RU2718735C2 - Комплексный блок генерации энергии и сжатия и соответствующий способ - Google Patents

Комплексный блок генерации энергии и сжатия и соответствующий способ Download PDF

Info

Publication number
RU2718735C2
RU2718735C2 RU2018113492A RU2018113492A RU2718735C2 RU 2718735 C2 RU2718735 C2 RU 2718735C2 RU 2018113492 A RU2018113492 A RU 2018113492A RU 2018113492 A RU2018113492 A RU 2018113492A RU 2718735 C2 RU2718735 C2 RU 2718735C2
Authority
RU
Russia
Prior art keywords
load
electric generator
gas turbine
rotational load
turbine engine
Prior art date
Application number
RU2018113492A
Other languages
English (en)
Other versions
RU2018113492A3 (ru
RU2018113492A (ru
Inventor
Даниэле Маркуччи
Паоло БЬЯНКИ
Джузеппе ЮРИШИ
Джулиано МИЛАНИ
Original Assignee
Нуово Пиньоне Текнолоджи Срл
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Нуово Пиньоне Текнолоджи Срл filed Critical Нуово Пиньоне Текнолоджи Срл
Publication of RU2018113492A publication Critical patent/RU2018113492A/ru
Publication of RU2018113492A3 publication Critical patent/RU2018113492A3/ru
Application granted granted Critical
Publication of RU2718735C2 publication Critical patent/RU2718735C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • F02C3/103Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor the compressor being of the centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04127Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04139Combination of different types of drivers mechanically coupled to the same compressor, possibly split on multiple compressor casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/06Control effected upon clutch or other mechanical power transmission means and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/14Refrigerants with particular properties, e.g. HFC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • F05D2220/766Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • F05D2270/024Purpose of the control system to control rotational speed (n) to keep rotational speed constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/06Purpose of the control system to match engine to driven device
    • F05D2270/061Purpose of the control system to match engine to driven device in particular the electrical frequency of driven generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/25Special adaptation of control arrangements for generators for combustion engines

Abstract

Изобретение относится к газотурбинным двигателям, применяемым в качестве механического привода и для генерации энергии. Комплексная установка (1) для генерации энергии и приведения в действие нагрузки, содержащая в комбинации следующие элементы: многовальный газотурбинный двигатель (3), содержащий турбину (316) высокого давления, механически соединенную с воздушным компрессором (312), и турбину (320) низкого давления, проточно соединенную с турбиной (316) высокого давления, но механически отделенную от нее и механически присоединенную к валу (11) отбора мощности, который присоединен к линии (9) валов, электрический генератор (5), механически присоединенный к линии (9) валов и приводимый во вращение газотурбинным двигателем (3), вращательную нагрузку (7), механически присоединенную к линии (9) валов и приводимую во вращение газотурбинным двигателем (3), устройство управления нагрузкой, предназначенное для регулирования по меньшей мере одного рабочего параметра вращаемой нагрузки (7) для приспособления рабочих условий вращаемой нагрузки (7) для выработки требований от процесса (13). При этом турбина (320) низкого давления газотурбинного двигателя (3) и электрический генератор (5) вращаются с по существу постоянной скоростью, которая не зависит от скорости турбины (316) высокого давления. Также представлен способ эксплуатации комплексной установки. Изобретение позволяет уменьшить габариты установки, а также повысить её КПД. 2 н. и 11 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к газотурбинным двигателям, применяемым в качестве механического привода и для генерации энергии.
УРОВЕНЬ ТЕХНИКИ
Газотурбинные двигатели обычно используются для приведения в действие вращательного оборудования, такого как электрические генераторы и турбомашины. В некоторых вариантах выполнения газотурбинные двигатели используются для производства механической энергии, которая используется для вращения электрического генератора. Данный генератор преобразует механическую энергию в электрическую энергию, которая, в свою очередь, используется для приведения в действие электродвигателя. Электродвигатель приводит во вращение вращательную нагрузку, такую как насос или компрессор.
Устройство такого типа, в котором вращательная нагрузка содержит газовый компрессор, описано в патентном документе США №2013/0121846. Компрессор вращается с регулируемой скоростью, зависящей от требований процесса, в котором участвует компрессор. Скорость газотурбинного двигателя изменяется для регулирования выходной частоты электрического генератора и, следовательно, скорости вращения двигателя, который, в свою очередь, приводит во вращение компрессор.
Установки такого типа часто используются в открытом море, где блоки компрессоров обрабатывают охлаждающую текучую среду, используемую для сжижения природного газа в целях транспортировки. Природный газ извлекают из морских нефтяных и газовых месторождений и сжижают с помощью установки для сжижения природного газа. Сжиженный природный газ (СПГ) затем погружают на корабль и перевозят на землю, где его опять переводят в газообразную форму и распространяют по газораспределительной сети.
В установках для производства СПГ используются один или более циклов охлаждения, в рамках которых охладитель подвергается обработке в ходе термодинамического цикла для отбора тепла от природного газа и выпуска отобранного тепла в окружающую среду. Охладитель сжимается компрессором или блоком компрессоров до его расширения в детандере или лепестковом клапане. Компрессор или блок компрессоров обычно приводится в действие непосредственно газотурбинным двигателем или электродвигателем. Электрическая энергия для питания электродвигателя генерируется электрическим генератором, приводимым во вращение газотурбинным двигателем. Часть электрической энергии, произведенной электрическим генератором, может быть распределена по электрораспределительной сети к различным устройствам или приборам морской платформы или корабля, на которых расположена установка СПГ, в то время как основная часть электрической энергии подается на электродвигатель. Частотно-регулируемый привод используется для вращения электродвигателя с требуемой скоростью вращения, которая может отличаться от скорости вращения электрического генератора и может изменяться для удовлетворения потребностей процесса, в котором участвуют компрессор или блок компрессоров.
В нефтяной и газовой отрасли в месторождение нефти или газа иногда вводят углекислый газ для извлечения из указанного месторождения углеводородов. Углекислотные компрессоры обычно приводятся в действие непосредственно газотурбинным двигателем или с помощью электродвигателя. Электрическая энергия для электродвигателя может генерироваться электрическим генератором, приводимым в действие газотурбинным двигателем.
Необходимость наличия двух электрических машин (электрического генератора и электродвигателя) имеет ряд недостатков. В частности, преобразование из механической энергии в электрическую энергию (при помощи электрического генератора) и обратно в механическую энергию (при помощи электродвигателя) снижает общий КПД системы вследствие неизбежных потерь в ходе процессов преобразования. Кроме того, указанные две электрические машины вносят вклад в площадь, занимаемую энергетической установкой. Этот фактор особенно критичен при использовании в открытом море, где доступное пространство ограничено. Кроме того, использование двух электрических машин снижает надежность системы, так как обе машины подвержены поломкам, которые приводят к останову промышленной установки. Для повышения надежности системы требуются запасные электрические машины, что означает необходимость наличия по меньшей мере одного дополнительного электродвигателя и одного дополнительного электрического генератора для замены. Запасные машины требуют еще большего дополнительного пространства на морской установке и денежных затрат.
Таким образом, существует потребность в энергетической установке, которая требует меньшего пространства и имеет повышенный КПД.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Согласно первому аспекту в данном документе предложена комплексная установка для генерации энергии и приведения в действие нагрузки, содержащая многовальный газотурбинный двигатель, содержащий турбину высокого давления, механически соединенную с воздушным компрессором газогенератора указанного многовального газотурбинного двигателя, и турбину низкого давления, проточно соединенную с указанной турбиной высокого давления, но механически отделенную от нее, и механически присоединенную к валу отбора мощности, который присоединен к линии валов. Указанная установка также содержит электрический генератор, механически присоединенный к линии валов и приводимый во вращение указанным газотурбинным двигателем, вращательную нагрузку, механически присоединенную к линии валов и приводимую во вращение газотурбинным двигателем, устройство управления нагрузкой, предназначенное для регулирования по меньшей мере одного рабочего параметра вращательной нагрузки с обеспечением приведения условий ее работы в соответствие с требованиями процесса, в котором указанная нагрузка участвует, при этом турбина низкого давления и электрический генератор вращаются с по существу постоянной скоростью, которая не зависит от скорости турбины высокого давления.
Нагрузка может представлять собой приводную турбомашину, такую как компрессор или насос. Турбомашина выполнена с возможностью обработки текучей среды, циркулирующей в рамках процесса, в котором указанная турбомашина участвует. Таким образом, рабочий параметр, регулируемый устройством управления, является параметром, от которого зависит воздействие на технологическую текучую среду. Например, рабочий параметр может представлять собой скорость вращения или другой параметр приводной турбомашины, от которого зависит расход обрабатываемой текучей среды. Примеры рабочих параметров рассмотрены ниже.
Турбина высокого давления генерирует энергию для приведения в действие воздушного компрессора газотурбинного двигателя. Воздушный компрессор, турбина высокого давления и расположенная между ними камера сгорания образуют газогенератор многовального газотурбинного двигателя. Поскольку скорость вращения газогенератора может регулироваться независимо от скорости вращения турбины низкого давления и генератора, достигается повышенная гибкость установки.
Использование двухвального газотурбинного двигателя позволяет обойтись без пускового электродвигателя и, соответственно, без частотно-регулируемого привода.
Дополнительные преимущественные особенности и варианты выполнения комплексной установки согласно данному изобретению описаны более подробно ниже и изложены в прилагаемой формуле изобретения, которая составляет неотъемлемую часть данного описания.
Согласно другому аспекту в данном документе предложен способ эксплуатации комплексной установки для генерации энергии и приведения в действие нагрузки, включающий следующие этапы:
- вращение газотурбинного двигателя и электрического генератора со скоростью вращения, изменение которой ограничено изменением частоты, допускаемым электрораспределительной сетью, с которой электрически соединен указанный электрический генератор,
- регулирование по меньшей мере одного рабочего параметра вращательной нагрузки с помощью устройства управления нагрузкой для приведения условий ее работы в соответствие с требованиями процесса, в котором указанная нагрузка участвует, без изменения скорости вращения электрического генератора.
Согласно способу, описанному в данном документе, газотурбинный двигатель представляет собой многовальный газотурбинный двигатель, содержащий по меньшей мере первый вал, механически соединяющий воздушный компрессор с турбиной высокого давления, и приводной вал, присоединенный с возможностью передачи приводного усилия к турбине низкого давления, которая проточно соединена с турбиной высокого давления, но механически отделена от нее, и принимает от нее частично расширенный газ сгорания. Высокотемпературный газ сгорания, образованный в камере сгорания, которая принимает сжатый воздух от воздушного компрессора и топливо, частично расширяется в турбине высокого давления с образованием механической энергии для приведения в действие воздушного компрессора и частично расширяется в турбине низкого давления с образованием механической энергии, доступной для снятия на линии валов.
Ниже описаны характерные особенности и варианты выполнения, которые изложены также в прилагаемой формуле изобретения, составляющей неотъемлемую часть данного описания. В вышеизложенном кратком описании приведены характерные особенности различных вариантов выполнения данного изобретения для лучшего понимания нижеследующего подробного описания и оценки вклада, вносимого в уровень техники. Разумеется, существуют и другие характерные особенности изобретения, которые описаны ниже и изложены в прилагаемой формуле изобретения. В связи с этим, прежде чем перейти к подробному объяснению некоторых вариантов выполнения изобретения, следует отметить, что различные варианты выполнения изобретения не ограничены в их применении элементами конструкции и расположением компонентов, указанными в нижеприведенном описании или изображенными на чертежах. Изобретение может иметь другие варианты выполнения и может быть реализовано на практике и осуществлено различными способами. Кроме того, следует понимать, что фразеология и терминология, используемые в данном документе, служат для описательных целей и не должны считаться ограничивающими.
По существу, специалистам в данной области техники должно быть понятно, что принцип, на котором основано изобретение, может быть легко применен в качестве базы для разработки других конструкций, способов и/или систем для реализации некоторых целей данного изобретения. Таким образом, важно рассматривать формулу изобретения как охватывающую такие эквивалентные конструкции, если они не выходят за рамки сущности и объема данного изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Более полная оценка и понимание предложенных вариантов выполнения изобретения и многочисленных присущих им преимуществ могут быть получены при рассмотрении нижеприведенного подробного описания со ссылкой на прилагаемые чертежи, на которых:
фиг. 1 изображает схему первого варианта выполнения энергетической установки согласно данному изобретению,
фиг. 2-6 изображают другие варианты выполнения энергетической установки согласно данному изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ВЫПОЛНЕНИЯ
Нижеследующее подробное описание иллюстративных вариантов выполнения приведено со ссылкой на прилагаемые чертежи. Одинаковые номера позиций на разных чертежах обозначают одинаковые или аналогичные элементы. Кроме того, чертежи не обязательно выполнены в масштабе. Более того, нижеприведенное подробное описание не ограничивает изобретение, объем которого определяется прилагаемой формулой изобретения.
Используемое на протяжении всего описания выражение «один вариант выполнения», «вариант выполнения» или «некоторые варианты выполнения» означает, что конкретный признак, конструкция или характерная особенность, описанные в связи с вариантом выполнения, присущи по меньшей мере одному варианту выполнения рассматриваемого изобретения. Таким образом, фразы «в одном варианте выполнения», «в варианте выполнения» или «в некоторых вариантах выполнения», встречающиеся в разных местах на протяжении всего описания, не обязательно относятся к одному и тому же варианту выполнения (одним и тем же вариантам выполнения). Кроме того, конкретные признаки, конструкции или характерные особенности могут сочетаться любым соответствующим образом в одном или более вариантах выполнения.
На фиг. 1 схематически изображен первый вариант выполнения комплексной установки 1 для генерации энергии и приведения в действие нагрузки, выполненной согласно данному изобретению. Комплексная установка 1 содержит многовальный газотурбинный двигатель 3, электрический генератор 5 и вращательную нагрузку. В варианте выполнения, изображенном на фиг. 1, вращательная нагрузка представляет собой центробежный газовый компрессор 7. В других вариантах выполнения могут быть предусмотрены другие вращательные нагрузки, например, с другой технологией сжатия, такие как осевой компрессор или насос. Нагрузка также может содержать более одной вращательной машины. Газовый компрессор может быть выполнен с возможностью введения углекислого газа в месторождение нефти или газа, например в подводное месторождение углеводорода.
Линия 9 валов механически соединяет вал 11 отбора мощности многовального газотурбинного двигателя 3 с электрическим генератором 5 и вращательной нагрузкой, то есть в данном случае с газовым компрессором 7. В варианте выполнения, изображенном на фиг. 1, генератор 5 расположен вдоль линии 9 между двигателем 3 и компрессором 7. В других вариантах выполнения, как описано более подробно ниже, может быть предусмотрено другое расположение, например, с размещением компрессора 7 между двигателем 3 и генератором 5. При определенных обстоятельствах первое расположение может иметь некоторые преимущества перед вторым расположением. Например, в случае компрессоров с вертикальной плоскостью разъема открывание корпуса компрессора может быть облегчено, если компрессор расположен на конце линии 9 валов. Размещение генератора 5 на конце линии 9 так, что компрессор 7 расположен между двигателем 3 и генератором 5, устраняет необходимость передачи всей механической энергии, получаемой от двигателя 3, через вал электрического генератора, который, таким образом, может работать с меньшей производительностью.
Многовальный газотурбинный двигатель 3 может быть авиационным газотурбинным двигателем, то есть газотурбинным двигателем, относящимся к турбореактивному двигателю для воздушной навигации.
В иллюстративных вариантах выполнения двигатель 3 представляет собой двухвальный газотурбинный двигатель.
Многовальный газотурбинный двигатель 3 может содержать газогенератор 310 и силовую турбину 320, также называемую турбиной низкого давления. Газогенератор 310, в свою очередь, содержит воздушный компрессор 312, камеру 314 сгорания, турбину 316 высокого давления и первый вал 318, который механически соединяет турбину 316 с воздушным компрессором 312. Камера 314 сгорания проточно присоединена к выходной стороне компрессора 312 и ко входу турбины 316 высокого давления.
Выход турбины 316 высокого давления проточно присоединен к силовой турбине, или турбине 320 никого давления. Турбина 320, в свою очередь, механически присоединена к валу 11 отбора мощности в двигателе 3. Таким образом, согласно варианту выполнения, изображенному на фиг. 1, двигатель 3 является двухвальным газотурбинным двигателем, содержащим первый вал 318, который соединяет турбину 316 высокого давления с воздушным компрессором 312, и второй вал 11, на который поступает механическая энергия от турбины низкого давления, или силовой турбины 320.
Номером 320 позиции обозначен пусковой двигатель газовой турбины, например гидравлический двигатель, который используется для запуска вращения газогенератора 310.
Как указано выше, газовый компрессор 7 может быть частью открытого контура, например контура ввода углекислого газа. В других вариантах выполнения компрессор 7 может быть частью закрытого контура, например контура охлаждения. В целом, компрессор 7 может быть частью процесса, который схематически проиллюстрирован под номером 13 позиции. Номером 15 позиции обозначена впускная сторона, а номером 17 позиции обозначена выходная сторона компрессора 7, через которую компрессор 7 соединен с процессом 13.
Предпочтительно предусмотрено устройство управления нагрузкой, которое выполнено и расположено с возможностью регулирования по меньшей мере одного рабочего параметра компрессора 7 в зависимости от требований процесса 13. Устройство управления нагрузкой может содержать контроллер компрессора, схематически показанный под номером 19 позиции, для регулирования одного или более рабочих параметров компрессора 7 исходя из требований процесса 13. Контроллер 19 принимает от процесса 13 входной сигнал, основанный на одном или более параметрах, и генерирует выходной сигнал, представленный одним или более рабочими параметрами компрессора 7.
Устройство управления нагрузкой может также содержать одно или более средств, объединенных с газовым компрессором 7 и регулирующих, на основании рабочего параметра (рабочих параметров), одно или более из следующего: скорость вращения компрессора 7, давление на входе компрессора, давление на выходе компрессора, отношение давлений компрессора 7. Как вариант или в дополнение, устройство управления нагрузкой может содержать одно или более средств, которые на основании рабочего параметра (параметров) регулируют расход рабочего газа, обрабатываемого компрессором 7.
В некоторых вариантах выполнения указанные средства могут содержать регулируемые входные направляющие лопатки (ВНЛ) 7А, которые могут использоваться для регулирования расхода рабочего газа, обрабатываемого компрессором 7. Входной сигнал от контроллера 19 компрессора может быть передан к исполнительному устройству, которое избирательно открывает и закрывает регулируемые ВНЛ 7А.
В иллюстративных вариантах выполнения на выходной стороне компрессора 7 может быть расположен дроссельный или лепестковый клапан 21 для регулирования давления на выходе. Дроссельный или лепестковый клапан 21 может быть постепенно и избирательно открыт или закрыт с помощью исполнительного устройства (не показано), которое управляется входным сигналом, поступающим от контроллера 19. Ниже со ссылкой на другие иллюстративные варианты выполнения приведено более подробное описание других средств для регулирования рабочих параметров газового компрессора 7.
В целом, контроллер 19 может регулировать один или более рабочих параметров компрессора 7 или любой вращательной нагрузки, приводимой в действие многовальным газотурбинным двигателем 3 через линию 9 валов, исходя из требований процесса 13 так, что нагрузка 7 работает при требуемом рабочем значении или вблизи него, без необходимости изменения скорости вращения турбины 320 низкого давления двигателя 3 и генератора 5. Это обеспечивает возможность вращения турбины 320 двигателя 3 и электрического генератора 5 с по существу постоянной скоростью вращения.
В данном контексте выражение «по существу постоянный» означает, что изменение скорости вращения и, следовательно, электрической частоты остается в пределах диапазона отклонений частоты (диапазона допустимых значений), допускаемых электрораспределительной сетью 23, к которой присоединен генератор 5 и которая распределяет электрическую энергию к вспомогательным устройствам комплексной установки 1, процесса 13 и/или корабля или морской платформы, на которой (котором) может быть расположена установка 1. Диапазоны допустимых значений могут составлять +/-5%, предпочтительно +/-2,5%,
Комплексная энергетическая установка, описанная выше, работает следующим образом. Воздух сжимается компрессором 312 многовального газотурбинного двигателя 3 и смешивается с топливом F в камере 314 сгорания. Воздушно-топливная смесь сжигается в камере 314 с образованием сжатого, высокотемпературного газа сгорания. Газ сгорания частично расширяется в турбине 316 высокого давления с образованием механической энергии для поддержания вращения воздушного компрессора 312.
Частично расширенный газ сгорания дополнительно расширяется в силовой турбине 320. Снижение энтальпии газа сгорания в силовой турбине или турбине 320 низкого давления приводит к образованию дополнительной механической энергии, которая может быть снята с вала 11 отбора мощности и линии 9 валов, для вращения электрического генератора 5 и компрессора 7 или любой другой вращательной нагрузки, механически присоединенной к линии 9.
Механическая энергия, доступная на валу 11, присоединенном к турбине 320 двигателя 3, таким образом, преобразовывается генератором 5 в электрическую энергию и распределяется по сети 23. Если/когда на линии 9 доступна избыточная механическая энергия, указанная избыточная энергия используется для сжатия рабочего газа, обрабатываемого с помощью компрессора 7.
При работе генератора 5 с фиксированной скоростью вращения, определяемой частотой сети 23, достигается максимальная эффективность в той части установки 1, которая предназначена для производства электрической энергии.
Когда линия 9 валов вращается с по существу постоянной скоростью, задаваемой сетью 23, изменения рабочих условий компрессора 7, требуемые процессом 13, достигаются с помощью управляющего входного сигнала от контроллера 19. Например, давление на впуске и/или давление на выходе могут быть отрегулированы путем воздействия на регулируемые ВНЛ 7А и/или на дроссельный или лепестковый клапан 21, либо расход рабочего газа может быть отрегулирован путем воздействия на регулируемые ВНЛ 7А. Как описано ниже, для дополнительного изменения одного или более рабочих параметров компрессора 7, таких как скорость вращения, расход или коэффициент сжатия, могут быть выполнены различные действия без оказания влияния на скорость вращения турбины 320 низкого давления газотурбинного двигателя 3 и скорость вращения генератора 5.
Комплексная энергетическая установка 1 имеет повышенный КПД по сравнению с установками, известными в настоящее время, поскольку механическая энергия, генерируемая многовальным газотурбинным двигателем 3, используется непосредственно для приведения в действие компрессора 7 без необходимости ее преобразования в электрическую энергию и затем обратно в механическую энергию. Кроме того, турбина 320 двигателя 3 может работать при постоянной скорости с максимизацией, таким образом, КПД турбины и генерацией электрической энергии по существу при постоянной частоте. Поскольку генератор 5 вращается с по существу постоянной скоростью, он может быть непосредственно присоединен к электрораспределительной сети 23 без необходимости преобразования электрической энергии, например, с помощью частотно-регулируемого привода.
Использование одной линии 9 валов с единственной электрической машиной 5 уменьшает общую площадь, занимаемую установкой, с экономией пространства на морской платформе.
При использовании двухвального газотурбинного двигателя 3 не требуется, чтобы электрический генератор 5 работал в режиме электродвигателя в качестве стартера для газотурбинного двигателя 3. Запуск двигателя 3 достигается путем запуска сначала газогенератора 310, при этом силовая турбина 320 и, следовательно, линия 9 валов остаются в неработающем состоянии. Запуск газогенератора 310 требует только ограниченной энергии, которая может быть обеспечена пусковым двигателем 322, который может представлять собой гидравлический двигатель.
Также отсутствует необходимость работы генератора 5 в качестве вспомогательного двигателя, поскольку многовальный газотурбинный двигатель 3 выполнен или выбран таким образом, что он обеспечивает уровень мощности, достаточный для приведения в действие генератора 5, и таким образом, что на линии 9 валов может быть доступна избыточная механическая мощность. Указанная избыточная механическая мощность, если она доступна, используется для приведения в действие компрессора 7.
Возможно большое количество альтернативных конфигураций комплексной энергетической установки 1, описанной выше. Альтернативный иллюстративный вариант выполнения установки 1 согласно данному изобретению схематически изображен на фиг. 2. Одинаковые или эквивалентные компоненты, описанные выше в связи с вариантом выполнения, изображенным на фиг. 1, обозначены теми же номерами позиций, и их повторное описание не приводится. Главное различие между вариантом выполнения, изображенным на фиг. 2, и вариантом выполнения, изображенным на фиг. 1, заключается в расположении газового компрессора 7 и электрического генератора 5 вдоль линии 9 валов. На фиг. 2 компрессор 7 расположен между двигателем 3 и генератором 5.
По меньшей мере в некоторых вариантах выполнения, описанных ниже, также возможно расположение генератора 5 и компрессора 7 в обратном порядке.
Комплексная энергетическая установка 1, изображенная на фиг. 3, выполнена по существу так же, как установка, показанная на фиг. 1, но вдоль линии 9 валов, между генератором 5 и компрессором 7, расположена муфта 31. Таким образом, две приводные машины 5 и 7 могут быть разъединены, например, если требуется останов компрессора 7, с продолжением при этом генерирования электрической энергии для сети 23.
Вместо простой муфты между генератором 5 и компрессором 7 может быть расположено соединение 33 с регулируемой скоростью, как показано на фиг. 4. Для этого может использоваться любое подходящее соединение 33, например планетарный зубчатый механизм с регулируемой скоростью, такой как привод Vorecon с регулируемой скоростью, поставляемый компанией Voith Turbo GmbH &Со KG, г. Крайльсхайм, Германия.
В соответствии с вариантом выполнения, изображенным на фиг. 4, скорость компрессора 7 может быть изменена во время работы установки 1 в ответ на запросы от процесса 13 без изменения скорости генератора 5. Изменение скорости, получаемое с помощью соединения 33, может быть объединено с другими регулируемыми параметрами компрессора 7, такими как давление и расход. Соотношение скоростей между входным валом и выходным валом соединения 33 может избирательно регулироваться с помощью контроллера 19 компрессора.
Таким образом, в варианте выполнения, изображенном на фиг. 4, часть линии 9 валов имеет скорость вращения, которая поддерживается вблизи постоянной величины, задаваемой частотой сети 23. Эта часть линии 9 проходит от выходного вала 11 двигателя 3 ко входу соединения 33. Остальная часть линии 9 валов, от выхода соединения 33 до компрессора 7, вращается с регулируемой скоростью, которая может отличаться от скорости вращения турбины 320 низкого давления газотурбинного двигателя 3 и от скорости вращения электрического генератора 5.
Как правило, газовая установка, например установка СПГ, охватывает несколько вторичных газовых процессов и контуров, которые могут требовать выполнения этапа снижения давления. Обычно это достигается на этапе расслоения газа с потерей энергии газа или при помощи самостоятельного турбодетандерного блока (турбодетандер + генератор). В этом случае электрическая энергия, полученная при расширении газа в турбодетандере, становится доступной для сети 23. В соответствии с некоторыми вариантами выполнения изобретения, описанного в данном документе, вместо использования самостоятельного блока из турбодетандера и электрического генератора турбодетандер может быть встроен в комплексную энергетическую установку 1, как схематически показано на фиг. 5, на которой одинаковые части и компоненты, описанные в связи с вышерассмотренными вариантами выполнения, обозначены теми же номерами позиции, и их повторное описание не приводится.
На фиг. 5 турбодетандер 35 расположен на линии 9 валов. Для механического отсоединения турбодетандера 35 от линии 9 может быть выполнена муфта 37.
Турбодетандер 35 имеет вход 35А и выход 35В. Рабочая текучая среда под давлением, например сжатый газ, который требует снижения давления, проходит от источника текучей среды под высоким давлением, показанного в целом под номером 36 позиции, через турбодетандер 35. Механическая энергия, выделяемая при уменьшении давления в потоке газа, становится доступной для снятия с линии 9 валов и используется для подачи приводной энергии к газовому компрессору 7, к электрическому генератору 5 или к ним обоим с внесением, таким образом, вклада в общий КПД установки 1. Если через турбодетандер 35 не проходит газ, он может быть механически отсоединен от линии 9 валов путем отсоединения муфты 37 так, что установка 1 может работать с нахождением турбодетандера в неработающем состоянии.
Турбодетандер 35, показанный на фиг. 5, также может использоваться в вариантах выполнения, изображенных на фиг. 1-4.
При включении турбодетандера 35 в установку 1 могут быть получены дополнительные преимущества по сравнению с конфигурациями, в которых турбодетандер присоединен к отдельному электрическому генератору. Требуется меньше этапов преобразования энергии и исключается дополнительный электрический генератор, присоединенный к турбодетандеру. Таким образом, дополнительно уменьшается занимаемая площадь и расходы на установку.
На фиг. 6 изображен еще один вариант выполнения комплексной установки 1 для генерации энергии и приведения в действие нагрузки, выполненной согласно данному изобретению. Одинаковые или эквивалентные компоненты, описанные в связи с фиг. 1-5, обозначены теми же номерами позиций, и их повторное описание не приводится. Вариант выполнения, изображенный на фиг. 6, аналогичен варианту выполнения, изображенному на фиг. 1. Вдоль перепускной линии 43, расположенной между выходной стороной и впускной стороной компрессора 7 дополнительно предусмотрен перепускной клапан 41. Между выходной стороной компрессора 7 и перепускным клапаном 41 также может быть выполнен теплообменник 45.
В некоторых вариантах выполнения перепускной клапан 41 может представлять собой противопомпажный клапан компрессора 7.
Перепускной клапан 41 может находиться под управлением контроллера 19 компрессора и может использоваться для рециркуляции части рабочего газа, обрабатываемого компрессором 7, с обеспечением изменения расхода потока, подаваемого компрессором 7 в процесс 13, в соответствии с требованиями процесса 13 без оказания влияния на скорость вращения электрического генератора 5 и турбины 320 низкого давления многовального газотурбинного двигателя 3. Перепускная линия 43 и соответствующий перепускной клапан 41 могут быть выполнены в комбинации с регулируемыми ВНЛ 7А и/или другими средствами для изменения рабочих параметров газового компрессора 7, такими как дроссельный или лепестковый клапан 21 или турбодетандер 35, как показано на фиг. 5. Кроме того, вместо муфты 31 между компрессором 7 и генератором 5 может быть расположено соединение 35 с регулируемой скоростью.
Установка 1, изображенная на фиг. 2-6, работает по существу так же, как описано выше при рассмотрении фиг. 1, за исключением того что возможно регулирование дополнительных рабочих параметров компрессора 7, таких как расход потока через турбодетандер 35 или скорость вращения.
В зависимости от доступных средств, связанных с компрессором 7 или другой вращательной нагрузкой, присоединенной к линии 9 валов, могут быть предприняты различные действия для изменения рабочего режима компрессора 7 в ответ на требования процесса 13 без оказания влияния на скорость вращения турбины низкого давления или силовой турбины 320 многовального газотурбинного двигателя 3 и на скорость вращения электрического генератора 5.
Возможны многочисленные дополнительные комбинации и модификации комплексной установки 1 для генерации энергии и приведения в действие нагрузки, выполненной согласно данному изобретению. Например, вдоль линии 9 валов, между расположенными вдоль нее вращательными машинами, могут быть предусмотрены одна или более коробок передач. Если генератор 5 расположен между турбиной 320 двигателя 3 и компрессором 7, коробка передач может быть расположена между турбиной 320 двигателя 3 и генератором 5 и/или между генератором 5 и компрессором 7 или другой вращательной нагрузкой. Если компрессор 7 расположен между двигателем 3 и генератором 5, коробка передач может быть расположена между двигателем 3 и компрессором 7 и/или между компрессором 7 и генератором 5.
Использование коробки (коробок) передач обеспечивает возможность получения различных скоростей установившегося вращения для различных приводных машин и турбины 320 двигателя 3.
Также, несмотря на то что в вышеописанных вариантах выполнения сделана ссылка на газовый компрессор 7, может быть предусмотрен блок компрессоров или другое устройство из одной или более вращательных нагрузок. Например, вращательная нагрузка может содержать центробежный насос или осевой насос. Также возможно использование комбинаций различных приводимых в действие турбомашин, таких как компрессоры и насосы, на одной и той же линии 9 валов.
Кроме того, следует понимать, что различные устройства и средства, описанные в связи с отдельными вариантами выполнения, изображенными не чертежах, могут различным образом комбинироваться друг с другом. Например, перепускной клапан 41, изображенный на фиг. 6, может быть предусмотрен в вариантах выполнения, изображенных на фиг. 1-5, и использоваться в качестве (дополнительного) средства для управления рабочими параметрами газового компрессора 7. В других вариантах выполнения одно или более из вышеописанных средств может отсутствовать. Например, регулируемые ВНЛ 7А могут быть исключены, если другие средства обеспечивают достаточное управление рабочими параметрами нагрузки 7.

Claims (20)

1. Комплексная установка (1) для генерации энергии и приведения в действие нагрузки, содержащая в комбинации следующие элементы:
многовальный газотурбинный двигатель (3), содержащий турбину (316) высокого давления, механически соединенную с воздушным компрессором (312), и турбину (320) низкого давления, проточно соединенную с указанной турбиной (316) высокого давления, но механически отделенную от нее и механически присоединенную к валу (11) отбора мощности, который присоединен к линии (9) валов,
электрический генератор (5), механически присоединенный к линии (9) валов и приводимый во вращение газотурбинным двигателем (3),
вращательную нагрузку (7), механически присоединенную к линии (9) валов и приводимую во вращение газотурбинным двигателем (3),
устройство управления нагрузкой, предназначенное для регулирования по меньшей мере одного рабочего параметра вращательной нагрузки (7) с обеспечением приведения условий ее работы в соответствие с требованиями процесса (13), в котором указанная нагрузка (7) участвует, при этом турбина (320) низкого давления и электрический генератор (5) вращаются с по существу постоянной скоростью, которая не зависит от скорости турбины (316) высокого давления.
2. Комплексная установка (1) по п. 1, в которой указанная по существу постоянная скорость турбины (320) низкого давления газотурбинного двигателя (3) и электрического генератора (5) определяется электрической частотой электрораспределительной сети (23), к которой присоединен электрический генератор (5).
3. Комплексная установка (1) по п. 1 или 2, в которой устройство управления нагрузкой выполнено и расположено с возможностью регулирования одного или более из следующих параметров: давление поступающей рабочей текучей среды, обрабатываемой вращательной нагрузкой (7), давление выпускаемой рабочей текучей среды, обрабатываемой вращательной нагрузкой (7), отношение давлений между выходной стороной и впускной стороной вращательной нагрузки (7), расход рабочей текучей среды через вращательную нагрузку (7), скорость вращения указанной нагрузки (7).
4. Комплексная установка (1) по одному или более из предыдущих пунктов, в которой вращательная нагрузка (7) представляет собой турбомашину, с помощью которой происходит обработка текучей среды из указанного процесса, в котором указанная турбомашина участвует.
5. Комплексная установка (1) по одному или более из предыдущих пунктов, в которой устройство управления нагрузкой содержит одно или более из следующего: перепускной клапан (41), расположенный параллельно вращательной нагрузке (7) и соединяющий выходную сторону и впускную сторону вращательной нагрузки, регулируемый входной направляющий лопаточный аппарат (7А), дроссельный или лепестковый клапан (21), проточно соединенный с выходной стороной вращательной нагрузки (7), и соединение (33) с регулируемой скоростью, расположенное вдоль линии (9) валов между электрическим генератором (5) и вращательной нагрузкой (7), выполненное и управляемое с возможностью изменения скорости вращения нагрузки (7) при сохранении скорости вращения электрического генератора (5) по существу постоянной.
6. Комплексная установка (1) по одному или более из предыдущих пунктов, содержащая муфту (31), расположенную между электрическим генератором (5) и вращательной нагрузкой (7).
7. Комплексная установка (1) по одному или более из предыдущих пунктов, содержащая турбодетандер (35), механически присоединенный к линии (9) валов, выполненный и расположенный с возможностью приема рабочей текучей среды под давлением из источника (36) рабочей текучей среды под давлением и преобразования энергии давления указанной текучей среды в механическую энергию, доступную для снятия на линии (9) валов.
8. Комплексная установка (1) по п. 7, в которой турбодетандер (35) механически присоединен к линии (9) валов с помощью муфты (37).
9. Комплексная установка (1) по одному или более из предыдущих пунктов, в которой электрический генератор (5) выполнен без возможности работы в режиме двигателя.
10. Комплексная установка (1) по одному или более из предыдущих пунктов, в которой электрический генератор (5) расположен между газотурбинным двигателем (3) и вращательной нагрузкой (7) или, как вариант, вращательная нагрузка (7) расположена между газотурбинным двигателем (3) и электрическим генератором (5).
11. Комплексная установка (1) по одному или более из предыдущих пунктов, в которой вращательная нагрузка (7) управляется с обеспечением ее вращения с по существу постоянной скоростью.
12. Способ эксплуатации комплексной установки (1) для генерации энергии и приведения в действие нагрузки, содержащей газотурбинный двигатель (3), электрический генератор (5), вращательную нагрузку (7) и линию (9) валов, механически соединяющую электрический генератор (5) и вращательную нагрузку (7) с газотурбинным двигателем (3), причем способ включает следующие этапы:
обеспечение вращения газотурбинного двигателя (3) и электрического генератора (5) со скоростью вращения, причем изменение скорости вращения ограничено изменением частоты, допускаемым электрораспределительной сетью (23), с которой электрически соединен указанный электрический генератор (5),
регулирование по меньшей мере одного рабочего параметра вращательной нагрузки (7) с помощью устройства управления нагрузкой для приведения условий ее работы в соответствие с требованиями процесса (13), в котором указанная нагрузка участвует, без изменения скорости вращения электрического генератора (5),
причем газотурбинный двигатель (3) представляет собой многовальный газотурбинный двигатель, содержащий по меньшей мере первый вал (318), механически соединяющий воздушный компрессор (312) с турбиной (316) высокого давления, и приводной вал (11), присоединенный с возможностью передачи приводного усилия к турбине (320) низкого давления, которая проточно соединена с турбиной (316) высокого давления, но механически отделена от нее и принимает от нее частично расширенный газ сгорания, при этом высокотемпературный газ сгорания, образованный в камере (314) сгорания, которая принимает сжатый воздух от воздушного компрессора (312) и топливо, частично расширяется в турбине (316) высокого давления с образованием механической энергии для приведения в действие воздушного компрессора (312) и частично расширяется в турбине (320) низкого давления с образованием механической энергии, доступной для снятия на линии (9) валов.
13. Способ по п. 12, в котором вращательная нагрузка (7) является вращательной турбомашиной, при этом рабочий режим турбомашины регулируют в ответ на требования процесса путем воздействия на по меньшей мере один из следующих параметров: давление поступающей рабочей текучей среды, обрабатываемой вращательной нагрузкой (7), давление выпускаемой рабочей текучей среды, обрабатываемой вращательной нагрузкой (7), отношение давлений между выходной стороной и впускной стороной вращательной нагрузки (7), расход рабочей текучей среды через вращательную нагрузку (7) и скорость вращения указанной нагрузки (7).
RU2018113492A 2015-10-20 2016-10-17 Комплексный блок генерации энергии и сжатия и соответствующий способ RU2718735C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITUB2015A005049A ITUB20155049A1 (it) 2015-10-20 2015-10-20 Treno integrato di generazione di potenza e compressione, e metodo
IT102015000063612 2015-10-20
PCT/EP2016/074836 WO2017067871A1 (en) 2015-10-20 2016-10-17 Integrated power generation and compression train, and method

Publications (3)

Publication Number Publication Date
RU2018113492A RU2018113492A (ru) 2019-11-21
RU2018113492A3 RU2018113492A3 (ru) 2020-01-24
RU2718735C2 true RU2718735C2 (ru) 2020-04-14

Family

ID=55273397

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018113492A RU2718735C2 (ru) 2015-10-20 2016-10-17 Комплексный блок генерации энергии и сжатия и соответствующий способ

Country Status (5)

Country Link
US (1) US10815882B2 (ru)
IT (1) ITUB20155049A1 (ru)
RU (1) RU2718735C2 (ru)
SA (1) SA518391367B1 (ru)
WO (1) WO2017067871A1 (ru)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731501B2 (en) * 2016-04-22 2020-08-04 Hamilton Sundstrand Corporation Environmental control system utilizing a motor assist and an enhanced compressor
US10669940B2 (en) * 2016-09-19 2020-06-02 Raytheon Technologies Corporation Gas turbine engine with intercooled cooling air and turbine drive
CN110337563B (zh) 2017-02-24 2021-07-09 埃克森美孚上游研究公司 两用lng/lin储存罐的吹扫方法
CA3061909C (en) * 2017-05-16 2022-08-23 Exxonmobil Upstream Research Company Method and system for efficient nonsynchronous lng production using large scale multi-shaft gas turbines
WO2019040154A1 (en) * 2017-08-24 2019-02-28 Exxonmobil Upstream Research Company METHOD AND SYSTEM FOR GENERATING LNG USING STANDARD MULTI-SHAFT GAS TURBINES, COMPRESSORS AND REFRIGERANT SYSTEMS
CN107979226A (zh) * 2017-12-28 2018-05-01 广东欧珀移动通信有限公司 一种多输出驱动装置以及电子设备
CA3101931C (en) 2018-06-07 2023-04-04 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2020036711A1 (en) 2018-08-14 2020-02-20 Exxonmobil Upstream Research Company Conserving mixed refrigerant in natural gas liquefaction facilities
SG11202100716QA (en) 2018-08-22 2021-03-30 Exxonmobil Upstream Res Co Managing make-up gas composition variation for a high pressure expander process
AU2019325914B2 (en) 2018-08-22 2023-01-19 ExxonMobil Technology and Engineering Company Primary loop start-up method for a high pressure expander process
CA3109750A1 (en) 2018-08-22 2020-02-27 Exxonmobil Upstream Research Company Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
US11215410B2 (en) 2018-11-20 2022-01-04 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
WO2020106394A1 (en) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
AU2020216277B2 (en) 2019-01-30 2023-04-20 ExxonMobil Technology and Engineering Company Methods for removal of moisture from LNG refrigerant
FR3097012B1 (fr) * 2019-06-06 2022-01-21 Safran Aircraft Engines Procédé de régulation d’une accélération d’une turbomachine
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US20210063083A1 (en) 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
EP4031821A1 (en) 2019-09-19 2022-07-27 ExxonMobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11806639B2 (en) 2019-09-19 2023-11-07 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2021055074A1 (en) 2019-09-20 2021-03-25 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with o2 enrichment for acid gas capture and sequestration
US11808411B2 (en) 2019-09-24 2023-11-07 ExxonMobil Technology and Engineering Company Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen
GB201915310D0 (en) * 2019-10-23 2019-12-04 Rolls Royce Plc Turboelectric generator system
GB201915308D0 (en) * 2019-10-23 2019-12-04 Rolls Royce Plc Turboshaft
FR3104542B1 (fr) * 2019-12-13 2021-12-03 Safran Power Units Groupe auxiliaire de puissance comprenant un générateur de gaz à entrainement direct avec un générateur électrique et un boîtier d’accessoires
KR20230002903A (ko) * 2020-05-04 2023-01-05 누보 피그노네 테크놀로지 에스알엘 기계적 구동 응용의 가스 터빈 및 이의 작동 방법
IT202100028559A1 (it) * 2021-11-10 2023-05-10 Nuovo Pignone Tecnologie Srl Method of Controlling the Renewable Energy Use in an LNG Train
IT202100028562A1 (it) * 2021-11-10 2023-05-10 Nuovo Pignone Tecnologie Srl Power Plant for Controlling the Renewable Energy Use in an LNG Train
US11619140B1 (en) * 2022-04-08 2023-04-04 Sapphire Technologies, Inc. Producing power with turboexpander generators based on specified output conditions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090320438A1 (en) * 2008-05-15 2009-12-31 Hitachi, Ltd Two-shaft gas turbine
EP2143908A2 (en) * 2008-07-10 2010-01-13 Hitachi Ltd. Twin-shaft gas turbine
WO2014020104A1 (en) * 2012-08-03 2014-02-06 Nuovo Pignone Srl Dual-end drive gas turbine

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2608822A (en) * 1944-10-07 1952-09-02 Turbolectric Corp Method of operation and regulation of thermal power plants
US3418806A (en) * 1966-11-14 1968-12-31 Westinghouse Electric Corp Elastic fluid turbine apparatus
US4117343A (en) * 1973-11-08 1978-09-26 Brown Boveri-Sulzer Turbomaschinen Ag. Turbo-machine plant having optional operating modes
US4347706A (en) * 1981-01-07 1982-09-07 The United States Of America As Represented By The United States Department Of Energy Electric power generating plant having direct coupled steam and compressed air cycles
US5099643A (en) * 1989-01-26 1992-03-31 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5199256A (en) * 1989-01-26 1993-04-06 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5058373A (en) * 1989-01-26 1991-10-22 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5069030A (en) * 1989-01-26 1991-12-03 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US6750557B2 (en) 2001-09-06 2004-06-15 Energy Transfer Group, L.L.C. Redundant prime mover system
WO2005047789A2 (en) 2003-11-06 2005-05-26 Exxonmobil Upstream Research Company Method for efficient, nonsynchronous lng production
US7188475B2 (en) * 2003-12-18 2007-03-13 Honeywell International, Inc. Starting and controlling speed of a two spool gas turbine engine
US7513120B2 (en) 2005-04-08 2009-04-07 United Technologies Corporation Electrically coupled supercharger for a gas turbine engine
US7726114B2 (en) 2005-12-07 2010-06-01 General Electric Company Integrated combustor-heat exchanger and systems for power generation using the same
US8049353B1 (en) * 2008-06-13 2011-11-01 Florida Turbine Technologies, Inc. Stackable generator arrangement
US20100150713A1 (en) 2008-12-13 2010-06-17 Branko Stankovic Rotating-Plate Radial Turbine in Gas-Turbine-Cycle Configurations
JP2010168957A (ja) * 2009-01-21 2010-08-05 Hitachi Ltd 2軸式ガスタービンと、2軸式ガスタービン用の燃焼器の予混合燃焼開始方法
US8468835B2 (en) 2009-03-27 2013-06-25 Solar Turbines Inc. Hybrid gas turbine engine—electric motor/generator drive system
US8164208B2 (en) 2009-04-15 2012-04-24 General Electric Company Systems involving multi-spool generators and variable speed electrical generators
US9249787B2 (en) 2010-01-27 2016-02-02 Dresser-Rand Company Advanced topologies for offshore power systems
EP2395205A1 (en) * 2010-06-10 2011-12-14 Alstom Technology Ltd Power Plant with CO2 Capture and Compression
ITCO20110031A1 (it) 2011-07-28 2013-01-29 Nuovo Pignone Spa Treno di turbocompressori con supporti rotanti e metodo
JP5639568B2 (ja) * 2011-11-15 2014-12-10 三菱日立パワーシステムズ株式会社 2軸式ガスタービン
ITFI20120245A1 (it) * 2012-11-08 2014-05-09 Nuovo Pignone Srl "gas turbine in mechanical drive applications and operating methods"
ITFI20120292A1 (it) * 2012-12-24 2014-06-25 Nuovo Pignone Srl "gas turbines in mechanical drive applications and operating methods"
ITFI20130130A1 (it) * 2013-05-31 2014-12-01 Nuovo Pignone Srl "gas turbines in mechanical drive applications and operating methods"
US10006315B2 (en) * 2014-03-28 2018-06-26 General Electric Company System and method for improved control of a combined cycle power plant
WO2016170166A2 (en) * 2015-04-24 2016-10-27 Nuovo Pignone Tecnologie Srl Compressor driven by orc waste heat recovery unit and control method
US20170248036A1 (en) * 2016-02-29 2017-08-31 General Electric Company System and method for managing heat recovery steam generator inlet temperature
US10731568B2 (en) * 2016-11-23 2020-08-04 General Electric Company Systems and methods for reducing airflow imbalances in turbines
US10437241B2 (en) * 2016-12-16 2019-10-08 General Electric Company Systems and methods for generating maintenance packages
US10704427B2 (en) * 2017-01-04 2020-07-07 General Electric Company Method to diagnose power plant degradation using efficiency models
US10697318B2 (en) * 2017-01-12 2020-06-30 General Electric Company Efficiency maps for tracking component degradation
US11181041B2 (en) * 2017-02-02 2021-11-23 General Electric Company Heat recovery steam generator with electrical heater system and method
US20180340473A1 (en) * 2017-05-19 2018-11-29 General Electric Company Combined cycle power plant system arrangements
US10823016B2 (en) * 2017-06-02 2020-11-03 General Electric Company System and method for risk categorization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090320438A1 (en) * 2008-05-15 2009-12-31 Hitachi, Ltd Two-shaft gas turbine
EP2143908A2 (en) * 2008-07-10 2010-01-13 Hitachi Ltd. Twin-shaft gas turbine
WO2014020104A1 (en) * 2012-08-03 2014-02-06 Nuovo Pignone Srl Dual-end drive gas turbine

Also Published As

Publication number Publication date
US10815882B2 (en) 2020-10-27
ITUB20155049A1 (it) 2017-04-20
RU2018113492A3 (ru) 2020-01-24
WO2017067871A1 (en) 2017-04-27
RU2018113492A (ru) 2019-11-21
SA518391367B1 (ar) 2021-09-04
US20180306109A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
RU2718735C2 (ru) Комплексный блок генерации энергии и сжатия и соответствующий способ
US8479523B2 (en) Method for gas turbine operation during under-frequency operation through use of air extraction
US8726633B2 (en) Gas turbine engine systems and related methods involving multiple gas turbine cores
US9140184B2 (en) Supercharged combined cycle system with air flow bypass to HRSG and fan
US10024197B2 (en) Power generation system having compressor creating excess air flow and turbo-expander using same
US20130318965A1 (en) Supercharged Combined Cycle System With Air Flow Bypass To HRSG And Hydraulically Coupled Fan
KR101982143B1 (ko) 복합 사이클 발전 플랜트를 리트로피팅하는 장치 및 프로세스
JPS60256522A (ja) ガスタービン機関装置のシステム制御手段
EP3070294A1 (en) Power generation system having compressor creating excess air flow and turbo-expander for supplemental generator
US9828887B2 (en) Power generation system having compressor creating excess air flow and turbo-expander to increase turbine exhaust gas mass flow
US20150152783A1 (en) Combination of two gas turbines to drive a load
US10975733B2 (en) Compressor driven by ORC waste heat recovery unit and control method
US9822705B2 (en) Power augmentation system for a gas turbine
US20210080172A1 (en) Compressor train arrangements
EP3070299A1 (en) Power generation system having compressor creating excess air flow and supplemental compressor therefor
JP6749772B2 (ja) 過剰空気流を生成する圧縮機及び入口空気を冷却するためのターボ膨張器を有する発電システム
JP6356813B2 (ja) 高圧力比ツインスプール産業用ガスタービンエンジン
EP3070291B1 (en) Power generation system having compressor creating excess air flow and turbo-expander using same
EP3070298A1 (en) Power generation system having compressor creating excess air flow and eductor for process air demand
JPH06101502A (ja) ガスタービンシステム