and methods for determining isotropic and anisotropic formation resistivity in the presence of invasion
US7124819B2 (en) * 2003-12-01 2006-10-24 Schlumberger Technology Corporation Downhole fluid pumping apparatus and method
US7461547B2 (en) * 2005-04-29 2008-12-09 Schlumberger Technology Corporation Methods and apparatus of downhole fluid analysis
US7716028B2 (en) * 2006-05-24 2010-05-11 Schlumberger Technology Corporation Method for modeling a reservoir using a 3D wettability map generated from a wettability logging tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045693A (en) * 1988-06-07 1991-09-03 Schlumberger Technology Corporation Carbon/oxygen well logging method and apparatus
US5055676A (en) * 1990-05-09 1991-10-08 Schlumberger Technology Corporation Method for determining oil and water saturation in earth formation surrounding a borehole
US5808298A (en) * 1997-02-11 1998-09-15 Western Atlas International, Inc. Method for determining formation hydrocarbon saturation and wellbore hydrocarbon holdup from multidetector carbon-oxygen measurements
RU2232409C1 (ru) * 2003-03-24 2004-07-10 Общество с ограниченной ответственностью "Союзпромгеофизика" Способ определения текущей нефте- и газонасыщенности коллекторов в обсаженных скважинах и устройство для его осуществления
WO2005106190A2 (en) * 2004-04-30 2005-11-10 Schlumberger Canada Limited Method and system for determining hydrocarbon properties
EP1729151A1 (en) * 2005-05-27 2006-12-06 Services Petroliers Schlumberger Method and apparatus for measuring the wettability of geological formations

Also Published As

Publication number Publication date
EP2324374A2 (en) 2011-05-25
MX2011002056A (es) 2011-03-29
WO2010022851A2 (en) 2010-03-04
US20120043966A1 (en) 2012-02-23
CN102159970B (zh) 2014-12-10
BRPI0918767A2 (pt) 2015-12-01
CN102159970A (zh) 2011-08-17
WO2010022851A3 (en) 2011-03-17
RU2011111290A (ru) 2012-10-10
US8928322B2 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
RU2503981C2 (ru) Способ и устройство для определения во время бурения насыщения водой пласта
US9091781B2 (en) Method for estimating formation permeability using time lapse measurements
US9952348B2 (en) Compensated sigma from measurements made by a pulsed neutron instrument
US8510051B2 (en) Systems and methods for evaluating formations having unknown or mixed salinity
US9448322B2 (en) System and method to determine volumetric fraction of unconventional reservoir liquid
US10001582B2 (en) Method for using pulsed neutron induced gamma ray measurements to determine formation properties
US11125082B2 (en) Systems and methods for monitoring changes in a formation while dynamically flowing fluids
Mondol Well logging: Principles, applications and uncertainties
US10209393B2 (en) Method to correct and pulsed neutron fan based interpretation for shale effects
US4810459A (en) Method and apparatus for determining true formation porosity from measurement-while-drilling neutron porosity measurement devices
US11927089B2 (en) Downhole rotary core analysis using imaging, pulse neutron, and nuclear magnetic resonance
CA1257405A (en) Method and apparatus for determining true formation porosity from measurement-while-drilling neutron porosity measurement devices
US20210231827A1 (en) Measuring spectral contributions of elements in regions in and about a borehole using a borehole spectroscopy tool
US3993903A (en) Low-cost but accurate radioactive logging for determining gas saturation in a reservoir
US20160215616A1 (en) Estimation of Skin Effect From Multiple Depth of Investigation Well Logs
Ellis Neutron and gamma ray scattering measurements for subsurface geochemistry
US20240060398A1 (en) System and method for methane hydrate based production prediction
Shankar Well Logging Techniques And Formation Evaluation-An Over View
In Water saturation (Sw) is determined from the basic Archie's (1942) equation or from more advanced shaly sand models (Waxman and Smits, 1968). Residual oil saturation (ROS) values are determined from material balance equations. For example, total reservoir porosity minus water-filled pore space equals the bulk
Kenyon OIL AND GAS INSTRUMENTATION

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150805