RU2718698C1 - Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолётов - Google Patents

Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолётов Download PDF

Info

Publication number
RU2718698C1
RU2718698C1 RU2019129183A RU2019129183A RU2718698C1 RU 2718698 C1 RU2718698 C1 RU 2718698C1 RU 2019129183 A RU2019129183 A RU 2019129183A RU 2019129183 A RU2019129183 A RU 2019129183A RU 2718698 C1 RU2718698 C1 RU 2718698C1
Authority
RU
Russia
Prior art keywords
aircraft
group
drfm
pulse
signal
Prior art date
Application number
RU2019129183A
Other languages
English (en)
Inventor
Александр Викторович Богданов
Денис Викторович Закомолдин
Сергей Александрович Часовских
Original Assignee
Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации filed Critical Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации
Priority to RU2019129183A priority Critical patent/RU2718698C1/ru
Application granted granted Critical
Publication of RU2718698C1 publication Critical patent/RU2718698C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5242Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi with means for platform motion or scan motion compensation, e.g. airborne MTI
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5244Adaptive clutter cancellation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5248Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi combining a coherent MTI processor with a zero Doppler processing channel and a clutter mapped memory, e.g. MTD (Moving target detector)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/534Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi based upon amplitude or phase shift resulting from movement of objects, with reference to the surrounding clutter echo signal, e.g. non coherent MTi, clutter referenced MTi, externally coherent MTi
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/38Jamming means, e.g. producing false echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к области первичной обработки радиолокационных сигналов и может быть использовано в бортовой радиолокационной станции (БРЛС) истребителя для расширения ее функциональных возможностей при обнаружении групповой воздушной цели (ГВЦ) в условиях воздействия помех типа DRFM по боковым лепесткам диаграммы направленности антенны (ДНА). Достигаемый технический результат - расширение функциональных возможностей БРЛС истребителя при обнаружении ГВЦ за счет распознавания воздействия по боковым лепесткам ДНА прицельных по частоте помех типа DRFM, количества самолетов-постановщиков помех в составе группы, принадлежности каждого самолета группы к самолету-постановщику помех и обеспечения обработки полезного сигнала с одновременной режекцией помех. Способ функционирования БРЛС истребителя при обнаружении ГВЦ заключается в идентификации помех типа DRFM по боковым лепесткам ДНА, определении количества постановщиков помех из состава группы, определении принадлежности каждого самолета из состава группы к самолету-постановщику помех на основе совместного анализа амплитуд и положения спектральных составляющих спектров радиолокационного сигнала, принятого в основном и компенсационном каналах, и обеспечении дальнейшей обработки полезного сигнала с одновременной режекцией частотных позиций, соответствующих помехам типа DRFM. 3 ил.

Description

Изобретение относится к области радиолокации и может быть использовано для расширения функциональных возможностей импульсно-доплеровской бортовой радиолокационной станции (БРЛС) за счет определения количества постановщиков помех типа DRFM - цифровая радиочастотная память по боковым лепесткам диаграммы направленности антенны (ДНА) БРЛС и принадлежности каждого самолета группы к самолету-постановщику помех типа DRFM с одновременной их режекцией при обработке сигналов в БРЛС.
Известен способ функционирования импульсно-доплеровской БРЛС, заключающийся в формировании высокочастотной последовательности зондирующих импульсов, их усилении по мощности, излучении в пространство, приеме, усилении, преобразовании отраженных сигналов на промежуточные частоты, их селекции по дальности и доплеровской частоте, преобразовании сигналов в цифровую форму с последующим их спектральным анализом [1].
Недостатком данного способа являются его ограниченные функциональные возможности, не позволяющие при обнаружении группы самолетов распознать: воздействие по боковым лепесткам ДНА прицельных по частоте помех типа DRFM; количество самолетов-постановщиков помех типа DRFM в составе группы; принадлежность каждого самолета группы к самолету-постановщику помех типа DRFM, а также обеспечить обработку полезного сигнала.
Известен способ функционирования импульсно-доплеровской БРЛС, заключающийся в том, что при обнаружении воздушной цели осуществляется сканирование пространства главным лучом ДНА с компенсационным каналом по боковым лепесткам, сравниваются уровни сигналов в основном и компенсационном каналах, устанавливают коэффициент усиления сигнала, принимаемого по боковым лепесткам ДНА, в основном канале меньшим и соизмеримым с коэффициентом усиления сигнала в компенсационном канале, принятые сигналы в основном и компенсационном каналах с помощью процедуры быстрого преобразования Фурье (БПФ) преобразуются в соответствующие амплитудно-частотные спектры, на основе анализа которых принимается решение о воздействии помехи типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС и осуществляется дальнейшая обработка полезного сигнала [2].
Недостатком данного способа являются его ограниченные функциональные возможности, не позволяющие при обнаружении группы самолетов распознать: воздействие по боковым лепесткам ДНА прицельных по частоте помех типа DRFM; количество самолетов-постановщиков помех типа DRFM в составе группы; принадлежность каждого самолета группы к самолету-постановщику помех типа DRFM, а также обеспечение обработки полезного сигнала.
Цель изобретения - расширение функциональных возможностей импульсно-доплеровской бортовой радиолокационной станции за счет распознавания воздействия по боковым лепесткам ДНА прицельных по частоте помех типа DRFM, количества самолетов-постановщиков помех типа DRFM в составе группы, принадлежности каждого самолета группы к самолету-постановщику помех типа DRFM и обеспечение обработки полезного сигнала с одновременной режекцией помех.
Для достижения цели в способе функционирования импульсно-доплеровской БРЛС с распознаванием постановщиков помех типа DRFM при обнаружении группы самолетов, заключающимся в том, что при обнаружении импульсно-доплеровской БРЛС группы самолетов осуществляется сканирование пространства главным лучом ДНА с компенсационным каналом по боковым лепесткам, устанавливают коэффициент усиления сигнала, принимаемого по боковым лепесткам ДНА, в основном канале меньшим и соизмеримым с коэффициентом усиления сигнала в компенсационном канале, принятые сигналы в основном и компенсационном каналах с помощью процедуры БПФ преобразуются в соответствующие амплитудно-частотные спектры, дополнительно при облучении n-го самолета группы (где
Figure 00000001
; N - общее количество самолетов в группе) главным лучом ДНА импульсно-доплеровской БРЛС и постановке, ранее обнаруженными самолетами из состава их группы, оснащенными станциями радиотехнической разведки (РТР) и помех типа DRFM, прицельных на ранее разведанных с помощью станций РТР частотных позициях f1, …, fn-1 по боковым лепесткам ДНА, амплитуды Ano и А спектральных составляющих сигнала соответственно в основном и компенсационном каналах с учетом коэффициентов усиления в соответствующих каналах расположены на частотной позиции fn, обусловленной доплеровским смещением несущей частоты импульсно-доплеровской БРЛС вследствие взаимного перемещения ее носителя и облучаемого главным лучом ДНА n-го самолета их группы, амплитуды Ап1о, …, Ап(n-1)o спектральных составляющих помеховых сигналов в основном канале, с учетом коэффициентов усиления в основном канале, расположены соответственно на частотных позициях f1, …, fn-1 и Ап1к, …, Ап(n-1)к спектральных составляющих помеховых сигналов в компенсационном канале, с учетом коэффициентов усиления в компенсационном канале, расположены соответственно также на частотных позициях f1, …, fn-1, при наличии в составе группы m самолетов (где
Figure 00000002
; М - общее количество самолетов из состава их группы не оснащенных станциями постановки помех типа DRFM), амплитуды A(n-m)о и А(n-m)к спектральных составляющих сигнала соответственно в основном и компенсационном каналах с учетом коэффициентов усиления в соответствующих каналах расположены на частотной позиции fn-m, обусловленной доплеровским смещением несущей частоты импульсно-доплеровской БРЛС вследствие взаимного перемещения ее носителя и самолета, облучаемого главным лучом ДНА, амплитуды Ап1о, …, Ап(n-m-1)о спектральных составляющих помеховых сигналов в основном канале, с учетом коэффициентов усиления в основном канале, расположены соответственно на частотных позициях f1, …, fn-m-1 и амплитуды Ап1к, …, Ап(n-m-1)к спектральных составляющих помеховых сигналов в компенсационном канале, с учетом коэффициентов усиления в компенсационном канале расположены соответственно на частотных позициях f1, …, fn-m-1, обзор воздушного пространства осуществляется до облучения всех самолетов группы, в дальнейшем цикл обзора повторяется, осуществляется анализ расположения спектральных составляющих сигнала и их амплитуд, при этом, расположение спектральных составляющих сигнала только на частотной позиции fn и выполнении условия Ano соответствует отсутствию воздействия помех типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС, в этом случае осуществляется обработка только полезного сигнала в импульсно-доплеровской БРЛС, одновременное расположение спектральных составляющих сигнала на частотных позициях f1, …, fn и выполнение условий
Figure 00000003
соответствует постановке помех типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС каждым самолетом группы, кроме облучаемого главным лепестком ДНА импульсно-доплеровской БРЛС самолета из состава их группы, в этом случае осуществляется обработка полезного сигнала в импульсно-доплеровской БРЛС с одновременной режекцией помех типа DRFM на частотных позициях f1, …, fn-1, одновременное расположение спектральных составляющих сигнала на частотных позициях f1, …, fn-m, и выполнение условий
Figure 00000004
соответствует: постановке помех типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС каждым самолетом их группы, оснащенным станциями РТР и постановки помех, кроме облучаемого самолета из состава их группы главным лепестком ДНА импульсно-доплеровской БРЛС; текущему значению m самолетов из состава их группы, которые не оснащены станциями помех типа DRFM; частотные позиции f1, …, fn-m-1 соответствуют помеховым сигналам, излученным постановщиками помех, в этом случае обработка полезного сигнала в импульсно-доплеровской БРЛС осуществляется с одновременным определением количества j=n-m-1 постановщиков помех, определением принадлежности каждого самолета группы к самолету-постановщику помех типа DRFM на частотных позициях f1, …, fn-m-1 и режекцией помех типа DRFM на частотных позициях f1…fn-m-1.
Новыми признаками, обладающими существенными отличиями, являются следующие.
1. Принятие решения об отсутствии воздействия помех типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС при расположении спектральных составляющих сигнала только на частотной позиции fn и выполнении условия Ano, на основе чего осуществляется обработка только полезного сигнала в импульсно-доплеровской БРЛС.
2. Принятие решения о постановке помех типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС каждым самолетом, кроме облучаемого самолета из состава их группы главным лепестком ДНА БРЛС, при одновременном расположении спектральных составляющих сигнала на частотных позициях f1…fn выполнении условий (1), на основе чего осуществляется обработка полезного сигнала в импульсно-доплеровской БРЛС с одновременной режекцией помех типа DRFM на частотных позициях f1…fn-1.
3. Принятие решения о: постановке помех типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС каждым самолетом их группы, оснащенным станциями РТР и постановки помех, кроме облучаемого самолета из состава их группы главным лепестком ДНА БРЛС; текущем значении m самолетов из состава их группы, которые не оснащены станциями помех типа DRFM; соответствии частотных позиций f1, …, fn-m-1 помеховым сигналам, излученным постановщиками помех при одновременном расположении спектральных составляющих сигнала на частотных позициях f1, …, fn-m и выполнения условий (2), на основе чего осуществляется обработка полезного сигнала в импульсно-доплеровской БРЛС с одновременным определением количества j=n-m-1 постановщиков помех, определением принадлежности каждого самолета группы к самолету-постановщику помех типа DRFM на частотных позициях f1, …, fn-m-1 и режекцией помех типа DRFM на частотных позициях f1…fn-m-1.
Данные признаки обладают существенными отличиями, так как в известных способах не обнаружены.
Применение всех новых признаков позволит расширить функциональные возможности импульсно-доплеровской БРЛС за счет распознавания воздействия по боковым лепесткам ДНА прицельных по частоте помех типа DRFM, количества самолетов-постановщиков помех типа DRFM в составе группы, принадлежности каждого самолета группы к самолету-постановщику помех типа DRFM и осуществлять обработку полезного сигнала с режекцией помех типа DRFM.
На рисунке 1 приведена блок-схема, поясняющая предлагаемый способ функционирования импульсно-доплеровской БРЛС, на рисунках 2 (а, б, в, г) - порядок сканирования ДНА при облучении группы самолетов, на рисунках 3 (а, б, в, г) - эпюры спектров сигналов, принятых в основном и компенсационном каналах.
Способ функционирования импульсно-доплеровской БРЛС с распознаванием постановщиков помех типа DRFM при обнаружении группы самолетов осуществляется следующим образом.
Для определенности примем, что группа состоит из 4 самолетов
Figure 00000005
, априорно считается неизвестным, что количество самолетов-постановщиков помех в группе, оснащенных станциями РТР и постановки помех, равно 2, причем априорно также считается неизвестным, что только первый и третий самолеты являются самолетами-постановщиками помех (ПП).
Осуществляется сканирование пространства главным лучом ДНА с компенсационным каналом по боковым лепесткам. Принятые антеннами сигналы в основном канале с выхода приемника ПРМ1 So(t) и компенсационном канале с выхода приемника ПРМ2 Sк(t) (рисунок 1) поступают на соответствующие блоки быстрого преобразования Фурье БПФ 3 и БПФ 4, где преобразуются в соответствующие амплитудно-частотные спектры So(f) и Sк(f).
При этом, коэффициент усиления сигнала, принимаемого по боковым лепесткам ДНА, устанавливается в основном канале меньшим и соизмеримым с коэффициентом усиления сигнала, в компенсационном канале.
При облучении главным лучом ДНА импульсно-доплеровской БРЛС первого (рисунок 2а) самолета группы (согласно вышеприведенному условию он оснащен станциями радиотехнической разведки (РТР) и помех) из состава группы из четырех самолетов, амплитуды (рисунок 3а) A1o и А спектральных составляющих сигнала соответственно в основном и компенсационном каналах с учетом коэффициентов усиления в соответствующих каналах расположены на частотной позиции f1, обусловленной доплеровским смещением несущей частоты импульсно-доплеровской БРЛС вследствие взаимного перемещения ее носителя и облучаемого первого самолета. Так как первый самолет оснащен станциями РТР и помех, то в данный момент времени осуществляется определение частоты f1.
При облучении второго (рисунок 2б) самолета из состава группы (согласно условию он не оснащен станциями РТР и помех) главным лучом ДНА импульсно-доплеровской БРЛС и постановкой первым самолетом помехи типа DRFM, на ранее разведанной частоте f1, по боковым лепесткам ДНА, амплитуды (рисунок 3б) А и А спектральных составляющих сигнала соответственно в основном и компенсационном каналах с учетом коэффициентов усиления в соответствующих каналах расположены на частотной позиции f2, обусловленной доплеровским смещением несущей частоты импульсно-доплеровской БРЛС вследствие взаимного перемещения ее носителя и облучаемого главным лучом ДНА второго самолета, амплитуды Ап1о и Ап1к спектральных составляющих помехового сигнала соответственно в основном и компенсационном каналах, с учетом коэффициентов усиления в соответствующих каналах, расположены на частотной позиции f1. Поскольку второй самолет не оснащен станциями РТР и помех, то в данный момент времени не осуществляется определение частоты f2.
При облучении третьего (рисунок 2в) самолета из состава их группы (согласно условию он оснащен станциями РТР и помех) главным лучом ДНА импульсно-доплеровской БРЛС и постановке ранее обнаруженным первым самолетом (оснащенным станциями РТР и помех) помехи типа DRFM, прицельной на ранее разведанной с помощью станции РТР частотной позиции f1 по боковым лепесткам ДНА и не постановке помехи ранее облученным вторым самолетом, амплитуды (рисунок 3в) А и А спектральных составляющих сигнала соответственно в основном и компенсационном каналах с учетом коэффициентов усиления в соответствующих каналах расположены на частотной позиции f3, обусловленной доплеровским смещением несущей частоты импульсно-доплеровской БРЛС вследствие взаимного перемещения ее носителя и облучаемого главным лучом ДНА третьего самолета. Амплитуды Ап1о и Ап1к спектральных составляющих помеховых сигналов в основном и компенсационном каналах, с учетом коэффициентов усиления в данных каналах, расположены на частотной позиции f1. Поскольку второй самолет не оснащен станциями РТР и помех, с его стороны постановка помехи типа DRFM не осуществляется. В этом случае помеховая спектральная составляющая сигнала на частоте f2, обусловленной взаимным сближением носителя БРЛС и второго самолета отсутствует (пунктирная линия (рисунок 3в). Поскольку третий самолет оснащен станциями РТР и помех, то в данный момент времени осуществляется определение частотной позиции f3, обусловленной доплеровским смещением несущей частоты импульсно-доплеровской БРЛС вследствие взаимного перемещения ее носителя и облучаемого главным лучом ДНА третьего самолета группы.
При облучении главным лучом ДНА импульсно-доплеровской БРЛС четвертого (рисунок 2г) самолета группы и постановке, ранее обнаруженными первым и третьим самолетами, оснащенными станциями РТР и помех, помех типа DRFM, прицельной на ранее разведанных с помощью их станций РТР частотных позициях f1 и f3 по боковым лепесткам ДНА, амплитуды (рисунок 3г) А и А спектральных составляющих сигнала соответственно в основном и компенсационном каналах с учетом коэффициентов усиления в соответствующих каналах расположены на частотной позиции f4. Амплитуды Ап1о и Ап2о спектральных составляющих помеховых сигналов в основном канале, с учетом коэффициентов усиления в основном канале, расположены на частотных позициях f1 и f3 соответственно, а амплитудыАп1к и Ап2к спектральных составляющих помеховых сигналов в компенсационном канале, с учетом коэффициентов усиления в компенсационном канале расположены на частотных позициях f1 и f3 соответственно. Спектральная составляющая на частотной позиции f2 (рисунок 3г пунктирная линия) в основном и компенсационном каналах, обусловленная доплеровским смещением несущей частоты импульсно-доплеровской БРЛС вследствие взаимного перемещения ее носителя и облученного главным лучом ДНА второго самолета (не оснащенного станциями РТР и помех) отсутствует.
Полученные амплитудно-частотные спектры So(f) и Sк(f) поступают (рисунок 1) в спектроанализатор СА5, где осуществляется анализ расположения спектральных составляющих сигнала и их амплитуд. В блоке распознавания БР8 на вход которого поступают значения помеховых частот f1, …, fn-m-1 определяется принадлежность каждого самолета группы к самолету-постановщику помех типа DRFM и на его выходе формируются сигналы «0» и «1», причем сигнал «0» соответствует тому, что данный самолет в группе не является постановщик помех, а сигнал «1» соответствует тому, что данный самолет является самолетом-постановщиком помех. В спектроанализаторе СА 5 вычисляется количество самолетов, из состава группы, оснащенных станциями РТР и помех (j=n-m-l, при текущих значения n и m).
Так, при облучении первого самолета из состава группы, расположение спектральных составляющих сигнала только на частотной позиции f1 и выполнении условия A1o соответствует отсутствию воздействия помехи типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС. В этом случае на выходе спектроанализатора СА5 формируется сигнал логического нуля «0», который является разрешающим сигналом для коммутатора 6, с выхода которого только полезный сигнал So(f) поступает на выход 9 и далее в импульсно-доплеровскую БРЛС для его обработки.
При облучении второго самолета из состава группы и постановке первым самолетом помехи типа DRFM по боковым лепесткам ДНА (текущие значения n=2, m=0), одновременное расположение спектральных составляющих сигнала на частотных позициях f1 и f2, и выполнение условий Ап1о, Ап1к, Ап1кп1о соответствует постановке помехи типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС первым самолетом, являющимся самолетом-постановщиком помех. В этом случае на выходе спектроанализатора СА5 формируется сигнал логической единицы «1», который является запрещающим для выхода 9 коммутатора 6 и разрешающим сигналом для поступления спектра сигнала So(f) на вход гребенки режекторных фильтров 7 (РФ1, …, РФk) (k - общее количество режекторных фильтров), настраиваемых, в общем случае, на частотные позиции f1, …, fn-m-1, …, fk, соответствующие частотам воздействия помех (в рассматриваемом случае после режектирования сигнала на частотной позиции f1 на выход 11 поступает только полезный сигнал. При этом, данный сигнал логической единицы «1» является разрешающим сигналом для выдачи с выхода 10 информации о количестве самолетов-постановщиков помех (вычисленное, как j=n-m-1, на данном такте сканирования ДНА j=1 с учетом n=2, m=0), а также разрешающим сигналом для выдачи с выхода 12 информации в виде «1» о принадлежности первого из двух облученных на данном этапе сканирования ДНА самолетов к самолету-постановщику помех.
При облучении третьего самолета из состава группы (текущие значения n=3, m=1), ввиду того, что второй самолет не является самолетом-постановщиком помех, аналогично одновременное расположение спектральных составляющих сигнала на частотных позициях f1 и f3, и выполнение условий Ап1о, Ап1к, Ап1кп1о соответствует постановке помехи типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС первым самолетом-постановщиком помех. В этом случае на выходе спектроанализатора СА5 формируется сигнал логической единицы «1», который является запрещающим для выхода 9 коммутатора 6 и разрешающим сигналом для поступления спектра сигнала So(f) на вход гребенки режекторных фильтров 7, на второй вход которой на данном такте сканирования ДНА поступает значение частотной позиции f1 (частоты помехи) и, после режектирования только полезный сигнал поступает на выход 11. Кроме того, данный сигнал логической единицы «1» является разрешающим для выдачи с выхода 10 информации о количестве самолетов-постановщиков помех (вычисленное, как j=n-m-1, на данном такте сканирования ДНА j=1 с учетом n=3, m=1), а также разрешающим сигналом для выдачи с выхода 12 информации в виде «10» о принадлежности первого из трех облученных на данном этапе сканирования ДНА самолетов к самолету-постановщику помех.
При облучении четвертого самолета из состава группы (текущие значения n=4, m=1), и постановке первым и третьим самолетами помех типа DRFM по боковым лепесткам ДНА, одновременное расположение спектральных составляющих сигнала на частотных позициях f1, f3 и f4 и выполнение условий Ап1о, Ап2о, Ап1к, Ап2к, Ап1кп1о, Ап2кп2о, соответствует постановке помех типа DRFM по боковым лепесткам ДНА импульсно-доплеровской БРЛС первым и третьим самолетами-постановщиками помех. В этом случае на выходе спектроанализатора СА5 формируется сигнал логической единицы «1», который является запрещающим сигналом для выхода 9 коммутатора 6 и разрешающим сигналом для поступления спектра сигнала So(f) на вход гребенки режекторных фильтров 7, на второй вход которой на данном такте сканирования ДНА поступают значения частотных позиций f1 и f3 (частоты помех) и, после режектирования только полезный сигнал поступает на выход 11. Кроме того, данный сигнал логической единицы «1» является разрешающим для выдачи с выхода 10 информации о количестве самолетов-постановщиков помех (вычисленное, как j=n-m-1, на данном такте сканирования ДНА j=2 с учетом n=4, m=1), а также разрешающим сигналом для выдачи с выхода 12 информации в виде «101» о принадлежности первого и третьего из четырех облученных на данном этапе сканирования ДНА самолетов к самолетам-постановщикам помех.
Таким образом, применение предлагаемого изобретения позволит расширить функциональные возможности импульсно-доплеровской бортовой радиолокационной станции за счет распознавания воздействия по боковым лепесткам ДНА прицельных по частоте помех типа DRFM, количества постановщиков помех, принадлежности каждого самолета группы к самолету-постановщику помех и обработки полезного сигнала с режекцией помех типа DRFM, в условиях априорной неопределенности относительно общего количества самолетов-постановщиков помех в составе группы и принадлежности каждого самолета группы к самолету-постановщику помех.
ИСТОЧНИКИ ИНФОРМАЦИИ
1. Авиационные радиолокационные комплексы и системы: учебник для слушателей и курсантов ВУЗов ВВС / П.И. Дудник, Г.С. Кондратенков, Б.Г. Татарский, А.Р. Ильчук, А.А. Герасимов. Под ред. П.И. Дудника. - М.: изд. ВВИА им. проф. Н.Е. Жуковского, 2006, стр. 639-641, рисунок 12.39 (аналог).
2. Богданов А.В., Васильев О.В., Голубенко В.А., Закомолдин Д.В., Каневский М.И., Кочетов И.В., Кучин А.А., Часовских С.А. Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием воздействия помехи из вынесенной точки пространства при обнаружении воздушной цели, прикрываемой постановщиком помех. Патент на изобретение №2688188, 2019 (прототип).

Claims (9)

  1. Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолетов, заключающийся в том, что при обнаружении импульсно-доплеровской бортовой радиолокационной станцией группы самолетов осуществляется сканирование пространства главным лучом диаграммы направленности антенны с компенсационным каналом по боковым лепесткам, устанавливают коэффициент усиления сигнала, принимаемого по боковым лепесткам диаграммы направленности антенны, в основном канале меньшим и соизмеримым с коэффициентом усиления сигнала в компенсационном канале, принятые сигналы в основном и компенсационном каналах с помощью процедуры быстрого преобразования Фурье преобразуются в соответствующие амплитудно-частотные спектры, отличающийся тем, что при облучении n-го самолета группы, где
    Figure 00000006
    , N - общее количество самолетов в группе, главным лучом диаграммы направленности импульсно-доплеровской бортовой радиолокационной станции и постановке, ранее обнаруженными самолетами из состава их группы, оснащенными станциями радиотехнической разведки и помех типа DRFM, прицельных на ранее разведанных с помощью станций радиотехнической разведки частотных позициях f1, …, fn-1 по боковым лепесткам диаграммы направленности, амплитуды Ano и А спектральных составляющих сигнала соответственно в основном и компенсационном каналах с учетом коэффициентов усиления в соответствующих каналах расположены на частотной позиции fn, обусловленной доплеровским смещением несущей частоты импульсно-доплеровской бортовой радиолокационной станции вследствие взаимного перемещения ее носителя и облучаемого главным лучом диаграммы направленности n-го самолета их группы, амплитуды Ап1о, …, Ап(n-1)o спектральных составляющих помеховых сигналов в основном канале, с учетом коэффициентов усиления в основном канале, расположены соответственно на частотных позициях f1, …, fn-1 и Ап1к…Ап(n-1)к спектральных составляющих помеховых сигналов в компенсационном канале, с учетом коэффициентов усиления в компенсационном канале, расположены соответственно также на частотных позициях f1, …, fn-1, при наличии в составе m самолетов, где
    Figure 00000007
    , М - общее количество самолетов из состава их группы не оснащенных станциями постановки помех типа DRFM, амплитуды А(n-m)o и А(n-m)к спектральных составляющих сигнала соответственно в основном и компенсационном каналах с учетом коэффициентов усиления в соответствующих каналах расположены на частотной позиции fn-m, обусловленной доплеровским смещением несущей частоты импульсно-доплеровской бортовой радиолокационной станции вследствие взаимного перемещения ее носителя и облучаемого главным лучом диаграммы направленности самолета, амплитуды Ап1о, …, Ап(n-m-1)o спектральных составляющих помеховых сигналов в основном канале, с учетом коэффициентов усиления в основном канале, расположены на частотных позициях f1, …, fn-m-1 соответственно и Ап1к…Ап(n-m-1)к спектральных составляющих помеховых сигналов в компенсационном канале, с учетом коэффициентов усиления в компенсационном канале расположены соответственно на частотных позициях f1, …, fn-m-1, обзор воздушного пространства осуществляется до облучения всех самолетов группы, в дальнейшем цикл обзора повторяется, осуществляется анализ расположения спектральных составляющих сигнала и их амплитуд, при этом расположение спектральных составляющих сигнала только на частотной позиции fn и выполнение условия Ano соответствует отсутствию воздействия помех типа DRFM по боковым лепесткам диаграммы направленности антенны импульсно-доплеровской бортовой радиолокационной станции, в этом случае осуществляется обработка только полезного сигнала в импульсно-доплеровской бортовой радиолокационной станции, одновременное расположение спектральных составляющих сигнала на частотных позициях f1, …, fn и выполнение условий
  2. Ап1о>Ano, …, Ап(n-1)o>Ano,
  3. Ап1к>A, …, Ап(n-1)к,
  4. Ап1кп1о…Ап(n-1)кп(n-1)o
  5. соответствует постановке помех типа DRFM по боковым лепесткам диаграммы направленности импульсно-доплеровской бортовой радиолокационной станции каждым, кроме облучаемого главным лепестком диаграммы направленности импульсно-доплеровской бортовой радиолокационной станции самолета из состава их группы, в этом случае осуществляется обработка полезного сигнала в импульсно-доплеровской бортовой радиолокационной станции с одновременной режекцией помех типа DRFM на частотных позициях f1, …, fn-1, одновременное расположение спектральных составляющих сигнала на частотных позициях f1, …, fn-m, и выполнение условий
  6. Ап1о>A(n-m)o, …, Ап(n-m-1)o(n-m)o,
  7. Ап1к>A(n-m)к, …, Ап(n-m-1)к(n-m)к,
  8. Ап1кп1о, …, Ап(n-m-1)кп(n-m-1)o
  9. соответствует: постановке помех типа DRFM по боковым лепесткам диаграммы направленности антенны импульсно-доплеровской бортовой радиолокационной станции каждым самолетом их группы, оснащенным станциями радиотехнической разведки и постановки помех, кроме облучаемого главным лепестком диаграммы направленности антенны импульсно-доплеровской бортовой радиолокационной станции самолета из состава их группы; текущему значению m самолетов из состава их группы, которые не оснащены станциями помех типа DRFM; частотные позиции f1, …, fn-m-1 соответствуют помеховым сигналам, излученным постановщиками помех, в этом случае осуществляется обработка полезного сигнала в импульсно-доплеровской бортовой радиолокационной станции с одновременным определением количества j=n-m-1 постановщиков помех, определением принадлежности каждого самолета группы к самолету-постановщику помех типа DRFM на частотных позициях f1, …, fn-m-1 и режекцией помех типа DRFM на частотных позициях f1…fn-m-1.
RU2019129183A 2019-09-16 2019-09-16 Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолётов RU2718698C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019129183A RU2718698C1 (ru) 2019-09-16 2019-09-16 Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолётов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019129183A RU2718698C1 (ru) 2019-09-16 2019-09-16 Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолётов

Publications (1)

Publication Number Publication Date
RU2718698C1 true RU2718698C1 (ru) 2020-04-14

Family

ID=70277805

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019129183A RU2718698C1 (ru) 2019-09-16 2019-09-16 Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолётов

Country Status (1)

Country Link
RU (1) RU2718698C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780470C1 (ru) * 2022-01-17 2022-09-23 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Способ обеспечения помехозащищенности бортовой радиолокационной станции при постановке прицельных по частоте помех станцией активных помех

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2335783C1 (ru) * 2007-02-26 2008-10-10 Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) Способ защиты бортовой радиолокационной станции от уводящих по дальности помех с использованием станции активных помех
RU2349926C1 (ru) * 2007-08-13 2009-03-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский радиотехнический институт имени академика А.И. Берга" Цифровое устройство создания активных помех
US20090091492A1 (en) * 2007-10-09 2009-04-09 The Mitre Corporation Detection and mitigation radio frequency memory (DRFM)-based interference in synthetic aperture radar (SAR) images
KR101202276B1 (ko) * 2012-08-30 2012-11-16 국방과학연구소 디지털 고주파 기억장치를 이용한 재밍신호 발생 장치 및 방법
CN103245936A (zh) * 2013-01-30 2013-08-14 中国人民解放军海军航空工程学院 一种基于drfm的通用无线电高度模拟器
RU2596853C1 (ru) * 2015-06-30 2016-09-10 Акционерное общество "НИИ измерительных приборов-Новосибирский завод имени Коминтерна" /АО "НПО НИИИП-НЗиК"/ Способ распознавания ложных сигналов
RU2688188C1 (ru) * 2018-09-10 2019-05-21 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием воздействия помехи из вынесенной точки пространства при обнаружении воздушной цели, прикрываемой постановщиком помех
RU2694891C1 (ru) * 2019-02-18 2019-07-18 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ функционирования импульсно-доплеровской бортовой радиолокационной станции истребителя при обеспечении энергетической скрытности её работы на излучение

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2335783C1 (ru) * 2007-02-26 2008-10-10 Тамбовское высшее военное авиационное инженерное училище радиоэлектроники (военный институт) Способ защиты бортовой радиолокационной станции от уводящих по дальности помех с использованием станции активных помех
RU2349926C1 (ru) * 2007-08-13 2009-03-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский радиотехнический институт имени академика А.И. Берга" Цифровое устройство создания активных помех
US20090091492A1 (en) * 2007-10-09 2009-04-09 The Mitre Corporation Detection and mitigation radio frequency memory (DRFM)-based interference in synthetic aperture radar (SAR) images
KR101202276B1 (ko) * 2012-08-30 2012-11-16 국방과학연구소 디지털 고주파 기억장치를 이용한 재밍신호 발생 장치 및 방법
CN103245936A (zh) * 2013-01-30 2013-08-14 中国人民解放军海军航空工程学院 一种基于drfm的通用无线电高度模拟器
RU2596853C1 (ru) * 2015-06-30 2016-09-10 Акционерное общество "НИИ измерительных приборов-Новосибирский завод имени Коминтерна" /АО "НПО НИИИП-НЗиК"/ Способ распознавания ложных сигналов
RU2688188C1 (ru) * 2018-09-10 2019-05-21 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием воздействия помехи из вынесенной точки пространства при обнаружении воздушной цели, прикрываемой постановщиком помех
RU2694891C1 (ru) * 2019-02-18 2019-07-18 Федеральное государственное казённое военное образовательное учреждение высшего образования "Военная академия воздушно-космической обороны имени Маршала Советского Союза Г.К. Жукова" Министерства обороны Российской Федерации Способ функционирования импульсно-доплеровской бортовой радиолокационной станции истребителя при обеспечении энергетической скрытности её работы на излучение

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2780470C1 (ru) * 2022-01-17 2022-09-23 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Способ обеспечения помехозащищенности бортовой радиолокационной станции при постановке прицельных по частоте помех станцией активных помех

Similar Documents

Publication Publication Date Title
CN109901150B (zh) 一种多功能相控阵雷达装置及其探测方法
DE102008059424B4 (de) Sekundärradarsystem mit dynamischer Sektorisierung des zu überwachenden Raumes unter Verwendung von Multi-Antennenanordnungen und Verfahren hierzu
RU2688188C1 (ru) Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием воздействия помехи из вынесенной точки пространства при обнаружении воздушной цели, прикрываемой постановщиком помех
Wang et al. An experimental study of passive bistatic radar using uncooperative radar as a transmitter
US5572213A (en) Parameter encoder architecture
JPWO2007020704A1 (ja) 目標物検出方法及び目標物検出装置
Mir et al. A low-cost high-performance digital radar test bed
Barbary et al. An Industrial Design and Implementation Approach of Secondary Surveillance Radar System
Samczyński et al. Trial results on bistatic passive radar using non-cooperative pulse radar as illuminator of opportunity
RU2546330C1 (ru) Способ поляризационно-чувствительного радиоконтроля подвижных объектов
RU2315332C1 (ru) Радиолокационная станция
RU2410712C1 (ru) Способ обнаружения воздушных объектов
RU2624736C2 (ru) Радиолокационная станция кругового обзора "Резонанс"
Guo et al. Low‐slow‐small target detection using stepped‐frequency signals in a strong folded clutter environment
RU2718698C1 (ru) Способ функционирования импульсно-доплеровской бортовой радиолокационной станции с распознаванием постановщиков помех типа DRFM при обнаружении группы самолётов
RU2679597C1 (ru) Способ функционирования импульсно-доплеровской бортовой радиолокационной станции при обнаружении воздушной цели - носителя станций радиотехнической разведки и активных помех
RU2697389C1 (ru) Совмещенная система радиолокации и связи на радиофотонных элементах
Abdalla et al. Design and Implementation of Proposed Low-Cost Dual-Channel IF Receiver for SSR
Samczynski et al. Passive radars utilizing pulse radars as illuminators of opportunity
US11644557B2 (en) Method for creating a least one virtual reception channel using a radar antenna and radar system
RU2694276C1 (ru) Способ селекции имитаторов вторичного излучения воздушных объектов
RU2528169C1 (ru) Способ формирования радиолокационного изображения поверхности бортовой рлс, установленной на движущемся летательном аппарате
Fabrizio High frequency over-the-horizon radar
RU2420755C2 (ru) Способ обнаружения и локализации воздушных объектов
Bongioanni et al. Passive radar prototypes for multifrequency target detection